Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species....
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 51; číslo 5; s. 945 - 952 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2004
|
| Témata: | |
| ISSN: | 0740-3194, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange‐dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent‐exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Magn Reson Med 51:945–952, 2004. © 2004 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange‐dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent‐exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Magn Reson Med 51:945–952, 2004. © 2004 Wiley‐Liss, Inc. |
| Author | Sun, Phillip Zhe Wilson, David A. Klaus, Judith A. van Zijl, Peter C.M. Zhou, Jinyuan |
| Author_xml | – sequence: 1 givenname: Jinyuan surname: Zhou fullname: Zhou, Jinyuan email: jzhou@mri.jhu.edu organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland – sequence: 2 givenname: David A. surname: Wilson fullname: Wilson, David A. organization: Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland – sequence: 3 givenname: Phillip Zhe surname: Sun fullname: Sun, Phillip Zhe organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland – sequence: 4 givenname: Judith A. surname: Klaus fullname: Klaus, Judith A. organization: Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland – sequence: 5 givenname: Peter C.M. surname: van Zijl fullname: van Zijl, Peter C.M. organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15122676$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9uEzEQxi1URNPCgRdAPiFV6ra21xvbxyoKLVIKlKYK4mJ517NlYdcbbIekr8BT4_xpDqiI03ik3_d5Zr4jdOB6Bwi9puSMEsLOO9-dMUK4fIYGtGAsY4XiB2hABCdZThU_REchfCeEKCX4C3RIC8rYUAwH6PfNwrjYRBObX4AthMo389j0Dvc1nvs-phesqm_G3cO6ryAECLiEuARweGkieGycxeBsfw-uX4Rtu9p3qcaA697j2fjLKR6Nb6enG-bi0zRxc_BNt0Zeoue1aQO82tVjdPduPB1dZZOPl-9HF5Os4orKrBaSiUJaSislDRBiWG3qmnPOmByWllurQJlCllIZWzOyRkrJmZEl5LbIj9HbrW9a5-cCQtRdEypoW-MgDawFlekfQv8LUpFLpSRJ4JsduCg7sHqeNjL-QT-eOQHnW6DyfQgeal1tTt676E3Takr0OkidgtSbIJPi5C_F3vQJdue-bFp4-Deorz9fPyqyraIJEVZ7hfE_9FDkotCzD5d6kufsSsxG-mv-B2BpvbM |
| CitedBy_id | crossref_primary_10_1038_sj_jcbfm_9600424 crossref_primary_10_1002_cmmi_265 crossref_primary_10_1016_j_neuroimage_2024_120993 crossref_primary_10_1002_cmmi_1546 crossref_primary_10_1007_s10858_011_9527_z crossref_primary_10_1007_s00247_025_06248_9 crossref_primary_10_1016_j_jmr_2019_01_006 crossref_primary_10_3389_fchem_2020_00326 crossref_primary_10_1007_s00330_016_4477_1 crossref_primary_10_1016_j_mri_2005_12_033 crossref_primary_10_1002_nbm_3362 crossref_primary_10_1002_mrm_28745 crossref_primary_10_1002_mrm_22761 crossref_primary_10_1002_mrm_28744 crossref_primary_10_1053_j_sult_2021_07_003 crossref_primary_10_1002_mrm_25581 crossref_primary_10_1002_nbm_4200 crossref_primary_10_1016_j_neuroimage_2013_03_072 crossref_primary_10_1016_j_mri_2014_03_001 crossref_primary_10_1002_mrm_26799 crossref_primary_10_1002_mrm_26559 crossref_primary_10_3389_fneur_2020_00270 crossref_primary_10_1002_mrm_27762 crossref_primary_10_1002_nbm_3237 crossref_primary_10_3389_fneur_2019_00104 crossref_primary_10_1002_mrm_22637 crossref_primary_10_1002_cmmi_1569 crossref_primary_10_1002_mrm_30164 crossref_primary_10_1088_0031_9155_60_12_4719 crossref_primary_10_1016_j_jmr_2012_07_003 crossref_primary_10_1002_nbm_3343 crossref_primary_10_1002_mrm_26100 crossref_primary_10_1146_annurev_anchem_1_031207_113018 crossref_primary_10_3390_biomedicines10092138 crossref_primary_10_1002_mrm_23074 crossref_primary_10_1016_j_jmr_2021_107022 crossref_primary_10_1016_j_mri_2017_05_001 crossref_primary_10_1016_j_neuroimage_2016_07_025 crossref_primary_10_1002_mrm_29617 crossref_primary_10_1016_j_conb_2007_11_002 crossref_primary_10_1016_j_jmr_2012_11_024 crossref_primary_10_1016_j_jmr_2021_107141 crossref_primary_10_1002_cmmi_1680 crossref_primary_10_1002_mrm_27555 crossref_primary_10_1021_ja3001419 crossref_primary_10_1021_jacs_6b06421 crossref_primary_10_1148_radiol_2017162089 crossref_primary_10_1002_nbm_4785 crossref_primary_10_1002_nbm_4780 crossref_primary_10_1002_mrm_24271 crossref_primary_10_2310_7290_2011_00026 crossref_primary_10_1002_mrm_22891 crossref_primary_10_1002_mrm_23068 crossref_primary_10_1155_2020_6418343 crossref_primary_10_1016_j_jmr_2011_05_001 crossref_primary_10_1002_mrm_21683 crossref_primary_10_1002_mrm_29842 crossref_primary_10_1002_nbm_4789 crossref_primary_10_1016_j_mri_2023_10_009 crossref_primary_10_1016_j_mri_2024_01_006 crossref_primary_10_1088_0031_9155_57_24_8185 crossref_primary_10_1007_s10334_021_00996_z crossref_primary_10_1002_mrm_20818 crossref_primary_10_1002_cmmi_1628 crossref_primary_10_1002_nbm_3048 crossref_primary_10_1007_s40134_013_0010_3 crossref_primary_10_1002_nbm_3284 crossref_primary_10_1002_mrm_21591 crossref_primary_10_1016_j_neuroimage_2014_05_036 crossref_primary_10_1016_j_mri_2023_07_014 crossref_primary_10_1002_mrm_24850 crossref_primary_10_1002_nbm_3715 crossref_primary_10_1002_jmri_28871 crossref_primary_10_1016_j_jmr_2005_04_005 crossref_primary_10_1016_j_neuroimage_2011_08_014 crossref_primary_10_1002_cmmi_1524 crossref_primary_10_1038_nm_3252 crossref_primary_10_1002_jmri_25838 crossref_primary_10_1002_nbm_4356 crossref_primary_10_1002_mrm_24520 crossref_primary_10_1002_mrm_24641 crossref_primary_10_1002_mrm_26820 crossref_primary_10_3389_fneur_2022_764690 crossref_primary_10_1002_mrm_23312 crossref_primary_10_1016_j_ccr_2008_05_006 crossref_primary_10_1038_s41596_025_01152_w crossref_primary_10_1016_j_cplett_2007_08_038 crossref_primary_10_1002_mrm_20709 crossref_primary_10_1002_mrm_27341 crossref_primary_10_1002_nbm_3257 crossref_primary_10_1148_radiol_2452061117 crossref_primary_10_1002_mrm_26131 crossref_primary_10_1002_mrm_29763 crossref_primary_10_3390_ph14010011 crossref_primary_10_1007_s10334_017_0625_0 crossref_primary_10_1111_j_1552_6569_2012_00751_x crossref_primary_10_1002_mrm_28313 crossref_primary_10_1016_j_tins_2004_12_007 crossref_primary_10_3389_fonc_2019_00440 crossref_primary_10_1002_mrm_26813 crossref_primary_10_1002_mrm_24639 crossref_primary_10_1038_s41467_020_14874_0 crossref_primary_10_3348_jksr_2016_75_6_419 crossref_primary_10_1002_anie_200501473 crossref_primary_10_1002_nbm_4610 crossref_primary_10_1002_nbm_4731 crossref_primary_10_1021_ja5059313 crossref_primary_10_1002_mrm_28223 crossref_primary_10_1002_mrm_25990 crossref_primary_10_1002_nbm_2792 crossref_primary_10_1002_nbm_3086 crossref_primary_10_1016_j_cplett_2014_03_045 crossref_primary_10_1002_mrm_24784 crossref_primary_10_1002_mrm_21151 crossref_primary_10_1007_s10334_005_0013_z crossref_primary_10_1016_j_carbpol_2011_06_056 crossref_primary_10_1002_mrm_21398 crossref_primary_10_1002_nbm_4734 crossref_primary_10_1002_mrm_21712 crossref_primary_10_3938_jkps_70_545 crossref_primary_10_1002_mrm_20989 crossref_primary_10_1002_mrm_21714 crossref_primary_10_1002_nbm_3192 crossref_primary_10_1002_nbm_3191 crossref_primary_10_1002_mrm_28573 crossref_primary_10_1002_mrm_30532 crossref_primary_10_1002_mrm_25186 crossref_primary_10_1002_mrm_26396 crossref_primary_10_1002_mrm_28212 crossref_primary_10_1073_pnas_0700281104 crossref_primary_10_1088_0031_9155_59_2_R65 crossref_primary_10_1016_j_jmr_2010_05_004 crossref_primary_10_1002_mrm_25987 crossref_primary_10_1002_mrm_24539 crossref_primary_10_3390_ijms222111559 crossref_primary_10_1002_mrm_22912 crossref_primary_10_1038_s41598_020_78353_8 crossref_primary_10_1002_wnan_1167 crossref_primary_10_1002_mrm_28487 crossref_primary_10_1002_mrm_27155 crossref_primary_10_1002_mrm_29211 crossref_primary_10_1016_j_mri_2019_07_007 crossref_primary_10_1002_mrm_24560 crossref_primary_10_1002_ijch_201700025 crossref_primary_10_1002_mrm_29570 crossref_primary_10_1002_nbm_5000 crossref_primary_10_1016_j_jmr_2005_05_016 crossref_primary_10_1002_nbm_2899 crossref_primary_10_1002_nbm_4711 crossref_primary_10_1016_j_neuroimage_2019_01_034 crossref_primary_10_1186_s12880_019_0400_y crossref_primary_10_1097_RLI_0000000000000217 crossref_primary_10_1088_0031_9155_59_16_4493 crossref_primary_10_1002_jmri_24412 crossref_primary_10_1021_ja710159q crossref_primary_10_1016_j_pnmrs_2009_06_002 crossref_primary_10_1016_j_mric_2021_06_012 crossref_primary_10_1002_nbm_3054 crossref_primary_10_1002_mrm_27389 crossref_primary_10_1002_nbm_4944 crossref_primary_10_1002_nbm_3735 crossref_primary_10_1002_nbm_1798 crossref_primary_10_1002_mrm_25649 crossref_primary_10_3390_bios12100815 crossref_primary_10_1016_j_jmr_2006_08_011 crossref_primary_10_1002_chem_202002415 crossref_primary_10_1002_jmri_26629 crossref_primary_10_1002_cmmi_1589 crossref_primary_10_1002_jmri_21610 crossref_primary_10_1002_mrm_23250 crossref_primary_10_1002_mrm_30228 crossref_primary_10_1002_nbm_1021 crossref_primary_10_1155_2015_206405 crossref_primary_10_1016_j_pnmrs_2006_01_001 crossref_primary_10_1007_s00330_018_5964_3 crossref_primary_10_1016_j_neuroscience_2021_01_026 crossref_primary_10_1088_0031_9155_58_22_R221 crossref_primary_10_1002_mrm_25795 crossref_primary_10_1016_j_neuroimage_2017_10_053 crossref_primary_10_1002_nbm_4778 crossref_primary_10_1155_2018_3141789 crossref_primary_10_1109_TMI_2019_2898672 crossref_primary_10_1002_mrm_20408 crossref_primary_10_1016_j_mri_2024_02_015 crossref_primary_10_1186_1532_429X_16_7 crossref_primary_10_1002_mrm_20530 crossref_primary_10_1002_mrm_28258 crossref_primary_10_1002_mrm_28015 crossref_primary_10_1177_0271678X221108841 crossref_primary_10_1002_mrm_21980 crossref_primary_10_1002_nbm_4403 crossref_primary_10_1016_j_cpet_2013_04_001 crossref_primary_10_1002_cmmi_240 crossref_primary_10_1002_jmri_26645 crossref_primary_10_1002_wnan_1246 crossref_primary_10_1002_mrm_27750 crossref_primary_10_1002_mrm_28040 crossref_primary_10_1016_j_pnmrs_2020_06_001 crossref_primary_10_1002_mrm_21093 crossref_primary_10_1177_1352458518799583 crossref_primary_10_1016_j_neuroimage_2017_04_045 crossref_primary_10_1002_mrm_21653 crossref_primary_10_1002_mrm_23038 crossref_primary_10_1002_mrm_28961 crossref_primary_10_1088_0031_9155_53_14_N03 crossref_primary_10_1002_mrm_22628 crossref_primary_10_1002_mrm_30233 crossref_primary_10_1002_mrm_30354 crossref_primary_10_1002_ange_200501473 crossref_primary_10_1016_j_jmr_2016_12_002 crossref_primary_10_1002_nbm_3893 crossref_primary_10_1002_nbm_4983 crossref_primary_10_1002_mrm_23141 crossref_primary_10_1002_mrm_29241 crossref_primary_10_1002_nbm_4188 crossref_primary_10_1016_j_jmr_2009_10_012 crossref_primary_10_1002_mrm_24474 crossref_primary_10_1016_j_mri_2024_03_034 crossref_primary_10_1002_mrm_27864 crossref_primary_10_1016_j_neuroimage_2019_02_022 crossref_primary_10_1007_s12194_015_0326_1 |
| Cites_doi | 10.1146/annurev.bi.41.070172.004351 10.1002/mrm.10651 10.1002/1522-2594(200006)43:6<810::AID-MRM6>3.0.CO;2-J 10.1002/mrm.10347 10.1002/mrm.1910350106 10.1002/mrm.10463 10.1002/mrm.1910290607 10.1006/jmrb.1994.1103 10.1063/1.438208 10.1002/mrm.10106 10.1046/j.1471-4159.1999.0720405.x 10.1002/mrm.10398 10.1111/j.1471-4159.1992.tb09350.x 10.1006/jmre.1999.1956 10.1021/ja0158455 10.1063/1.1734121 10.1021/ja005820q 10.1002/(SICI)1522-2594(199902)41:2<400::AID-MRM26>3.0.CO;2-E 10.1021/ja963351f 10.1002/mrm.1910050313 10.1006/jmre.1998.1440 10.1016/S0926-2040(96)01283-0 10.1002/mrm.1910350502 10.1006/jmre.1999.1895 10.1002/mrm.1910320415 10.1038/nm907 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S 10.1002/1522-2586(200011)12:5<745::AID-JMRI12>3.0.CO;2-H 10.1002/mrm.1910400105 10.1016/0022-2364(90)90220-4 10.1016/0022-2364(90)90051-A 10.1006/jmrb.1996.0015 10.1051/epn/19861701011 10.1006/jmre.2000.2018 10.1002/mrm.1910300107 10.1006/jmre.1998.1371 |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 Wiley‐Liss, Inc. Copyright 2004 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2004 Wiley‐Liss, Inc. – notice: Copyright 2004 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| DOI | 10.1002/mrm.20048 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 952 |
| ExternalDocumentID | 15122676 10_1002_mrm_20048 MRM20048 ark_67375_WNG_L332H7WC_Z |
| Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: Whitaker Foundation – fundername: National Institutes of Health funderid: EB02666; NS31490 – fundername: NIBIB NIH HHS grantid: EB02666 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NINDS NIH HHS grantid: NS13490 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| ID | FETCH-LOGICAL-c4918-f782758d11c98ae00a2faff4442286bd4dd9e9a58b89adf20e00ab842a8be3d53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 255 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221239000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 |
| IngestDate | Thu Sep 04 19:45:46 EDT 2025 Mon Oct 06 18:08:03 EDT 2025 Wed Sep 03 05:56:43 EDT 2025 Tue Nov 18 22:25:44 EST 2025 Sat Nov 29 06:27:10 EST 2025 Wed Jan 22 16:26:16 EST 2025 Sun Sep 21 06:16:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright 2004 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4918-f782758d11c98ae00a2faff4442286bd4dd9e9a58b89adf20e00ab842a8be3d53 |
| Notes | Whitaker Foundation National Institutes of Health - No. EB02666; No. NS31490 istex:638F60BCFC7DE8F63454E677C923498BD19AF1C1 ark:/67375/WNG-L332H7WC-Z ArticleID:MRM20048 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20048 |
| PMID | 15122676 |
| PQID | 17389980 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_71891801 proquest_miscellaneous_17389980 pubmed_primary_15122676 crossref_citationtrail_10_1002_mrm_20048 crossref_primary_10_1002_mrm_20048 wiley_primary_10_1002_mrm_20048_MRM20048 istex_primary_ark_67375_WNG_L332H7WC_Z |
| PublicationCentury | 2000 |
| PublicationDate | May 2004 |
| PublicationDateYYYYMMDD | 2004-05-01 |
| PublicationDate_xml | – month: 05 year: 2004 text: May 2004 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2004 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Frahm J, Michaelis T, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution. J Magn Reson 1990; 90: 464-473. Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766. Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson 1990; 86: 164-169. Goffeney N, Bulte JWM, Duyn J, Bryant LH, van Zijl PCM. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc 2001; 123: 8628-8629. Kintner DB, Anderson ME, Sailor KA, Dienel G, Fitzpatrick JrJH, Gilboe DD. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P-NMR. J Neurochem 1999; 72: 405-412. Raghunand N, Howison C, Sherry AD, Zhang SR, Gillies RJ. Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 2003; 49: 249-257. Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 1992; 8: 116-137. van Zijl PCM, Zhou J, Mori N, Payen J, Mori S. Mechanism of magnetization transfer during on-resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49: 440-449. Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 1998; 131: 191-198. Englander SW, Downer NW, Teitelbaum H. Hydrogen exchange. Annu Rev Biochem 1972; 41: 903-924. Liepinsh E, Otting G. Proton exchange rates from amino acid side chains-implication for image contrast. Magn Reson Med 1996; 35: 30-42. Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998; 133: 36-45. McGowan JC, Leigh JS. Selective saturation in magnetization transfer experiments. Magn Reson Med 1994; 32: 517-522. Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PCM. Proton NMR spectroscopy of solvent-saturable resonance: a new approach to study pH effects in situ. Magn Reson Med 1998; 40: 36-42. Wuthrich K. NMR of proteins and nucleic acids. 2nd ed. New York: John Wiley & Sons; 1986. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003; 50: 1120-1126. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143: 79-87. Helpern JA, Curtis JC, Hearshen D, Smith MB, Welch KMA. The development of a pH-sensitive contrast agent for NMR 1H imaging. Magn Reson Med 1987; 5: 302-305. Barker PB, Butterworth EJ, Boska MD, Nelson J, Welch KMA. Magnesium and pH imaging of the human brain at 3.0 Tesla. Magn Reson Med 1999; 41: 400-406. Zhou J, Fu R, Hu J, Li L, Ye C. Measurement of spin-lattice relaxation times of C-13 in organic solids. Solid State NMR 1997; 7: 291-299. Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 1963; 39: 2892-2901. Zhang S, Winter P, Wu K, Sherry AD. A novel europium(III)-based MRI contrast agent. J Am Chem Soc 2001; 123: 1517-1578. Mori S, Abeygunawardana C, van Zijl PCM, Berg JM. Water exchange filter with improved sensitivity (WEX II) to study solvent-exchangeable protons: application to the consensus zinc finger peptide CP-1. J Magn Reson B 1996; 110: 96-101. Mori S, Abeygunawardana C, Berg JM, van Zijl PCM. NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties. J Am Chem Soc 1997; 119: 6844-6852. Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 1996; 35: 633-639. Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120. Dagher AP, Aletras A, Choyke P, Balaban RS. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 2000; 12: 745-748. Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification. J Neurochem 1992; 58: 967-974. Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E. Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 2002; 47: 639-648. Wu X, Listinsky JJ. Effects of transverse cross relaxation on magnetization transfer. J Magn Reson B 1994; 105: 73-76. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9: 1085-1090. Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000; 44: 799-802. Kingsley PB, Monahan WG. Effects of off-resonance irradiation, cross-relaxation, and chemical exchange on steady-state magnetization and effective spin-lattice relaxation times. J Magn Reson 2000; 143: 360-375. Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993; 30: 38-44. Kingsley PB, Monahan WG. Correction for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med 2000; 43: 810-819. Snoussi K, Bulte JWM, Gueron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 2003; 49: 998-1005. Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 1979; 71: 4546-4553. 2001; 123 1993; 29 1997; 119 2000; 43 1987; 5 2000; 44 1999; 141 1992; 58 1999; 41 1972; 41 2003 1998; 133 1996; 35 1998; 40 2003; 50 1979; 71 1998; 131 1997; 7 1990; 86 2002; 47 1992; 8 1994; 105 2001 2000; 12 2003; 9 1993; 30 1986 2003; 49 1996; 110 2000; 143 1999; 72 1990; 90 1963; 39 1994; 32 e_1_2_5_26_2 Balaban RS (e_1_2_5_27_2) 1992; 8 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_20_2 e_1_2_5_21_2 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_40_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_34_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_39_2 e_1_2_5_19_2 e_1_2_5_30_2 |
| References_xml | – reference: Kingsley PB, Monahan WG. Effects of off-resonance irradiation, cross-relaxation, and chemical exchange on steady-state magnetization and effective spin-lattice relaxation times. J Magn Reson 2000; 143: 360-375. – reference: Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9: 1085-1090. – reference: Zhang S, Winter P, Wu K, Sherry AD. A novel europium(III)-based MRI contrast agent. J Am Chem Soc 2001; 123: 1517-1578. – reference: Frahm J, Michaelis T, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution. J Magn Reson 1990; 90: 464-473. – reference: Kintner DB, Anderson ME, Sailor KA, Dienel G, Fitzpatrick JrJH, Gilboe DD. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P-NMR. J Neurochem 1999; 72: 405-412. – reference: van Zijl PCM, Zhou J, Mori N, Payen J, Mori S. Mechanism of magnetization transfer during on-resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49: 440-449. – reference: Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143: 79-87. – reference: Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PCM. Proton NMR spectroscopy of solvent-saturable resonance: a new approach to study pH effects in situ. Magn Reson Med 1998; 40: 36-42. – reference: McGowan JC, Leigh JS. Selective saturation in magnetization transfer experiments. Magn Reson Med 1994; 32: 517-522. – reference: Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 1992; 8: 116-137. – reference: Wuthrich K. NMR of proteins and nucleic acids. 2nd ed. New York: John Wiley & Sons; 1986. – reference: Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E. Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 2002; 47: 639-648. – reference: Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 1996; 35: 633-639. – reference: Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003; 50: 1120-1126. – reference: Barker PB, Butterworth EJ, Boska MD, Nelson J, Welch KMA. Magnesium and pH imaging of the human brain at 3.0 Tesla. Magn Reson Med 1999; 41: 400-406. – reference: Raghunand N, Howison C, Sherry AD, Zhang SR, Gillies RJ. Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 2003; 49: 249-257. – reference: Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766. – reference: Mori S, Abeygunawardana C, van Zijl PCM, Berg JM. Water exchange filter with improved sensitivity (WEX II) to study solvent-exchangeable protons: application to the consensus zinc finger peptide CP-1. J Magn Reson B 1996; 110: 96-101. – reference: Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120. – reference: Liepinsh E, Otting G. Proton exchange rates from amino acid side chains-implication for image contrast. Magn Reson Med 1996; 35: 30-42. – reference: Goffeney N, Bulte JWM, Duyn J, Bryant LH, van Zijl PCM. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc 2001; 123: 8628-8629. – reference: Englander SW, Downer NW, Teitelbaum H. Hydrogen exchange. Annu Rev Biochem 1972; 41: 903-924. – reference: Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification. J Neurochem 1992; 58: 967-974. – reference: Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson 1990; 86: 164-169. – reference: Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 1979; 71: 4546-4553. – reference: Wu X, Listinsky JJ. Effects of transverse cross relaxation on magnetization transfer. J Magn Reson B 1994; 105: 73-76. – reference: Kingsley PB, Monahan WG. Correction for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med 2000; 43: 810-819. – reference: Mori S, Abeygunawardana C, Berg JM, van Zijl PCM. NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties. J Am Chem Soc 1997; 119: 6844-6852. – reference: Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993; 30: 38-44. – reference: Helpern JA, Curtis JC, Hearshen D, Smith MB, Welch KMA. The development of a pH-sensitive contrast agent for NMR 1H imaging. Magn Reson Med 1987; 5: 302-305. – reference: Snoussi K, Bulte JWM, Gueron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 2003; 49: 998-1005. – reference: Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 1963; 39: 2892-2901. – reference: Zhou J, Fu R, Hu J, Li L, Ye C. Measurement of spin-lattice relaxation times of C-13 in organic solids. Solid State NMR 1997; 7: 291-299. – reference: Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000; 44: 799-802. – reference: Dagher AP, Aletras A, Choyke P, Balaban RS. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 2000; 12: 745-748. – reference: Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998; 133: 36-45. – reference: Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 1998; 131: 191-198. – volume: 49 start-page: 440 year: 2003 end-page: 449 article-title: Mechanism of magnetization transfer during on‐resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids publication-title: Magn Reson Med – volume: 5 start-page: 302 year: 1987 end-page: 305 article-title: The development of a pH‐sensitive contrast agent for NMR H imaging publication-title: Magn Reson Med – volume: 8 start-page: 116 year: 1992 end-page: 137 article-title: Magnetization transfer contrast in magnetic resonance imaging publication-title: Magn Reson Q – volume: 43 start-page: 810 year: 2000 end-page: 819 article-title: Correction for off‐resonance effects and incomplete saturation in conventional (two‐site) saturation‐transfer kinetic measurements publication-title: Magn Reson Med – volume: 49 start-page: 998 year: 2003 end-page: 1005 article-title: Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer‐poly(rU) model for nucleic acid delivery and pharmacology publication-title: Magn Reson Med – start-page: 42 year: 2003 – volume: 105 start-page: 73 year: 1994 end-page: 76 article-title: Effects of transverse cross relaxation on magnetization transfer publication-title: J Magn Reson B – volume: 119 start-page: 6844 year: 1997 end-page: 6852 article-title: NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties publication-title: J Am Chem Soc – volume: 49 start-page: 249 year: 2003 end-page: 257 article-title: Renal and systemic pH imaging by contrast‐enhanced MRI publication-title: Magn Reson Med – volume: 131 start-page: 191 year: 1998 end-page: 198 article-title: The role of specific side groups and pH in magnetization transfer in polymers publication-title: J Magn Reson – volume: 29 start-page: 759 year: 1993 end-page: 766 article-title: Quantitative interpretation of magnetization transfer publication-title: Magn Reson Med – start-page: 878 year: 2001 – volume: 9 start-page: 1085 year: 2003 end-page: 1090 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nat Med – volume: 86 start-page: 164 year: 1990 end-page: 169 article-title: NMR imaging of labile proton exchange publication-title: J Magn Reson – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – volume: 47 start-page: 639 year: 2002 end-page: 648 article-title: Paramagnetic Lanthanide(III) complexes as pH‐sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications publication-title: Magn Reson Med – volume: 143 start-page: 360 year: 2000 end-page: 375 article-title: Effects of off‐resonance irradiation, cross‐relaxation, and chemical exchange on steady‐state magnetization and effective spin‐lattice relaxation times publication-title: J Magn Reson – year: 1986 – volume: 12 start-page: 745 year: 2000 end-page: 748 article-title: Imaging of urea using chemical exchange‐dependent saturation transfer at 1.5T publication-title: J Magn Reson Imaging – volume: 141 start-page: 104 year: 1999 end-page: 120 article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐echo‐time H NMR spectra of the rat brain publication-title: J Magn Reson – volume: 50 start-page: 1120 year: 2003 end-page: 1126 article-title: Amide proton transfer (APT) contrast for imaging of brain tumors publication-title: Magn Reson Med – volume: 32 start-page: 517 year: 1994 end-page: 522 article-title: Selective saturation in magnetization transfer experiments publication-title: Magn Reson Med – volume: 41 start-page: 400 year: 1999 end-page: 406 article-title: Magnesium and pH imaging of the human brain at 3.0 Tesla publication-title: Magn Reson Med – volume: 35 start-page: 633 year: 1996 end-page: 639 article-title: Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain publication-title: Magn Reson Med – volume: 44 start-page: 799 year: 2000 end-page: 802 article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST) publication-title: Magn Reson Med – volume: 39 start-page: 2892 year: 1963 end-page: 2901 article-title: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance publication-title: J Chem Phys – volume: 41 start-page: 903 year: 1972 end-page: 924 article-title: Hydrogen exchange publication-title: Annu Rev Biochem – volume: 123 start-page: 8628 year: 2001 end-page: 8629 article-title: Sensitive NMR detection of cationic‐polymer‐based gene delivery systems using saturation transfer via proton exchange publication-title: J Am Chem Soc – volume: 35 start-page: 30 year: 1996 end-page: 42 article-title: Proton exchange rates from amino acid side chains—implication for image contrast publication-title: Magn Reson Med – volume: 72 start-page: 405 year: 1999 end-page: 412 article-title: In vivo microdialysis of 2‐deoxyglucose 6‐phosphate into brain: a novel method for the measurement of interstitial pH using P‐NMR publication-title: J Neurochem – volume: 58 start-page: 967 year: 1992 end-page: 974 article-title: Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain and their partial purification publication-title: J Neurochem – volume: 90 start-page: 464 year: 1990 end-page: 473 article-title: Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution publication-title: J Magn Reson – volume: 110 start-page: 96 year: 1996 end-page: 101 article-title: Water exchange filter with improved sensitivity (WEX II) to study solvent‐exchangeable protons: application to the consensus zinc finger peptide CP‐1 publication-title: J Magn Reson B – volume: 133 start-page: 36 year: 1998 end-page: 45 article-title: Detection of proton chemical exchange between metabolites and water in biological tissues publication-title: J Magn Reson – volume: 123 start-page: 1517 year: 2001 end-page: 1578 article-title: A novel europium(III)‐based MRI contrast agent publication-title: J Am Chem Soc – volume: 71 start-page: 4546 year: 1979 end-page: 4553 article-title: Investigation of exchange processes by two‐dimensional NMR spectroscopy publication-title: J Chem Phys – volume: 7 start-page: 291 year: 1997 end-page: 299 article-title: Measurement of spin‐lattice relaxation times of C‐13 in organic solids publication-title: Solid State NMR – volume: 40 start-page: 36 year: 1998 end-page: 42 article-title: Proton NMR spectroscopy of solvent‐saturable resonance: a new approach to study pH effects publication-title: Magn Reson Med – volume: 30 start-page: 38 year: 1993 end-page: 44 article-title: Characterization of macromolecule resonances in the H NMR spectrum of rat brain publication-title: Magn Reson Med – ident: e_1_2_5_7_2 doi: 10.1146/annurev.bi.41.070172.004351 – ident: e_1_2_5_26_2 doi: 10.1002/mrm.10651 – ident: e_1_2_5_36_2 doi: 10.1002/1522-2594(200006)43:6<810::AID-MRM6>3.0.CO;2-J – ident: e_1_2_5_14_2 doi: 10.1002/mrm.10347 – ident: e_1_2_5_32_2 doi: 10.1002/mrm.1910350106 – ident: e_1_2_5_24_2 doi: 10.1002/mrm.10463 – ident: e_1_2_5_28_2 doi: 10.1002/mrm.1910290607 – volume: 8 start-page: 116 year: 1992 ident: e_1_2_5_27_2 article-title: Magnetization transfer contrast in magnetic resonance imaging publication-title: Magn Reson Q – ident: e_1_2_5_30_2 doi: 10.1006/jmrb.1994.1103 – ident: e_1_2_5_31_2 doi: 10.1063/1.438208 – ident: e_1_2_5_23_2 doi: 10.1002/mrm.10106 – ident: e_1_2_5_39_2 doi: 10.1046/j.1471-4159.1999.0720405.x – ident: e_1_2_5_4_2 doi: 10.1002/mrm.10398 – ident: e_1_2_5_21_2 – ident: e_1_2_5_8_2 doi: 10.1111/j.1471-4159.1992.tb09350.x – ident: e_1_2_5_17_2 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_5_20_2 doi: 10.1021/ja0158455 – ident: e_1_2_5_38_2 doi: 10.1063/1.1734121 – ident: e_1_2_5_22_2 doi: 10.1021/ja005820q – ident: e_1_2_5_40_2 doi: 10.1002/(SICI)1522-2594(199902)41:2<400::AID-MRM26>3.0.CO;2-E – ident: e_1_2_5_3_2 doi: 10.1021/ja963351f – ident: e_1_2_5_13_2 doi: 10.1002/mrm.1910050313 – ident: e_1_2_5_16_2 doi: 10.1006/jmre.1998.1440 – ident: e_1_2_5_37_2 doi: 10.1016/S0926-2040(96)01283-0 – ident: e_1_2_5_10_2 doi: 10.1002/mrm.1910350502 – ident: e_1_2_5_11_2 doi: 10.1006/jmre.1999.1895 – ident: e_1_2_5_29_2 doi: 10.1002/mrm.1910320415 – ident: e_1_2_5_5_2 doi: 10.1038/nm907 – ident: e_1_2_5_18_2 doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S – ident: e_1_2_5_19_2 doi: 10.1002/1522-2586(200011)12:5<745::AID-JMRI12>3.0.CO;2-H – ident: e_1_2_5_12_2 doi: 10.1002/mrm.1910400105 – ident: e_1_2_5_15_2 doi: 10.1016/0022-2364(90)90220-4 – ident: e_1_2_5_34_2 doi: 10.1016/0022-2364(90)90051-A – ident: e_1_2_5_2_2 doi: 10.1006/jmrb.1996.0015 – ident: e_1_2_5_6_2 doi: 10.1051/epn/19861701011 – ident: e_1_2_5_35_2 doi: 10.1006/jmre.2000.2018 – ident: e_1_2_5_9_2 doi: 10.1002/mrm.1910300107 – ident: e_1_2_5_25_2 – ident: e_1_2_5_33_2 doi: 10.1006/jmre.1998.1371 |
| SSID | ssj0009974 |
| Score | 2.2780876 |
| Snippet | The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 945 |
| SubjectTerms | amide proton Animals APT Brain CEST Ion Exchange ischemia Magnetic Resonance Imaging magnetization transfer mobile protein Models, Theoretical pH imaging proton exchange Protons Rats WEX |
| Title | Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments |
| URI | https://api.istex.fr/ark:/67375/WNG-L332H7WC-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20048 https://www.ncbi.nlm.nih.gov/pubmed/15122676 https://www.proquest.com/docview/17389980 https://www.proquest.com/docview/71891801 |
| Volume | 51 |
| WOSCitedRecordID | wos000221239000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZBt72Uf3lX10Yoyxh5rasmxL7KlkyTpIQtelJPRFSLYMo51T4nbL37C_eifJcSi0MNibBWeQT3en31l3PwG8x4TLINJNg6hUScCo1oHWiQrCGKNlFBa4hTqe2VE2mfD5XBxtwad1L4znh2h_uFnPcPHaOrjS9f6GNPTn0jWSM74NXYp2m3Sg-_l4eDLacO4KT8KcMRtqBFsTC4V0v3352nbUtZpd3YQ1r0NXt_cMH_7XrB_BgwZykgNvI49hy1Q7cG_cHKrvwF1XBZrXT-DPtytVua4zjIGkMG1IIYuSWEYHfDIr3ytMLnyLgalJU-tFfiNuXRJVFcRUxcKzv_rhqh3ZTq6aIFIms8F8j_QH36d7TubgaEo21w3UT-FkOJj2D4PmsoYgZyLiQYlQA3OPIopywZUJQ0VLVZaMWY6xVBesKIQRKuGaC1WUNLQimjOquDZxkcTPoFMtKvMCiFBK04QKyx3IdJkoZZI015jYxTnmAnEPPq7XTOYNk7m9UONceg5mKlHL0mm5B-9a0QtP33GT0Ae38K2EWp7ZercskbPJFzmKY3qYzfrytAdv15Yh0Qvt0YqqDGpPRpnlKeTh7RKIAVBNYdSD596kNvNBzEXTLMXPcpZz-0Tl-HjsHl7-u-gruO-LjWyN5mvoXC6vzBu4k_-6_FEvd2E7m_PdxnFwNPs6-Qv2JRue |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7SpNdLj_TaXhGllD7ExJblQ9CXsGy6obsmbbfs0hchWTKUtt5gJ-3-hv7qjiSvl0AChb5JMAZ5pBl9I818AniNAZdBpJsGUSWTgFGlAqUSGYQxesso1LiFOp7ZSVYU-WLBT7bg3boWxvND9Adu1jKcv7YGbg-kDzasoT8bV0nO8muwwxBo2Icb5sfFhnKXew7mjFlPw9maVyikB_2nF3ajHavY1WVQ8yJydVvP0d3_G_Q9uNNBTnLo18h92DL1Ltycdpfqu3DDZYGW7QP48_Fc1q7qDH0g0aZ3KWRZEcvogC2z8rXC5NSXGJiWdLle5Dfi1obIWhNT66Vnf_XdVd-zlVwtQaRM5qPFPhmOPs_2nczhyYxsnhtoH8KXo9FsOA66xxqCkvEoDyqEGhh76CgqeS5NGEpayapizHKMpUozrbnhMslVzqWuaGhFVM6ozJWJdRI_gu16WZsnQLiUiiaUW-5ApqpESpOkpcLALi4xFogH8HY9aaLsmMztgxo_hOdgpgK1LJyWB_CqFz319B2XCb1xM99LyOa7zXfLEjEv3otJHNNxNh-KrwPYWy8NgVZor1ZkbVB7IsosT2EeXi2BGADVFEYDeOzX1GY8iLlomqX4W27pXD1QMf00dY2n_y66B7fGs-lETI6LD8_gtk88svmaz2H7rDk3L-B6-evsW9u8dNbzFwxFHGk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50yVb2skt3y24VY4w91NSW5YtgLyVN1rEkZF1KQl-EZEkwtjnBbrf8hv3q6eI4FFoY7M2CY5CPzjn6ZJ3zHYC35sClDNJNg0jzJCBYiECIhAdhbKJlFEqzhTqe2VE2meSLBZ3uwIdNLYznh2h_uFnPcPHaOrhaSX24ZQ39WblKcpLfgi6xTWQ60D0-HZ6NtqS71LMwZ8TGGko2zEIhPmxfvrIfda1q19eBzavY1W0-w_v_N-0HcK8BnejIW8lD2FHlHuyOm2v1Pbjj8kCL-hH8-XLJS1d3ZqIgkqoNKmipkeV0ME9q7auF0coXGagaNdle6LdBrhXipUSqlEvP_-qH63Zka7lqZLAymg8WB6g_-Do7cDJH0xnaNhyoH8PZcDDrnwRNu4agIDTKA23Ahjl9yCgqaM5VGHKsudaEWJaxVEgiJVWUJ7nIKZcah1ZE5ATzXKhYJvET6JTLUj0DRDkXOMHUsgcSoRPOVZIWwhzt4sKcBuIevN8sGisaLnPbUuMH8yzMmBktM6flHrxpRVeewOM6oXdu5VsJXn23GW9ZwuaTj2wUx_gkm_fZeQ_2N6bBjB_ayxVeKqM9FmWWqTAPb5YwKMCoKYx68NTb1HY-BnXhNEvNZznTuXmibHw6dg_P_110H3anx0M2-jT5_ALu-swjm7D5EjoX1aV6BbeLXxff6up14z5_AemfHRI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+description+of+proton+exchange+processes+between+water+and+endogenous+and+exogenous+agents+for+WEX%2C+CEST%2C+and+APT+experiments&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhou%2C+Jinyuan&rft.au=Wilson%2C+David+A.&rft.au=Sun%2C+Phillip+Zhe&rft.au=Klaus%2C+Judith+A.&rft.date=2004-05-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=51&rft.issue=5&rft.spage=945&rft.epage=952&rft_id=info:doi/10.1002%2Fmrm.20048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_20048 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |