Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments

The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 51; číslo 5; s. 945 - 952
Hlavní autoři: Zhou, Jinyuan, Wilson, David A., Sun, Phillip Zhe, Klaus, Judith A., van Zijl, Peter C.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2004
Témata:
ISSN:0740-3194, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange‐dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent‐exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Magn Reson Med 51:945–952, 2004. © 2004 Wiley‐Liss, Inc.
AbstractList The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail.
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low‐concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange‐dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent‐exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Magn Reson Med 51:945–952, 2004. © 2004 Wiley‐Liss, Inc.
Author Sun, Phillip Zhe
Wilson, David A.
Klaus, Judith A.
van Zijl, Peter C.M.
Zhou, Jinyuan
Author_xml – sequence: 1
  givenname: Jinyuan
  surname: Zhou
  fullname: Zhou, Jinyuan
  email: jzhou@mri.jhu.edu
  organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 2
  givenname: David A.
  surname: Wilson
  fullname: Wilson, David A.
  organization: Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 3
  givenname: Phillip Zhe
  surname: Sun
  fullname: Sun, Phillip Zhe
  organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 4
  givenname: Judith A.
  surname: Klaus
  fullname: Klaus, Judith A.
  organization: Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 5
  givenname: Peter C.M.
  surname: van Zijl
  fullname: van Zijl, Peter C.M.
  organization: Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15122676$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQxi1URNPCgRdAPiFV6ra21xvbxyoKLVIKlKYK4mJ517NlYdcbbIekr8BT4_xpDqiI03ik3_d5Zr4jdOB6Bwi9puSMEsLOO9-dMUK4fIYGtGAsY4XiB2hABCdZThU_REchfCeEKCX4C3RIC8rYUAwH6PfNwrjYRBObX4AthMo389j0Dvc1nvs-phesqm_G3cO6ryAECLiEuARweGkieGycxeBsfw-uX4Rtu9p3qcaA697j2fjLKR6Nb6enG-bi0zRxc_BNt0Zeoue1aQO82tVjdPduPB1dZZOPl-9HF5Os4orKrBaSiUJaSislDRBiWG3qmnPOmByWllurQJlCllIZWzOyRkrJmZEl5LbIj9HbrW9a5-cCQtRdEypoW-MgDawFlekfQv8LUpFLpSRJ4JsduCg7sHqeNjL-QT-eOQHnW6DyfQgeal1tTt676E3Takr0OkidgtSbIJPi5C_F3vQJdue-bFp4-Deorz9fPyqyraIJEVZ7hfE_9FDkotCzD5d6kufsSsxG-mv-B2BpvbM
CitedBy_id crossref_primary_10_1038_sj_jcbfm_9600424
crossref_primary_10_1002_cmmi_265
crossref_primary_10_1016_j_neuroimage_2024_120993
crossref_primary_10_1002_cmmi_1546
crossref_primary_10_1007_s10858_011_9527_z
crossref_primary_10_1007_s00247_025_06248_9
crossref_primary_10_1016_j_jmr_2019_01_006
crossref_primary_10_3389_fchem_2020_00326
crossref_primary_10_1007_s00330_016_4477_1
crossref_primary_10_1016_j_mri_2005_12_033
crossref_primary_10_1002_nbm_3362
crossref_primary_10_1002_mrm_28745
crossref_primary_10_1002_mrm_22761
crossref_primary_10_1002_mrm_28744
crossref_primary_10_1053_j_sult_2021_07_003
crossref_primary_10_1002_mrm_25581
crossref_primary_10_1002_nbm_4200
crossref_primary_10_1016_j_neuroimage_2013_03_072
crossref_primary_10_1016_j_mri_2014_03_001
crossref_primary_10_1002_mrm_26799
crossref_primary_10_1002_mrm_26559
crossref_primary_10_3389_fneur_2020_00270
crossref_primary_10_1002_mrm_27762
crossref_primary_10_1002_nbm_3237
crossref_primary_10_3389_fneur_2019_00104
crossref_primary_10_1002_mrm_22637
crossref_primary_10_1002_cmmi_1569
crossref_primary_10_1002_mrm_30164
crossref_primary_10_1088_0031_9155_60_12_4719
crossref_primary_10_1016_j_jmr_2012_07_003
crossref_primary_10_1002_nbm_3343
crossref_primary_10_1002_mrm_26100
crossref_primary_10_1146_annurev_anchem_1_031207_113018
crossref_primary_10_3390_biomedicines10092138
crossref_primary_10_1002_mrm_23074
crossref_primary_10_1016_j_jmr_2021_107022
crossref_primary_10_1016_j_mri_2017_05_001
crossref_primary_10_1016_j_neuroimage_2016_07_025
crossref_primary_10_1002_mrm_29617
crossref_primary_10_1016_j_conb_2007_11_002
crossref_primary_10_1016_j_jmr_2012_11_024
crossref_primary_10_1016_j_jmr_2021_107141
crossref_primary_10_1002_cmmi_1680
crossref_primary_10_1002_mrm_27555
crossref_primary_10_1021_ja3001419
crossref_primary_10_1021_jacs_6b06421
crossref_primary_10_1148_radiol_2017162089
crossref_primary_10_1002_nbm_4785
crossref_primary_10_1002_nbm_4780
crossref_primary_10_1002_mrm_24271
crossref_primary_10_2310_7290_2011_00026
crossref_primary_10_1002_mrm_22891
crossref_primary_10_1002_mrm_23068
crossref_primary_10_1155_2020_6418343
crossref_primary_10_1016_j_jmr_2011_05_001
crossref_primary_10_1002_mrm_21683
crossref_primary_10_1002_mrm_29842
crossref_primary_10_1002_nbm_4789
crossref_primary_10_1016_j_mri_2023_10_009
crossref_primary_10_1016_j_mri_2024_01_006
crossref_primary_10_1088_0031_9155_57_24_8185
crossref_primary_10_1007_s10334_021_00996_z
crossref_primary_10_1002_mrm_20818
crossref_primary_10_1002_cmmi_1628
crossref_primary_10_1002_nbm_3048
crossref_primary_10_1007_s40134_013_0010_3
crossref_primary_10_1002_nbm_3284
crossref_primary_10_1002_mrm_21591
crossref_primary_10_1016_j_neuroimage_2014_05_036
crossref_primary_10_1016_j_mri_2023_07_014
crossref_primary_10_1002_mrm_24850
crossref_primary_10_1002_nbm_3715
crossref_primary_10_1002_jmri_28871
crossref_primary_10_1016_j_jmr_2005_04_005
crossref_primary_10_1016_j_neuroimage_2011_08_014
crossref_primary_10_1002_cmmi_1524
crossref_primary_10_1038_nm_3252
crossref_primary_10_1002_jmri_25838
crossref_primary_10_1002_nbm_4356
crossref_primary_10_1002_mrm_24520
crossref_primary_10_1002_mrm_24641
crossref_primary_10_1002_mrm_26820
crossref_primary_10_3389_fneur_2022_764690
crossref_primary_10_1002_mrm_23312
crossref_primary_10_1016_j_ccr_2008_05_006
crossref_primary_10_1038_s41596_025_01152_w
crossref_primary_10_1016_j_cplett_2007_08_038
crossref_primary_10_1002_mrm_20709
crossref_primary_10_1002_mrm_27341
crossref_primary_10_1002_nbm_3257
crossref_primary_10_1148_radiol_2452061117
crossref_primary_10_1002_mrm_26131
crossref_primary_10_1002_mrm_29763
crossref_primary_10_3390_ph14010011
crossref_primary_10_1007_s10334_017_0625_0
crossref_primary_10_1111_j_1552_6569_2012_00751_x
crossref_primary_10_1002_mrm_28313
crossref_primary_10_1016_j_tins_2004_12_007
crossref_primary_10_3389_fonc_2019_00440
crossref_primary_10_1002_mrm_26813
crossref_primary_10_1002_mrm_24639
crossref_primary_10_1038_s41467_020_14874_0
crossref_primary_10_3348_jksr_2016_75_6_419
crossref_primary_10_1002_anie_200501473
crossref_primary_10_1002_nbm_4610
crossref_primary_10_1002_nbm_4731
crossref_primary_10_1021_ja5059313
crossref_primary_10_1002_mrm_28223
crossref_primary_10_1002_mrm_25990
crossref_primary_10_1002_nbm_2792
crossref_primary_10_1002_nbm_3086
crossref_primary_10_1016_j_cplett_2014_03_045
crossref_primary_10_1002_mrm_24784
crossref_primary_10_1002_mrm_21151
crossref_primary_10_1007_s10334_005_0013_z
crossref_primary_10_1016_j_carbpol_2011_06_056
crossref_primary_10_1002_mrm_21398
crossref_primary_10_1002_nbm_4734
crossref_primary_10_1002_mrm_21712
crossref_primary_10_3938_jkps_70_545
crossref_primary_10_1002_mrm_20989
crossref_primary_10_1002_mrm_21714
crossref_primary_10_1002_nbm_3192
crossref_primary_10_1002_nbm_3191
crossref_primary_10_1002_mrm_28573
crossref_primary_10_1002_mrm_30532
crossref_primary_10_1002_mrm_25186
crossref_primary_10_1002_mrm_26396
crossref_primary_10_1002_mrm_28212
crossref_primary_10_1073_pnas_0700281104
crossref_primary_10_1088_0031_9155_59_2_R65
crossref_primary_10_1016_j_jmr_2010_05_004
crossref_primary_10_1002_mrm_25987
crossref_primary_10_1002_mrm_24539
crossref_primary_10_3390_ijms222111559
crossref_primary_10_1002_mrm_22912
crossref_primary_10_1038_s41598_020_78353_8
crossref_primary_10_1002_wnan_1167
crossref_primary_10_1002_mrm_28487
crossref_primary_10_1002_mrm_27155
crossref_primary_10_1002_mrm_29211
crossref_primary_10_1016_j_mri_2019_07_007
crossref_primary_10_1002_mrm_24560
crossref_primary_10_1002_ijch_201700025
crossref_primary_10_1002_mrm_29570
crossref_primary_10_1002_nbm_5000
crossref_primary_10_1016_j_jmr_2005_05_016
crossref_primary_10_1002_nbm_2899
crossref_primary_10_1002_nbm_4711
crossref_primary_10_1016_j_neuroimage_2019_01_034
crossref_primary_10_1186_s12880_019_0400_y
crossref_primary_10_1097_RLI_0000000000000217
crossref_primary_10_1088_0031_9155_59_16_4493
crossref_primary_10_1002_jmri_24412
crossref_primary_10_1021_ja710159q
crossref_primary_10_1016_j_pnmrs_2009_06_002
crossref_primary_10_1016_j_mric_2021_06_012
crossref_primary_10_1002_nbm_3054
crossref_primary_10_1002_mrm_27389
crossref_primary_10_1002_nbm_4944
crossref_primary_10_1002_nbm_3735
crossref_primary_10_1002_nbm_1798
crossref_primary_10_1002_mrm_25649
crossref_primary_10_3390_bios12100815
crossref_primary_10_1016_j_jmr_2006_08_011
crossref_primary_10_1002_chem_202002415
crossref_primary_10_1002_jmri_26629
crossref_primary_10_1002_cmmi_1589
crossref_primary_10_1002_jmri_21610
crossref_primary_10_1002_mrm_23250
crossref_primary_10_1002_mrm_30228
crossref_primary_10_1002_nbm_1021
crossref_primary_10_1155_2015_206405
crossref_primary_10_1016_j_pnmrs_2006_01_001
crossref_primary_10_1007_s00330_018_5964_3
crossref_primary_10_1016_j_neuroscience_2021_01_026
crossref_primary_10_1088_0031_9155_58_22_R221
crossref_primary_10_1002_mrm_25795
crossref_primary_10_1016_j_neuroimage_2017_10_053
crossref_primary_10_1002_nbm_4778
crossref_primary_10_1155_2018_3141789
crossref_primary_10_1109_TMI_2019_2898672
crossref_primary_10_1002_mrm_20408
crossref_primary_10_1016_j_mri_2024_02_015
crossref_primary_10_1186_1532_429X_16_7
crossref_primary_10_1002_mrm_20530
crossref_primary_10_1002_mrm_28258
crossref_primary_10_1002_mrm_28015
crossref_primary_10_1177_0271678X221108841
crossref_primary_10_1002_mrm_21980
crossref_primary_10_1002_nbm_4403
crossref_primary_10_1016_j_cpet_2013_04_001
crossref_primary_10_1002_cmmi_240
crossref_primary_10_1002_jmri_26645
crossref_primary_10_1002_wnan_1246
crossref_primary_10_1002_mrm_27750
crossref_primary_10_1002_mrm_28040
crossref_primary_10_1016_j_pnmrs_2020_06_001
crossref_primary_10_1002_mrm_21093
crossref_primary_10_1177_1352458518799583
crossref_primary_10_1016_j_neuroimage_2017_04_045
crossref_primary_10_1002_mrm_21653
crossref_primary_10_1002_mrm_23038
crossref_primary_10_1002_mrm_28961
crossref_primary_10_1088_0031_9155_53_14_N03
crossref_primary_10_1002_mrm_22628
crossref_primary_10_1002_mrm_30233
crossref_primary_10_1002_mrm_30354
crossref_primary_10_1002_ange_200501473
crossref_primary_10_1016_j_jmr_2016_12_002
crossref_primary_10_1002_nbm_3893
crossref_primary_10_1002_nbm_4983
crossref_primary_10_1002_mrm_23141
crossref_primary_10_1002_mrm_29241
crossref_primary_10_1002_nbm_4188
crossref_primary_10_1016_j_jmr_2009_10_012
crossref_primary_10_1002_mrm_24474
crossref_primary_10_1016_j_mri_2024_03_034
crossref_primary_10_1002_mrm_27864
crossref_primary_10_1016_j_neuroimage_2019_02_022
crossref_primary_10_1007_s12194_015_0326_1
Cites_doi 10.1146/annurev.bi.41.070172.004351
10.1002/mrm.10651
10.1002/1522-2594(200006)43:6<810::AID-MRM6>3.0.CO;2-J
10.1002/mrm.10347
10.1002/mrm.1910350106
10.1002/mrm.10463
10.1002/mrm.1910290607
10.1006/jmrb.1994.1103
10.1063/1.438208
10.1002/mrm.10106
10.1046/j.1471-4159.1999.0720405.x
10.1002/mrm.10398
10.1111/j.1471-4159.1992.tb09350.x
10.1006/jmre.1999.1956
10.1021/ja0158455
10.1063/1.1734121
10.1021/ja005820q
10.1002/(SICI)1522-2594(199902)41:2<400::AID-MRM26>3.0.CO;2-E
10.1021/ja963351f
10.1002/mrm.1910050313
10.1006/jmre.1998.1440
10.1016/S0926-2040(96)01283-0
10.1002/mrm.1910350502
10.1006/jmre.1999.1895
10.1002/mrm.1910320415
10.1038/nm907
10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
10.1002/1522-2586(200011)12:5<745::AID-JMRI12>3.0.CO;2-H
10.1002/mrm.1910400105
10.1016/0022-2364(90)90220-4
10.1016/0022-2364(90)90051-A
10.1006/jmrb.1996.0015
10.1051/epn/19861701011
10.1006/jmre.2000.2018
10.1002/mrm.1910300107
10.1006/jmre.1998.1371
ContentType Journal Article
Copyright Copyright © 2004 Wiley‐Liss, Inc.
Copyright 2004 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2004 Wiley‐Liss, Inc.
– notice: Copyright 2004 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.20048
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 952
ExternalDocumentID 15122676
10_1002_mrm_20048
MRM20048
ark_67375_WNG_L332H7WC_Z
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: Whitaker Foundation
– fundername: National Institutes of Health
  funderid: EB02666; NS31490
– fundername: NIBIB NIH HHS
  grantid: EB02666
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NINDS NIH HHS
  grantid: NS13490
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4918-f782758d11c98ae00a2faff4442286bd4dd9e9a58b89adf20e00ab842a8be3d53
IEDL.DBID DRFUL
ISICitedReferencesCount 255
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221239000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
IngestDate Thu Sep 04 19:45:46 EDT 2025
Mon Oct 06 18:08:03 EDT 2025
Wed Sep 03 05:56:43 EDT 2025
Tue Nov 18 22:25:44 EST 2025
Sat Nov 29 06:27:10 EST 2025
Wed Jan 22 16:26:16 EST 2025
Sun Sep 21 06:16:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright 2004 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4918-f782758d11c98ae00a2faff4442286bd4dd9e9a58b89adf20e00ab842a8be3d53
Notes Whitaker Foundation
National Institutes of Health - No. EB02666; No. NS31490
istex:638F60BCFC7DE8F63454E677C923498BD19AF1C1
ark:/67375/WNG-L332H7WC-Z
ArticleID:MRM20048
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20048
PMID 15122676
PQID 17389980
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_71891801
proquest_miscellaneous_17389980
pubmed_primary_15122676
crossref_citationtrail_10_1002_mrm_20048
crossref_primary_10_1002_mrm_20048
wiley_primary_10_1002_mrm_20048_MRM20048
istex_primary_ark_67375_WNG_L332H7WC_Z
PublicationCentury 2000
PublicationDate May 2004
PublicationDateYYYYMMDD 2004-05-01
PublicationDate_xml – month: 05
  year: 2004
  text: May 2004
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2004
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Frahm J, Michaelis T, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution. J Magn Reson 1990; 90: 464-473.
Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766.
Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson 1990; 86: 164-169.
Goffeney N, Bulte JWM, Duyn J, Bryant LH, van Zijl PCM. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc 2001; 123: 8628-8629.
Kintner DB, Anderson ME, Sailor KA, Dienel G, Fitzpatrick JrJH, Gilboe DD. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P-NMR. J Neurochem 1999; 72: 405-412.
Raghunand N, Howison C, Sherry AD, Zhang SR, Gillies RJ. Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 2003; 49: 249-257.
Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 1992; 8: 116-137.
van Zijl PCM, Zhou J, Mori N, Payen J, Mori S. Mechanism of magnetization transfer during on-resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49: 440-449.
Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 1998; 131: 191-198.
Englander SW, Downer NW, Teitelbaum H. Hydrogen exchange. Annu Rev Biochem 1972; 41: 903-924.
Liepinsh E, Otting G. Proton exchange rates from amino acid side chains-implication for image contrast. Magn Reson Med 1996; 35: 30-42.
Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998; 133: 36-45.
McGowan JC, Leigh JS. Selective saturation in magnetization transfer experiments. Magn Reson Med 1994; 32: 517-522.
Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PCM. Proton NMR spectroscopy of solvent-saturable resonance: a new approach to study pH effects in situ. Magn Reson Med 1998; 40: 36-42.
Wuthrich K. NMR of proteins and nucleic acids. 2nd ed. New York: John Wiley & Sons; 1986.
Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003; 50: 1120-1126.
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143: 79-87.
Helpern JA, Curtis JC, Hearshen D, Smith MB, Welch KMA. The development of a pH-sensitive contrast agent for NMR 1H imaging. Magn Reson Med 1987; 5: 302-305.
Barker PB, Butterworth EJ, Boska MD, Nelson J, Welch KMA. Magnesium and pH imaging of the human brain at 3.0 Tesla. Magn Reson Med 1999; 41: 400-406.
Zhou J, Fu R, Hu J, Li L, Ye C. Measurement of spin-lattice relaxation times of C-13 in organic solids. Solid State NMR 1997; 7: 291-299.
Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 1963; 39: 2892-2901.
Zhang S, Winter P, Wu K, Sherry AD. A novel europium(III)-based MRI contrast agent. J Am Chem Soc 2001; 123: 1517-1578.
Mori S, Abeygunawardana C, van Zijl PCM, Berg JM. Water exchange filter with improved sensitivity (WEX II) to study solvent-exchangeable protons: application to the consensus zinc finger peptide CP-1. J Magn Reson B 1996; 110: 96-101.
Mori S, Abeygunawardana C, Berg JM, van Zijl PCM. NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties. J Am Chem Soc 1997; 119: 6844-6852.
Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 1996; 35: 633-639.
Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120.
Dagher AP, Aletras A, Choyke P, Balaban RS. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 2000; 12: 745-748.
Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification. J Neurochem 1992; 58: 967-974.
Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E. Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 2002; 47: 639-648.
Wu X, Listinsky JJ. Effects of transverse cross relaxation on magnetization transfer. J Magn Reson B 1994; 105: 73-76.
Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9: 1085-1090.
Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000; 44: 799-802.
Kingsley PB, Monahan WG. Effects of off-resonance irradiation, cross-relaxation, and chemical exchange on steady-state magnetization and effective spin-lattice relaxation times. J Magn Reson 2000; 143: 360-375.
Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993; 30: 38-44.
Kingsley PB, Monahan WG. Correction for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med 2000; 43: 810-819.
Snoussi K, Bulte JWM, Gueron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 2003; 49: 998-1005.
Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 1979; 71: 4546-4553.
2001; 123
1993; 29
1997; 119
2000; 43
1987; 5
2000; 44
1999; 141
1992; 58
1999; 41
1972; 41
2003
1998; 133
1996; 35
1998; 40
2003; 50
1979; 71
1998; 131
1997; 7
1990; 86
2002; 47
1992; 8
1994; 105
2001
2000; 12
2003; 9
1993; 30
1986
2003; 49
1996; 110
2000; 143
1999; 72
1990; 90
1963; 39
1994; 32
e_1_2_5_26_2
Balaban RS (e_1_2_5_27_2) 1992; 8
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_23_2
e_1_2_5_20_2
e_1_2_5_21_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_40_2
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_34_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_39_2
e_1_2_5_19_2
e_1_2_5_30_2
References_xml – reference: Kingsley PB, Monahan WG. Effects of off-resonance irradiation, cross-relaxation, and chemical exchange on steady-state magnetization and effective spin-lattice relaxation times. J Magn Reson 2000; 143: 360-375.
– reference: Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9: 1085-1090.
– reference: Zhang S, Winter P, Wu K, Sherry AD. A novel europium(III)-based MRI contrast agent. J Am Chem Soc 2001; 123: 1517-1578.
– reference: Frahm J, Michaelis T, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution. J Magn Reson 1990; 90: 464-473.
– reference: Kintner DB, Anderson ME, Sailor KA, Dienel G, Fitzpatrick JrJH, Gilboe DD. In vivo microdialysis of 2-deoxyglucose 6-phosphate into brain: a novel method for the measurement of interstitial pH using 31P-NMR. J Neurochem 1999; 72: 405-412.
– reference: van Zijl PCM, Zhou J, Mori N, Payen J, Mori S. Mechanism of magnetization transfer during on-resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49: 440-449.
– reference: Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143: 79-87.
– reference: Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PCM. Proton NMR spectroscopy of solvent-saturable resonance: a new approach to study pH effects in situ. Magn Reson Med 1998; 40: 36-42.
– reference: McGowan JC, Leigh JS. Selective saturation in magnetization transfer experiments. Magn Reson Med 1994; 32: 517-522.
– reference: Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 1992; 8: 116-137.
– reference: Wuthrich K. NMR of proteins and nucleic acids. 2nd ed. New York: John Wiley & Sons; 1986.
– reference: Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E. Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 2002; 47: 639-648.
– reference: Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med 1996; 35: 633-639.
– reference: Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 2003; 50: 1120-1126.
– reference: Barker PB, Butterworth EJ, Boska MD, Nelson J, Welch KMA. Magnesium and pH imaging of the human brain at 3.0 Tesla. Magn Reson Med 1999; 41: 400-406.
– reference: Raghunand N, Howison C, Sherry AD, Zhang SR, Gillies RJ. Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 2003; 49: 249-257.
– reference: Henkelman RM, Huang X, Xiang Q-S, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766.
– reference: Mori S, Abeygunawardana C, van Zijl PCM, Berg JM. Water exchange filter with improved sensitivity (WEX II) to study solvent-exchangeable protons: application to the consensus zinc finger peptide CP-1. J Magn Reson B 1996; 110: 96-101.
– reference: Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 1999; 141: 104-120.
– reference: Liepinsh E, Otting G. Proton exchange rates from amino acid side chains-implication for image contrast. Magn Reson Med 1996; 35: 30-42.
– reference: Goffeney N, Bulte JWM, Duyn J, Bryant LH, van Zijl PCM. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc 2001; 123: 8628-8629.
– reference: Englander SW, Downer NW, Teitelbaum H. Hydrogen exchange. Annu Rev Biochem 1972; 41: 903-924.
– reference: Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification. J Neurochem 1992; 58: 967-974.
– reference: Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson 1990; 86: 164-169.
– reference: Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 1979; 71: 4546-4553.
– reference: Wu X, Listinsky JJ. Effects of transverse cross relaxation on magnetization transfer. J Magn Reson B 1994; 105: 73-76.
– reference: Kingsley PB, Monahan WG. Correction for off-resonance effects and incomplete saturation in conventional (two-site) saturation-transfer kinetic measurements. Magn Reson Med 2000; 43: 810-819.
– reference: Mori S, Abeygunawardana C, Berg JM, van Zijl PCM. NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties. J Am Chem Soc 1997; 119: 6844-6852.
– reference: Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993; 30: 38-44.
– reference: Helpern JA, Curtis JC, Hearshen D, Smith MB, Welch KMA. The development of a pH-sensitive contrast agent for NMR 1H imaging. Magn Reson Med 1987; 5: 302-305.
– reference: Snoussi K, Bulte JWM, Gueron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 2003; 49: 998-1005.
– reference: Forsen S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 1963; 39: 2892-2901.
– reference: Zhou J, Fu R, Hu J, Li L, Ye C. Measurement of spin-lattice relaxation times of C-13 in organic solids. Solid State NMR 1997; 7: 291-299.
– reference: Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000; 44: 799-802.
– reference: Dagher AP, Aletras A, Choyke P, Balaban RS. Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 2000; 12: 745-748.
– reference: Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS. Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 1998; 133: 36-45.
– reference: Gochberg DF, Kennan RP, Maryanski MJ, Gore JC. The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 1998; 131: 191-198.
– volume: 49
  start-page: 440
  year: 2003
  end-page: 449
  article-title: Mechanism of magnetization transfer during on‐resonance water saturation: a new approach to detect mobile proteins, peptides, and lipids
  publication-title: Magn Reson Med
– volume: 5
  start-page: 302
  year: 1987
  end-page: 305
  article-title: The development of a pH‐sensitive contrast agent for NMR H imaging
  publication-title: Magn Reson Med
– volume: 8
  start-page: 116
  year: 1992
  end-page: 137
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q
– volume: 43
  start-page: 810
  year: 2000
  end-page: 819
  article-title: Correction for off‐resonance effects and incomplete saturation in conventional (two‐site) saturation‐transfer kinetic measurements
  publication-title: Magn Reson Med
– volume: 49
  start-page: 998
  year: 2003
  end-page: 1005
  article-title: Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer‐poly(rU) model for nucleic acid delivery and pharmacology
  publication-title: Magn Reson Med
– start-page: 42
  year: 2003
– volume: 105
  start-page: 73
  year: 1994
  end-page: 76
  article-title: Effects of transverse cross relaxation on magnetization transfer
  publication-title: J Magn Reson B
– volume: 119
  start-page: 6844
  year: 1997
  end-page: 6852
  article-title: NMR study of rapidly exchanging backbone amide protons in staphylococcal nuclease and the correlation with structural and dynamic properties
  publication-title: J Am Chem Soc
– volume: 49
  start-page: 249
  year: 2003
  end-page: 257
  article-title: Renal and systemic pH imaging by contrast‐enhanced MRI
  publication-title: Magn Reson Med
– volume: 131
  start-page: 191
  year: 1998
  end-page: 198
  article-title: The role of specific side groups and pH in magnetization transfer in polymers
  publication-title: J Magn Reson
– volume: 29
  start-page: 759
  year: 1993
  end-page: 766
  article-title: Quantitative interpretation of magnetization transfer
  publication-title: Magn Reson Med
– start-page: 878
  year: 2001
– volume: 9
  start-page: 1085
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 86
  start-page: 164
  year: 1990
  end-page: 169
  article-title: NMR imaging of labile proton exchange
  publication-title: J Magn Reson
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– volume: 47
  start-page: 639
  year: 2002
  end-page: 648
  article-title: Paramagnetic Lanthanide(III) complexes as pH‐sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications
  publication-title: Magn Reson Med
– volume: 143
  start-page: 360
  year: 2000
  end-page: 375
  article-title: Effects of off‐resonance irradiation, cross‐relaxation, and chemical exchange on steady‐state magnetization and effective spin‐lattice relaxation times
  publication-title: J Magn Reson
– year: 1986
– volume: 12
  start-page: 745
  year: 2000
  end-page: 748
  article-title: Imaging of urea using chemical exchange‐dependent saturation transfer at 1.5T
  publication-title: J Magn Reson Imaging
– volume: 141
  start-page: 104
  year: 1999
  end-page: 120
  article-title: Toward an in vivo neurochemical profile: quantification of 18 metabolites in short‐echo‐time H NMR spectra of the rat brain
  publication-title: J Magn Reson
– volume: 50
  start-page: 1120
  year: 2003
  end-page: 1126
  article-title: Amide proton transfer (APT) contrast for imaging of brain tumors
  publication-title: Magn Reson Med
– volume: 32
  start-page: 517
  year: 1994
  end-page: 522
  article-title: Selective saturation in magnetization transfer experiments
  publication-title: Magn Reson Med
– volume: 41
  start-page: 400
  year: 1999
  end-page: 406
  article-title: Magnesium and pH imaging of the human brain at 3.0 Tesla
  publication-title: Magn Reson Med
– volume: 35
  start-page: 633
  year: 1996
  end-page: 639
  article-title: Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain
  publication-title: Magn Reson Med
– volume: 44
  start-page: 799
  year: 2000
  end-page: 802
  article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)
  publication-title: Magn Reson Med
– volume: 39
  start-page: 2892
  year: 1963
  end-page: 2901
  article-title: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance
  publication-title: J Chem Phys
– volume: 41
  start-page: 903
  year: 1972
  end-page: 924
  article-title: Hydrogen exchange
  publication-title: Annu Rev Biochem
– volume: 123
  start-page: 8628
  year: 2001
  end-page: 8629
  article-title: Sensitive NMR detection of cationic‐polymer‐based gene delivery systems using saturation transfer via proton exchange
  publication-title: J Am Chem Soc
– volume: 35
  start-page: 30
  year: 1996
  end-page: 42
  article-title: Proton exchange rates from amino acid side chains—implication for image contrast
  publication-title: Magn Reson Med
– volume: 72
  start-page: 405
  year: 1999
  end-page: 412
  article-title: In vivo microdialysis of 2‐deoxyglucose 6‐phosphate into brain: a novel method for the measurement of interstitial pH using P‐NMR
  publication-title: J Neurochem
– volume: 58
  start-page: 967
  year: 1992
  end-page: 974
  article-title: Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain and their partial purification
  publication-title: J Neurochem
– volume: 90
  start-page: 464
  year: 1990
  end-page: 473
  article-title: Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution
  publication-title: J Magn Reson
– volume: 110
  start-page: 96
  year: 1996
  end-page: 101
  article-title: Water exchange filter with improved sensitivity (WEX II) to study solvent‐exchangeable protons: application to the consensus zinc finger peptide CP‐1
  publication-title: J Magn Reson B
– volume: 133
  start-page: 36
  year: 1998
  end-page: 45
  article-title: Detection of proton chemical exchange between metabolites and water in biological tissues
  publication-title: J Magn Reson
– volume: 123
  start-page: 1517
  year: 2001
  end-page: 1578
  article-title: A novel europium(III)‐based MRI contrast agent
  publication-title: J Am Chem Soc
– volume: 71
  start-page: 4546
  year: 1979
  end-page: 4553
  article-title: Investigation of exchange processes by two‐dimensional NMR spectroscopy
  publication-title: J Chem Phys
– volume: 7
  start-page: 291
  year: 1997
  end-page: 299
  article-title: Measurement of spin‐lattice relaxation times of C‐13 in organic solids
  publication-title: Solid State NMR
– volume: 40
  start-page: 36
  year: 1998
  end-page: 42
  article-title: Proton NMR spectroscopy of solvent‐saturable resonance: a new approach to study pH effects
  publication-title: Magn Reson Med
– volume: 30
  start-page: 38
  year: 1993
  end-page: 44
  article-title: Characterization of macromolecule resonances in the H NMR spectrum of rat brain
  publication-title: Magn Reson Med
– ident: e_1_2_5_7_2
  doi: 10.1146/annurev.bi.41.070172.004351
– ident: e_1_2_5_26_2
  doi: 10.1002/mrm.10651
– ident: e_1_2_5_36_2
  doi: 10.1002/1522-2594(200006)43:6<810::AID-MRM6>3.0.CO;2-J
– ident: e_1_2_5_14_2
  doi: 10.1002/mrm.10347
– ident: e_1_2_5_32_2
  doi: 10.1002/mrm.1910350106
– ident: e_1_2_5_24_2
  doi: 10.1002/mrm.10463
– ident: e_1_2_5_28_2
  doi: 10.1002/mrm.1910290607
– volume: 8
  start-page: 116
  year: 1992
  ident: e_1_2_5_27_2
  article-title: Magnetization transfer contrast in magnetic resonance imaging
  publication-title: Magn Reson Q
– ident: e_1_2_5_30_2
  doi: 10.1006/jmrb.1994.1103
– ident: e_1_2_5_31_2
  doi: 10.1063/1.438208
– ident: e_1_2_5_23_2
  doi: 10.1002/mrm.10106
– ident: e_1_2_5_39_2
  doi: 10.1046/j.1471-4159.1999.0720405.x
– ident: e_1_2_5_4_2
  doi: 10.1002/mrm.10398
– ident: e_1_2_5_21_2
– ident: e_1_2_5_8_2
  doi: 10.1111/j.1471-4159.1992.tb09350.x
– ident: e_1_2_5_17_2
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_5_20_2
  doi: 10.1021/ja0158455
– ident: e_1_2_5_38_2
  doi: 10.1063/1.1734121
– ident: e_1_2_5_22_2
  doi: 10.1021/ja005820q
– ident: e_1_2_5_40_2
  doi: 10.1002/(SICI)1522-2594(199902)41:2<400::AID-MRM26>3.0.CO;2-E
– ident: e_1_2_5_3_2
  doi: 10.1021/ja963351f
– ident: e_1_2_5_13_2
  doi: 10.1002/mrm.1910050313
– ident: e_1_2_5_16_2
  doi: 10.1006/jmre.1998.1440
– ident: e_1_2_5_37_2
  doi: 10.1016/S0926-2040(96)01283-0
– ident: e_1_2_5_10_2
  doi: 10.1002/mrm.1910350502
– ident: e_1_2_5_11_2
  doi: 10.1006/jmre.1999.1895
– ident: e_1_2_5_29_2
  doi: 10.1002/mrm.1910320415
– ident: e_1_2_5_5_2
  doi: 10.1038/nm907
– ident: e_1_2_5_18_2
  doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
– ident: e_1_2_5_19_2
  doi: 10.1002/1522-2586(200011)12:5<745::AID-JMRI12>3.0.CO;2-H
– ident: e_1_2_5_12_2
  doi: 10.1002/mrm.1910400105
– ident: e_1_2_5_15_2
  doi: 10.1016/0022-2364(90)90220-4
– ident: e_1_2_5_34_2
  doi: 10.1016/0022-2364(90)90051-A
– ident: e_1_2_5_2_2
  doi: 10.1006/jmrb.1996.0015
– ident: e_1_2_5_6_2
  doi: 10.1051/epn/19861701011
– ident: e_1_2_5_35_2
  doi: 10.1006/jmre.2000.2018
– ident: e_1_2_5_9_2
  doi: 10.1002/mrm.1910300107
– ident: e_1_2_5_25_2
– ident: e_1_2_5_33_2
  doi: 10.1006/jmre.1998.1371
SSID ssj0009974
Score 2.2780876
Snippet The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 945
SubjectTerms amide proton
Animals
APT
Brain
CEST
Ion Exchange
ischemia
Magnetic Resonance Imaging
magnetization transfer
mobile protein
Models, Theoretical
pH imaging
proton exchange
Protons
Rats
WEX
Title Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments
URI https://api.istex.fr/ark:/67375/WNG-L332H7WC-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20048
https://www.ncbi.nlm.nih.gov/pubmed/15122676
https://www.proquest.com/docview/17389980
https://www.proquest.com/docview/71891801
Volume 51
WOSCitedRecordID wos000221239000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZBt72Uf3lX10Yoyxh5rasmxL7KlkyTpIQtelJPRFSLYMo51T4nbL37C_eifJcSi0MNibBWeQT3en31l3PwG8x4TLINJNg6hUScCo1oHWiQrCGKNlFBa4hTqe2VE2mfD5XBxtwad1L4znh2h_uFnPcPHaOrjS9f6GNPTn0jWSM74NXYp2m3Sg-_l4eDLacO4KT8KcMRtqBFsTC4V0v3352nbUtZpd3YQ1r0NXt_cMH_7XrB_BgwZykgNvI49hy1Q7cG_cHKrvwF1XBZrXT-DPtytVua4zjIGkMG1IIYuSWEYHfDIr3ytMLnyLgalJU-tFfiNuXRJVFcRUxcKzv_rhqh3ZTq6aIFIms8F8j_QH36d7TubgaEo21w3UT-FkOJj2D4PmsoYgZyLiQYlQA3OPIopywZUJQ0VLVZaMWY6xVBesKIQRKuGaC1WUNLQimjOquDZxkcTPoFMtKvMCiFBK04QKyx3IdJkoZZI015jYxTnmAnEPPq7XTOYNk7m9UONceg5mKlHL0mm5B-9a0QtP33GT0Ae38K2EWp7ZercskbPJFzmKY3qYzfrytAdv15Yh0Qvt0YqqDGpPRpnlKeTh7RKIAVBNYdSD596kNvNBzEXTLMXPcpZz-0Tl-HjsHl7-u-gruO-LjWyN5mvoXC6vzBu4k_-6_FEvd2E7m_PdxnFwNPs6-Qv2JRue
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7SpNdLj_TaXhGllD7ExJblQ9CXsGy6obsmbbfs0hchWTKUtt5gJ-3-hv7qjiSvl0AChb5JMAZ5pBl9I818AniNAZdBpJsGUSWTgFGlAqUSGYQxesso1LiFOp7ZSVYU-WLBT7bg3boWxvND9Adu1jKcv7YGbg-kDzasoT8bV0nO8muwwxBo2Icb5sfFhnKXew7mjFlPw9maVyikB_2nF3ajHavY1WVQ8yJydVvP0d3_G_Q9uNNBTnLo18h92DL1Ltycdpfqu3DDZYGW7QP48_Fc1q7qDH0g0aZ3KWRZEcvogC2z8rXC5NSXGJiWdLle5Dfi1obIWhNT66Vnf_XdVd-zlVwtQaRM5qPFPhmOPs_2nczhyYxsnhtoH8KXo9FsOA66xxqCkvEoDyqEGhh76CgqeS5NGEpayapizHKMpUozrbnhMslVzqWuaGhFVM6ozJWJdRI_gu16WZsnQLiUiiaUW-5ApqpESpOkpcLALi4xFogH8HY9aaLsmMztgxo_hOdgpgK1LJyWB_CqFz319B2XCb1xM99LyOa7zXfLEjEv3otJHNNxNh-KrwPYWy8NgVZor1ZkbVB7IsosT2EeXi2BGADVFEYDeOzX1GY8iLlomqX4W27pXD1QMf00dY2n_y66B7fGs-lETI6LD8_gtk88svmaz2H7rDk3L-B6-evsW9u8dNbzFwxFHGk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50yVb2skt3y24VY4w91NSW5YtgLyVN1rEkZF1KQl-EZEkwtjnBbrf8hv3q6eI4FFoY7M2CY5CPzjn6ZJ3zHYC35sClDNJNg0jzJCBYiECIhAdhbKJlFEqzhTqe2VE2meSLBZ3uwIdNLYznh2h_uFnPcPHaOrhaSX24ZQ39WblKcpLfgi6xTWQ60D0-HZ6NtqS71LMwZ8TGGko2zEIhPmxfvrIfda1q19eBzavY1W0-w_v_N-0HcK8BnejIW8lD2FHlHuyOm2v1Pbjj8kCL-hH8-XLJS1d3ZqIgkqoNKmipkeV0ME9q7auF0coXGagaNdle6LdBrhXipUSqlEvP_-qH63Zka7lqZLAymg8WB6g_-Do7cDJH0xnaNhyoH8PZcDDrnwRNu4agIDTKA23Ahjl9yCgqaM5VGHKsudaEWJaxVEgiJVWUJ7nIKZcah1ZE5ATzXKhYJvET6JTLUj0DRDkXOMHUsgcSoRPOVZIWwhzt4sKcBuIevN8sGisaLnPbUuMH8yzMmBktM6flHrxpRVeewOM6oXdu5VsJXn23GW9ZwuaTj2wUx_gkm_fZeQ_2N6bBjB_ayxVeKqM9FmWWqTAPb5YwKMCoKYx68NTb1HY-BnXhNEvNZznTuXmibHw6dg_P_110H3anx0M2-jT5_ALu-swjm7D5EjoX1aV6BbeLXxff6up14z5_AemfHRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+description+of+proton+exchange+processes+between+water+and+endogenous+and+exogenous+agents+for+WEX%2C+CEST%2C+and+APT+experiments&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhou%2C+Jinyuan&rft.au=Wilson%2C+David+A.&rft.au=Sun%2C+Phillip+Zhe&rft.au=Klaus%2C+Judith+A.&rft.date=2004-05-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=51&rft.issue=5&rft.spage=945&rft.epage=952&rft_id=info:doi/10.1002%2Fmrm.20048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_20048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon