Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases....
Saved in:
| Published in: | Pediatric diabetes Vol. 15; no. 3; pp. 162 - 174 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Former Munksgaard
John Wiley & Sons A/S
01.05.2014
|
| Subjects: | |
| ISSN: | 1399-543X, 1399-5448, 1399-5448 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T‐cells that infiltrate the pancreatic islets of Langerhans and destroy insulin‐secreting β‐cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet‐specific autoantibodies that appear in high‐risk subjects (HRS) several years prior to the onset of diabetes‐related symptoms. It has been suggested that T1D is relapsing‐remitting in nature and that islet‐specific autoantibodies released by lymphocytic B‐cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T‐ and B‐cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. |
|---|---|
| AbstractList | Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T‐cells that infiltrate the pancreatic islets of Langerhans and destroy insulin‐secreting β‐cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet‐specific autoantibodies that appear in high‐risk subjects (HRS) several years prior to the onset of diabetes‐related symptoms. It has been suggested that T1D is relapsing‐remitting in nature and that islet‐specific autoantibodies released by lymphocytic B‐cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T‐ and B‐cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting beta -cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease. |
| Author | Khadra, Anmar Pietropaolo, Massimo Jaberi-Douraki, Majid Liu, Shang Wan (Shalon) |
| AuthorAffiliation | 1 Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 2 Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714 |
| AuthorAffiliation_xml | – name: 2 Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714 – name: 1 Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 |
| Author_xml | – sequence: 1 givenname: Majid surname: Jaberi-Douraki fullname: Jaberi-Douraki, Majid organization: Department of Physiology, McGill University, Quebec, Montreal, Canada – sequence: 2 givenname: Shang Wan (Shalon) surname: Liu fullname: Liu, Shang Wan (Shalon) organization: Department of Physiology, McGill University, Quebec, Montreal, Canada – sequence: 3 givenname: Massimo surname: Pietropaolo fullname: Pietropaolo, Massimo organization: Laboratory of Immunogenetics, University of Michigan, MI, Ann Arbor, USA – sequence: 4 givenname: Anmar surname: Khadra fullname: Khadra, Anmar email: anmar.khadra@mcgill.ca organization: Department of Physiology, McGill University, Quebec, Montreal, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24827702$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9rFTEUxYNU7B_d-AEkS5FOTSaZSeKiUNraFqoWqegu5GXutNGZZJpknvbbO9PXPlREzCaX5PwO53K20YYPHhB6Tskenc7rARq3R0vK5SO0RZlSRcW53FjP7Msm2k7pKyFUKMafoM2Sy1IIUm4hfzDm4Pp-9IAjpCH4BAk7jy_p0bs3-GY0PrtsslsC7iFfhybhHPDoG4gpG9_gmci7eIjhajJILvhdPL8PEZYwwcHj0OLGJTAJnqLHrekSPLu_d9Cnt8eXh6fF-YeTs8OD88JyRWUBjC4srVvZ1pIzAcQCrwlIrqxQxioqZDXNkhu5qExd25a0hjasYVxSC4ztoP2V7zAuemjsFCSaTg_R9Sbe6mCc_v3Hu2t9FZaak4owMRu8vDeI4WaElHXvkoWuMx7CmDStOClLqhT_D2lZiZoTNru--DXWOs9DH5Pg1UpgY0gpQruWUKLnsvVctr4rexKTP8T2rqowr-S6vyN0hXx3Hdz-w1xfHB-dPTDFinEpw481Y-I3XQsmKv35_YmuycW0Jv-oT9lPhzLNHg |
| CitedBy_id | crossref_primary_10_1016_j_abb_2015_08_011 crossref_primary_10_1159_000448003 crossref_primary_10_1016_j_jcyt_2015_07_006 crossref_primary_10_1016_j_autrev_2016_06_005 crossref_primary_10_1371_journal_pone_0190349 crossref_primary_10_1002_dmrr_2996 crossref_primary_10_1016_j_imlet_2018_03_013 crossref_primary_10_1097_MD_0000000000042490 crossref_primary_10_1016_j_mbs_2016_10_002 crossref_primary_10_1111_pedi_12269 crossref_primary_10_4239_wjd_v12_i8_1325 crossref_primary_10_1038_s41390_022_02069_w crossref_primary_10_1016_j_jtbi_2015_07_032 crossref_primary_10_1371_journal_pcbi_1009413 crossref_primary_10_3389_fphys_2016_00633 crossref_primary_10_3390_pharmaceutics16121559 crossref_primary_10_1186_s13256_018_1708_x crossref_primary_10_2337_dbi23_0017 crossref_primary_10_1016_j_heliyon_2024_e32781 crossref_primary_10_1080_15569527_2016_1258709 crossref_primary_10_1186_s40425_016_0196_z crossref_primary_10_1002_iub_1330 |
| Cites_doi | 10.1007/BF00401518 10.4049/jimmunol.1201787 10.2337/db12-0091 10.2337/diabetes.54.suppl_2.S25 10.2337/diab.42.2.213 10.1007/s00125-003-1164-y 10.1038/ni723 10.2337/db10-1797 10.2337/diab.45.7.926 10.1210/jc.2007-0339 10.1111/j.1600-065X.2008.00637.x 10.1016/j.immuni.2010.03.015 10.2337/diabetes.51.5.1375 10.1016/S1074-7613(00)80220-4 10.3389/fimmu.2013.00321 10.2337/diabetes.53.2.354 10.1007/s125-002-8246-5 10.1016/S1471-4906(01)01976-7 10.1038/sj.cdd.4400973 10.1001/jama.2013.6285 10.1097/00001648-199205000-00008 10.2337/db09-1486 10.1056/NEJMoa043980 10.1111/j.1399-543X.2005.00127.x 10.1002/msj.20054 10.2337/diab.43.11.1304 10.1007/BF00400830 10.1152/japplphysiol.00514.2007 10.1007/s00125-013-2896-y 10.1016/j.jtbi.2004.10.030 10.1038/35021081 10.1016/j.coi.2004.09.001 10.1016/j.mbs.2006.03.021 10.1038/ni.1850 10.1006/jtbi.2000.2150 10.1038/nri2192 10.1073/pnas.1006545107 10.1016/j.jaut.2005.09.018 10.2337/diabetes.51.8.2481 10.1542/peds.78.6.1027 10.1038/329599a0 10.1006/jaut.1999.0281 10.1073/pnas.93.15.7855 10.1073/pnas.85.21.8111 10.1056/NEJM198605223142106 10.1371/journal.pone.0093326 10.1098/rsta.2006.1769 10.1159/000060541 10.1093/intimm/dxq041 10.1137/060661144 10.1136/bmj.298.6673.558 10.1056/NEJM199010253231704 10.2337/db06-0066 10.4049/jimmunol.157.5.1823 10.1038/nm1250 10.1016/j.jtbi.2008.09.019 10.1101/cshperspect.a012831 10.1055/s-0038-1657711 10.4049/jimmunol.180.6.3849 10.4049/jimmunol.1001306 10.2337/db06-0129 10.1073/pnas.91.2.444 10.1016/j.jaut.2004.03.012 10.1093/intimm/dxl040 10.1038/icb.2013.9 10.1159/000218170 10.1371/journal.pone.0051909 10.1007/s00018-011-0738-y 10.1182/blood-2004-12-4848 10.1016/j.imlet.2013.12.018 10.2337/diabetes.48.9.1677 10.1016/j.biosystems.2010.07.018 10.1038/nature06406 10.1073/pnas.1113954108 10.1002/dmrr.341 10.1056/NEJMoa012864 10.2337/diab.44.3.249 10.1172/JCI34236 10.2337/diabetes.54.2.452 10.1016/S0092-8674(00)81106-X 10.1172/JCI24219 10.1172/JCI200316409 10.1038/psp.2013.30 10.3934/mbe.2009.6.753 10.2337/diabetes.49.1.1 10.1002/eji.200526158 10.2337/diab.37.12.1591 10.4049/jimmunol.154.10.5567 |
| ContentType | Journal Article |
| Copyright | 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
| DOI | 10.1111/pedi.12148 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1399-5448 |
| EndPage | 174 |
| ExternalDocumentID | PMC4050373 24827702 10_1111_pedi_12148 PEDI12148 ark_67375_WNG_60P5254R_H |
| Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Council of Canada – fundername: National Institutes of Health funderid: R01 DK53456; R01 DK56200; R21 DK073724 – fundername: NIDDK NIH HHS grantid: P30 DK020572 – fundername: NIDDK NIH HHS grantid: R01 DK053456 – fundername: NIDDK NIH HHS grantid: R21 DK073724 – fundername: NIDDK NIH HHS grantid: R01 DK53456 – fundername: NIDDK NIH HHS grantid: R01 DK56200 – fundername: NIDDK NIH HHS grantid: R01 DK056200 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7RV 7X7 8-0 8-1 8-3 8-4 8-5 8C1 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAKAS AAMMB AANHP AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABUWG ABXGK ACAHQ ACBWZ ACCMX ACCZN ACGFS ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEIMD AENEX AFBPY AFEBI AFFHD AFGKR AFKRA AFZJQ AGQPQ AGXDD AIACR AIDQK AIDYY AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FYUFA G-S G.N GODZA H.X H13 HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NAPCQ NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PHGZM PHGZT PIMPY PJZUB PPXIY Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI XG1 YFH ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS AAJEY ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
| ID | FETCH-LOGICAL-c4918-e31bc16f8f68437e0ce460e849c79ac9178549c84a8b5a66cf0fa1d3d3481ce33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335836000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1399-543X 1399-5448 |
| IngestDate | Tue Nov 04 02:04:16 EST 2025 Fri Sep 05 14:38:22 EDT 2025 Thu Oct 02 05:42:58 EDT 2025 Thu Apr 03 06:56:59 EDT 2025 Sat Nov 29 06:09:55 EST 2025 Tue Nov 18 21:51:03 EST 2025 Sun Sep 21 06:23:25 EDT 2025 Tue Nov 11 03:31:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | T-cells avidity B-cells autoimmunity predictive algorithms β-cells T1D mathematical models Markov models autoantibodies |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4918-e31bc16f8f68437e0ce460e849c79ac9178549c84a8b5a66cf0fa1d3d3481ce33 |
| Notes | istex:0FFA31EA1DDBCA752EF28DC9BCFDAE930FD0243C Natural Sciences and Engineering Council of Canada ArticleID:PEDI12148 National Institutes of Health - No. R01 DK53456; No. R01 DK56200; No. R21 DK073724 ark:/67375/WNG-60P5254R-H ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pedi.12148 |
| PMID | 24827702 |
| PQID | 1525764033 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050373 proquest_miscellaneous_1540221994 proquest_miscellaneous_1525764033 pubmed_primary_24827702 crossref_primary_10_1111_pedi_12148 crossref_citationtrail_10_1111_pedi_12148 wiley_primary_10_1111_pedi_12148_PEDI12148 istex_primary_ark_67375_WNG_60P5254R_H |
| PublicationCentury | 2000 |
| PublicationDate | May 2014 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Former Munksgaard |
| PublicationPlace_xml | – name: Former Munksgaard – name: Denmark |
| PublicationTitle | Pediatric diabetes |
| PublicationTitleAlternate | Pediatr Diabetes |
| PublicationYear | 2014 |
| Publisher | John Wiley & Sons A/S |
| Publisher_xml | – name: John Wiley & Sons A/S |
| References | Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care 1988: 11 (Suppl 1): 16-23. Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007: 450: 887-892. Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003: 111: 217-223. Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000: 406: 739-742. Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012: 2: a012831. doi: 10.1101/cshperspect.a012831. Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000: 49: 1-7. Marée AF, Kublik R, Finegood DT, Edelstein-Keshet L. Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? Philos Transact A Math Phys Eng Sci 2006: 364: 1267-1282. Palosuo T, Virtamo J, Haukka J et al. High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study. Thromb Haemost 1997: 78: 1178-1182. Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002: 346: 1692-1698. Nerup J, Mandrup-Poulsen T, Helqvist S et al. On the pathogenesis of IDDM. Diabetologia 1994: 37 (Suppl 2): S82-S89. Han B, Serra P, Yamanouchi J et al. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005: 115: 1879-1887. Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. J Immunol 2012: 189: 2975-2984. O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002: 51: 2481-2488. Beyan H, Buckley LR, Yousaf N, Londei M, Leslie RD. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89-100. Bingley PJ, Christie MR, Bonifacio E et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994: 43: 1304-1310. Ajmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol 2013: 2: e54. Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER. First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 2008: 180: 3849-3856. Maclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J Autoimmun 1999: 12: 279-287. Ziegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013: 309: 2473-2479. Topp B, Promislow K, de Vries G, Miura RM, Finegood DT. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000: 206: 605-619. Pietropaolo M, Becker DJ, LaPorte RE et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002: 45: 66-76. Bingley PJ, Gale EA. Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986. BMJ 1989: 298: 558-560. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996: 93: 7855-7860. Schnell S. A model of the unfolded protein response: pancreatic beta-cell as a case study. Cell Physiol Biochem 2009: 23: 233-244. Quartey-Papafio R, Lund T, Chandler P et al. Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 1995: 154: 5567-5575. Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996: 157: 1823-1826. Tsai S, Clemente-Casares X, Santamaria P. CD8+ Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011: 68: 3781-3795. Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2007: 117: 3642-3645. Bollyky J, Sanda S, Greenbaum CJ. Type 1 diabetes mellitus: primary, secondary, and tertiary prevention. Mt Sinai J Med 2008: 75: 385-397. Velthuis JH, Unger WW, Abreu JR et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 2010: 59: 1721-1730. Naik RG, Palmer JP. Preservation of β-cell function in type 1 diabetes. Diabetes Rev 1999: 7: 154-182. Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000: 12: 699-710. Khadra A, Tsai S, Santamaria P, Edelstein-Keshet L. On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach. J Immunol 2010: 185: 5962-5972. Mallone R, Kochik SA, Reijonen H et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005: 106: 2798-2805. Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005: 352: 2598-2608. Estella E, McKenzie MD, Catterall T et al. Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 2006: 55: 2212-2219. Pietropaolo M, Yu S, Libman IM et al. Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 2005: 6: 184-192. Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 2004: 16: 753-758. O'Sullivan-Murphy B, Urano F. ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 2012: 61: 780-781. Achenbach P, Hummel M, Thumer L, Boerschmann H, Hofelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia 2013: 56: 1615-1622. Tsai S, Santamaria P. MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol 2013: 4: 321. Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA 2010: 107: 10978-10983. Maclaren NK. How, when, and why to predict IDDM. Diabetes 1988: 37: 1591-1594. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987: 329: 599-604. LaPorte RE, Dorman JS, Tajima N et al. Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications. Pediatrics 1986: 78: 1027-1033. Sugarman J, Tsai S, Santamaria P, Khadra A. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013: 91: 350-359. Marinković T, Sysi-Aho M, Oresic M. Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes. PLoS One 2012: 7: e51909. Wang X, He Z, Ghosh S. Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling. Math Biosci 2006: 203: 79-99. Magombedze G, Nduru P, Bhunu CP, Mushayabasa S. Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 2010: 102: 88-98. Atkinson MA, Bluestone JA, Eisenbarth GS et al. How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited. Diabetes 2011: 60: 1370-1379. Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 1999: 48: 1677-1685. Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001: 22: 443-449. Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995: 44: 249-256. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001: 2: 1032-1039. Bingley PJ, Bonifacio E, Gale EA. Can we really predict IDDM? Diabetes 1993: 42: 213-220. Jaberi-Douraki M, Pietropaolo M, Khadra A. Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release. PLoS One 2014: 9: e93326. doi:10.1371/journal.pone.0093326. Walter U, Toepfer T, Dittmar KE et al. Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes. Diabetologia 2003: 46: 1106-1114. Kostraba JN, Gay EC, Cai Y et al. Incidence of insulin-dependent diabetes mellitus in Colorado. Epidemiology 1992: 3: 232-238. Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 2006: 55: 3061-3 2012; 61 2010; 11 2010; 59 2013; 4 2000; 49 2013; 2 2010; 107 2002; 51 2011; 60 1986; 78 1988; 37 1999; 48 2004; 23 2010; 102 2010; 185 2008; 104 2003; 19 2008; 75 2008; 223 2003; 111 2005; 25 2010; 22 2000; 12 2013; 56 2002; 45 2000; 206 2007; 450 2000; 406 2005; 106 2003; 46 1999; 12 2002; 346 2007; 7 2011; 68 1994; 37 1988; 85 2014; 9 2006; 203 2007; 67 1992; 3 2006; 364 2005; 35 2009; 23 2010; 32 2012; 189 1986; 314 1990; 323 2002; 9 2005; 352 1991; 34 2013; 309 2005; 233 2006; 55 1987; 329 2005; 115 1993; 42 1989; 298 2013; 91 1988; 11 1996; 93 2006; 18 2007; 92 2009; 256 2001; 22 1999; 7 1995; 154 2014; 158 1994; 43 2008; 180 2004; 53 2012; 2 2011; 108 2007; 117 2004; 16 2001; 4 1995; 44 1997; 78 1996; 85 2005; 54 2005; 6 2001; 2 2009; 6 2012; 7 1994; 91 1996; 157 2005; 11 1996; 45 Morel (10.1111/pedi.12148-BIB0018|pedi12148-cit-0018) 1988; 85 Trudeau (10.1111/pedi.12148-BIB0060|pedi12148-cit-0060) 2000; 49 Tisch (10.1111/pedi.12148-BIB0050|pedi12148-cit-0050) 1996; 85 O'Brien (10.1111/pedi.12148-BIB0009|pedi12148-cit-0009) 2002; 9 Stoffels (10.1111/pedi.12148-BIB0070|pedi12148-cit-0070) 2004; 23 Derbinski (10.1111/pedi.12148-BIB0007|pedi12148-cit-0007) 2001; 2 Kostraba (10.1111/pedi.12148-BIB0042|pedi12148-cit-0042) 1992; 3 Quartey-Papafio (10.1111/pedi.12148-BIB0051|pedi12148-cit-0051) 1995; 154 Sugarman (10.1111/pedi.12148-BIB0084|pedi12148-cit-0084) 2013; 91 Marée (10.1111/pedi.12148-BIB0068|pedi12148-cit-0068) 2005; 233 Suri (10.1111/pedi.12148-BIB0053|pedi12148-cit-0053) 2008; 180 O'Sullivan-Murphy (10.1111/pedi.12148-BIB0015|pedi12148-cit-0015) 2012; 61 Topp (10.1111/pedi.12148-BIB0066|pedi12148-cit-0066) 2000; 206 Han (10.1111/pedi.12148-BIB0089|pedi12148-cit-0089) 2005; 115 Herold (10.1111/pedi.12148-BIB0022|pedi12148-cit-0022) 2002; 346 Trudeau (10.1111/pedi.12148-BIB0077|pedi12148-cit-0077) 2003; 111 Mohan (10.1111/pedi.12148-BIB0056|pedi12148-cit-0056) 2010; 11 Doyle (10.1111/pedi.12148-BIB0057|pedi12148-cit-0057) 2001; 22 Mahaffy (10.1111/pedi.12148-BIB0078|pedi12148-cit-0078) 2007; 67 Marée (10.1111/pedi.12148-BIB0067|pedi12148-cit-0067) 2008; 104 Oling (10.1111/pedi.12148-BIB0001|pedi12148-cit-0001) 2005; 25 Magombedze (10.1111/pedi.12148-BIB0087|pedi12148-cit-0087) 2010; 102 Achenbach (10.1111/pedi.12148-BIB0034|pedi12148-cit-0034) 2013; 56 Marée (10.1111/pedi.12148-BIB0069|pedi12148-cit-0069) 2006; 364 Bour-Jordan (10.1111/pedi.12148-BIB0024|pedi12148-cit-0024) 2007; 117 Tsai (10.1111/pedi.12148-BIB0026|pedi12148-cit-0026) 2010; 32 Beyan (10.1111/pedi.12148-BIB0011|pedi12148-cit-0011) 2003; 19 Schnell (10.1111/pedi.12148-BIB0016|pedi12148-cit-0016) 2009; 23 Tsai (10.1111/pedi.12148-BIB0081|pedi12148-cit-0081) 2011; 68 Finegood (10.1111/pedi.12148-BIB0059|pedi12148-cit-0059) 1995; 44 Mallone (10.1111/pedi.12148-BIB0088|pedi12148-cit-0088) 2005; 106 Stadinski (10.1111/pedi.12148-BIB0054|pedi12148-cit-0054) 2010; 107 Riley (10.1111/pedi.12148-BIB0045|pedi12148-cit-0045) 1990; 323 Marinković (10.1111/pedi.12148-BIB0065|pedi12148-cit-0065) 2012; 7 Palosuo (10.1111/pedi.12148-BIB0033|pedi12148-cit-0033) 1997; 78 Marée (10.1111/pedi.12148-BIB0076|pedi12148-cit-0076) 2006; 18 Herrath (10.1111/pedi.12148-BIB0079|pedi12148-cit-0079) 2007; 7 Walter (10.1111/pedi.12148-BIB0019|pedi12148-cit-0019) 2003; 46 Khadra (10.1111/pedi.12148-BIB0071|pedi12148-cit-0071) 2010; 22 Aichele (10.1111/pedi.12148-BIB0074|pedi12148-cit-0074) 1994; 91 Reijonen (10.1111/pedi.12148-BIB0002|pedi12148-cit-0002) 2002; 51 Pietropaolo (10.1111/pedi.12148-BIB0029|pedi12148-cit-0029) 2001; 4 Jaberi-Douraki (10.1111/pedi.12148-BIB0080|pedi12148-cit-0080) 2014; 9 Pietropaolo (10.1111/pedi.12148-BIB0037|pedi12148-cit-0037) 2005; 6 Nelson (10.1111/pedi.12148-BIB0085|pedi12148-cit-0085) 2009; 6 Maclaren (10.1111/pedi.12148-BIB0032|pedi12148-cit-0032) 1999; 12 Yewdell (10.1111/pedi.12148-BIB0072|pedi12148-cit-0072) 1996; 157 Eisenbarth (10.1111/pedi.12148-BIB0041|pedi12148-cit-0041) 1986; 314 Barmeier (10.1111/pedi.12148-BIB0044|pedi12148-cit-0044) 1991; 34 Anderton (10.1111/pedi.12148-BIB0058|pedi12148-cit-0058) 2004; 16 Verge (10.1111/pedi.12148-BIB0028|pedi12148-cit-0028) 1996; 45 Pietropaolo (10.1111/pedi.12148-BIB0027|pedi12148-cit-0027) 2002; 45 Ziegler (10.1111/pedi.12148-BIB0035|pedi12148-cit-0035) 2013; 309 Wang (10.1111/pedi.12148-BIB0005|pedi12148-cit-0005) 2012; 189 Eisenbarth (10.1111/pedi.12148-BIB0031|pedi12148-cit-0031) 2007; 92 Khadra (10.1111/pedi.12148-BIB0083|pedi12148-cit-0083) 2010; 185 Clemente-Casares (10.1111/pedi.12148-BIB0025|pedi12148-cit-0025) 2014; 158 Todd (10.1111/pedi.12148-BIB0049|pedi12148-cit-0049) 1987; 329 Standifer (10.1111/pedi.12148-BIB0003|pedi12148-cit-0003) 2006; 55 Chentoufi (10.1111/pedi.12148-BIB0006|pedi12148-cit-0006) 2004; 53 Brusko (10.1111/pedi.12148-BIB0086|pedi12148-cit-0086) 2008; 223 Bingley (10.1111/pedi.12148-BIB0036|pedi12148-cit-0036) 1994; 43 Ajmera (10.1111/pedi.12148-BIB0090|pedi12148-cit-0090) 2013; 2 Preda (10.1111/pedi.12148-BIB0021|pedi12148-cit-0021) 2005; 35 Freiesleben De Blasio (10.1111/pedi.12148-BIB0063|pedi12148-cit-0063) 1999; 48 Amrani (10.1111/pedi.12148-BIB0020|pedi12148-cit-0020) 2000; 406 Achenbach (10.1111/pedi.12148-BIB0030|pedi12148-cit-0030) 2005; 54 Han (10.1111/pedi.12148-BIB0073|pedi12148-cit-0073) 2005; 11 Atkinson (10.1111/pedi.12148-BIB0014|pedi12148-cit-0014) 2011; 60 Nejentsev (10.1111/pedi.12148-BIB0017|pedi12148-cit-0017) 2007; 450 Nerup (10.1111/pedi.12148-BIB0061|pedi12148-cit-0061) 1994; 37 Naik (10.1111/pedi.12148-BIB0039|pedi12148-cit-0039) 1999; 7 Maclaren (10.1111/pedi.12148-BIB0046|pedi12148-cit-0046) 1988; 37 Tsai (10.1111/pedi.12148-BIB0052|pedi12148-cit-0052) 2013; 4 Crawford (10.1111/pedi.12148-BIB0055|pedi12148-cit-0055) 2011; 108 Pietropaolo (10.1111/pedi.12148-BIB0008|pedi12148-cit-0008) 2012; 2 Toes (10.1111/pedi.12148-BIB0075|pedi12148-cit-0075) 1996; 93 Velthuis (10.1111/pedi.12148-BIB0004|pedi12148-cit-0004) 2010; 59 Bollyky (10.1111/pedi.12148-BIB0038|pedi12148-cit-0038) 2008; 75 Nerup (10.1111/pedi.12148-BIB0062|pedi12148-cit-0062) 1988; 11 Bingley (10.1111/pedi.12148-BIB0047|pedi12148-cit-0047) 1993; 42 Wang (10.1111/pedi.12148-BIB0064|pedi12148-cit-0064) 2006; 203 Cardozo (10.1111/pedi.12148-BIB0012|pedi12148-cit-0012) 2005; 54 O'Brien (10.1111/pedi.12148-BIB0010|pedi12148-cit-0010) 2002; 51 Estella (10.1111/pedi.12148-BIB0013|pedi12148-cit-0013) 2006; 55 Khadra (10.1111/pedi.12148-BIB0082|pedi12148-cit-0082) 2009; 256 Keymeulen (10.1111/pedi.12148-BIB0023|pedi12148-cit-0023) 2005; 352 Bingley (10.1111/pedi.12148-BIB0040|pedi12148-cit-0040) 1989; 298 Latek (10.1111/pedi.12148-BIB0048|pedi12148-cit-0048) 2000; 12 LaPorte (10.1111/pedi.12148-BIB0043|pedi12148-cit-0043) 1986; 78 |
| References_xml | – reference: Cardozo AK, Ortis F, Storling J et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005: 54: 452-461. – reference: Pietropaolo M, Becker DJ, LaPorte RE et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002: 45: 66-76. – reference: Tsai S, Clemente-Casares X, Santamaria P. CD8+ Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011: 68: 3781-3795. – reference: Nerup J, Mandrup-Poulsen T, Helqvist S et al. On the pathogenesis of IDDM. Diabetologia 1994: 37 (Suppl 2): S82-S89. – reference: von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 2007: 7: 988-994. – reference: Jaberi-Douraki M, Pietropaolo M, Khadra A. Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release. PLoS One 2014: 9: e93326. doi:10.1371/journal.pone.0093326. – reference: Bingley PJ, Gale EA. Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986. BMJ 1989: 298: 558-560. – reference: Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012: 2: a012831. doi: 10.1101/cshperspect.a012831. – reference: Eisenbarth GS. Update in type 1 diabetes. J Clin Endocrinol Metab 2007: 92: 2403-2407. – reference: Estella E, McKenzie MD, Catterall T et al. Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 2006: 55: 2212-2219. – reference: Tsai S, Santamaria P. MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol 2013: 4: 321. – reference: Bingley PJ, Christie MR, Bonifacio E et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994: 43: 1304-1310. – reference: Wang X, He Z, Ghosh S. Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling. Math Biosci 2006: 203: 79-99. – reference: Walter U, Toepfer T, Dittmar KE et al. Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes. Diabetologia 2003: 46: 1106-1114. – reference: Pietropaolo M, Eisenbarth GS. Autoantibodies in human diabetes. Curr Dir Autoimmun 2001: 4: 252-282. – reference: Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987: 329: 599-604. – reference: Ajmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol 2013: 2: e54. – reference: Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000: 49: 1-7. – reference: Oling V, Marttila J, Ilonen J et al. GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005: 25: 235-243. – reference: Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001: 2: 1032-1039. – reference: Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000: 12: 699-710. – reference: Maclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J Autoimmun 1999: 12: 279-287. – reference: Bingley PJ, Bonifacio E, Gale EA. Can we really predict IDDM? Diabetes 1993: 42: 213-220. – reference: Magombedze G, Nduru P, Bhunu CP, Mushayabasa S. Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 2010: 102: 88-98. – reference: O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002: 51: 2481-2488. – reference: Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell 1996: 85: 291-297. – reference: Kostraba JN, Gay EC, Cai Y et al. Incidence of insulin-dependent diabetes mellitus in Colorado. Epidemiology 1992: 3: 232-238. – reference: Reijonen H, Novak EJ, Kochik S et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002: 51: 1375-1382. – reference: Stoffels K, Overbergh L, Giulietti A et al. NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J Autoimmun 2004: 23: 9-15. – reference: Sugarman J, Tsai S, Santamaria P, Khadra A. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013: 91: 350-359. – reference: Marée AF, Santamaria P, Edelstein-Keshet L. Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen-specific therapy. Int Immunol 2006: 18: 1067-1077. – reference: Chentoufi AA, Palumbo M, Polychronakos C. Proinsulin expression by Hassall's corpuscles in the mouse thymus. Diabetes 2004: 53: 354-359. – reference: O'Brien BA, Fieldus WE, Field CJ, Finegood DT. Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death Differ 2002: 9: 457-464. – reference: Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005: 54 (Suppl 2): S25-S31. – reference: Bollyky J, Sanda S, Greenbaum CJ. Type 1 diabetes mellitus: primary, secondary, and tertiary prevention. Mt Sinai J Med 2008: 75: 385-397. – reference: Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000: 406: 739-742. – reference: Marée AF, Komba M, Dyck C, Labecki M, Finegood DT, Edelstein-Keshet L. Quantifying macrophage defects in type 1 diabetes. J Theor Biol 2005: 233: 533-551. – reference: Preda I, McEvoy RC, Lin M et al. Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes. Eur J Immunol 2005: 35: 2762-2775. – reference: Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007: 450: 887-892. – reference: Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 1999: 48: 1677-1685. – reference: Pietropaolo M, Yu S, Libman IM et al. Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 2005: 6: 184-192. – reference: Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002: 346: 1692-1698. – reference: Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER. First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 2008: 180: 3849-3856. – reference: Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. J Immunol 2012: 189: 2975-2984. – reference: Achenbach P, Hummel M, Thumer L, Boerschmann H, Hofelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia 2013: 56: 1615-1622. – reference: Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 1988: 85: 8111-8115. – reference: Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2007: 117: 3642-3645. – reference: Palosuo T, Virtamo J, Haukka J et al. High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study. Thromb Haemost 1997: 78: 1178-1182. – reference: Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001: 22: 443-449. – reference: Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 2010: 11: 350-354. – reference: Maclaren NK. How, when, and why to predict IDDM. Diabetes 1988: 37: 1591-1594. – reference: Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 2004: 16: 753-758. – reference: Verge CF, Gianani R, Kawasaki E et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996: 45: 926-933. – reference: Riley WJ, Maclaren NK, Krischer J et al. A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes. N Engl J Med 1990: 323: 1167-1172. – reference: Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996: 93: 7855-7860. – reference: Khadra A, Tsai S, Santamaria P, Edelstein-Keshet L. On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach. J Immunol 2010: 185: 5962-5972. – reference: Nelson P, Smith N, Ciupe S, Zou W, Omenn GS, Pietropaolo M. Modeling dynamic changes in type 1 diabetes progression: quantifying beta-cell variation after the appearance of islet-specific autoimmune responses. Math Biosci Eng 2009: 6: 753-778. – reference: Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003: 111: 217-223. – reference: Crawford F, Stadinski B, Jin N et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci USA 2011: 108: 16729-16734. – reference: Marée AF, Kublik R, Finegood DT, Edelstein-Keshet L. Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? Philos Transact A Math Phys Eng Sci 2006: 364: 1267-1282. – reference: O'Sullivan-Murphy B, Urano F. ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 2012: 61: 780-781. – reference: Khadra A, Santamaria P, Edelstein-Keshet L. The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol 2010: 22: 571-582. – reference: Tsai S, Shameli A, Yamanouchi J et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 2010: 32: 568-580. – reference: Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008: 223: 371-390. – reference: Beyan H, Buckley LR, Yousaf N, Londei M, Leslie RD. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89-100. – reference: Naik RG, Palmer JP. Preservation of β-cell function in type 1 diabetes. Diabetes Rev 1999: 7: 154-182. – reference: Quartey-Papafio R, Lund T, Chandler P et al. Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 1995: 154: 5567-5575. – reference: Marée AF, Komba M, Finegood DT, Edelstein-Keshet L. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice. J Appl Physiol 2008: 104: 157-169. – reference: Ziegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013: 309: 2473-2479. – reference: Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA 2010: 107: 10978-10983. – reference: Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996: 157: 1823-1826. – reference: Barmeier H, McCulloch DK, Neifing JL et al. Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies. Diabetologia 1991: 34: 727-733. – reference: Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005: 352: 2598-2608. – reference: Topp B, Promislow K, de Vries G, Miura RM, Finegood DT. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000: 206: 605-619. – reference: Khadra A, Santamaria P, Edelstein-Keshet L. The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation. J Theor Biol 2009: 256: 126-141. – reference: Han B, Serra P, Amrani A et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 2005: 11: 645-652. – reference: Han B, Serra P, Yamanouchi J et al. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005: 115: 1879-1887. – reference: Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986: 314: 1360-1368. – reference: Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care 1988: 11 (Suppl 1): 16-23. – reference: Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014: 158: 167-174. – reference: Velthuis JH, Unger WW, Abreu JR et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 2010: 59: 1721-1730. – reference: Mallone R, Kochik SA, Reijonen H et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005: 106: 2798-2805. – reference: Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995: 44: 249-256. – reference: Schnell S. A model of the unfolded protein response: pancreatic beta-cell as a case study. Cell Physiol Biochem 2009: 23: 233-244. – reference: Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 2006: 55: 3061-3067. – reference: Mahaffy JM, Edelstein-Keshet L. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J Appl Math 2007: 67: 915-937. – reference: Atkinson MA, Bluestone JA, Eisenbarth GS et al. How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited. Diabetes 2011: 60: 1370-1379. – reference: Aichele P, Kyburz D, Ohashi PS et al. Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 1994: 91: 444-448. – reference: LaPorte RE, Dorman JS, Tajima N et al. Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications. Pediatrics 1986: 78: 1027-1033. – reference: Marinković T, Sysi-Aho M, Oresic M. Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes. PLoS One 2012: 7: e51909. – volume: 314 start-page: 1360 year: 1986 end-page: 1368 article-title: Type I diabetes mellitus. A chronic autoimmune disease publication-title: N Engl J Med – volume: 2 start-page: 1032 year: 2001 end-page: 1039 article-title: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self publication-title: Nat Immunol – volume: 46 start-page: 1106 year: 2003 end-page: 1114 article-title: Pancreatic NOD beta cells express MHC class II protein and the frequency of I‐A(g7) mRNA‐expressing beta cells strongly increases during progression to autoimmune diabetes publication-title: Diabetologia – volume: 3 start-page: 232 year: 1992 end-page: 238 article-title: Incidence of insulin‐dependent diabetes mellitus in Colorado publication-title: Epidemiology – volume: 37 start-page: S82 issue: Suppl 2 year: 1994 end-page: S89 article-title: On the pathogenesis of IDDM publication-title: Diabetologia – volume: 92 start-page: 2403 year: 2007 end-page: 2407 article-title: Update in type 1 diabetes publication-title: J Clin Endocrinol Metab – volume: 12 start-page: 279 year: 1999 end-page: 287 article-title: Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA‐2 and IA‐2beta predict immune‐mediated (Type 1) diabetes in relatives publication-title: J Autoimmun – volume: 85 start-page: 8111 year: 1988 end-page: 8115 article-title: Aspartic acid at position 57 of the HLA‐DQ beta chain protects against type I diabetes: a family study publication-title: Proc Natl Acad Sci USA – volume: 48 start-page: 1677 year: 1999 end-page: 1685 article-title: Onset of type 1 diabetes: a dynamical instability publication-title: Diabetes – volume: 203 start-page: 79 year: 2006 end-page: 99 article-title: Investigation of the age‐at‐onset heterogeneity in type 1 diabetes through mathematical modeling publication-title: Math Biosci – volume: 115 start-page: 1879 year: 2005 end-page: 1887 article-title: Developmental control of CD8 T cell‐avidity maturation in autoimmune diabetes publication-title: J Clin Invest – volume: 56 start-page: 1615 year: 2013 end-page: 1622 article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody‐positive children publication-title: Diabetologia – volume: 23 start-page: 9 year: 2004 end-page: 15 article-title: NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells publication-title: J Autoimmun – volume: 233 start-page: 533 year: 2005 end-page: 551 article-title: Quantifying macrophage defects in type 1 diabetes publication-title: J Theor Biol – volume: 256 start-page: 126 year: 2009 end-page: 141 article-title: The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation publication-title: J Theor Biol – volume: 106 start-page: 2798 year: 2005 end-page: 2805 article-title: Functional avidity directs T‐cell fate in autoreactive CD4+ T cells publication-title: Blood – volume: 51 start-page: 2481 year: 2002 end-page: 2488 article-title: Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced publication-title: Diabetes – volume: 329 start-page: 599 year: 1987 end-page: 604 article-title: HLA‐DQ beta gene contributes to susceptibility and resistance to insulin‐dependent diabetes mellitus publication-title: Nature – volume: 154 start-page: 5567 year: 1995 end-page: 5575 article-title: Aspartate at position 57 of nonobese diabetic I‐Ag7 beta‐chain diminishes the spontaneous incidence of insulin‐dependent diabetes mellitus publication-title: J Immunol – volume: 117 start-page: 3642 year: 2007 end-page: 3645 article-title: B cell depletion: a novel therapy for autoimmune diabetes? publication-title: J Clin Invest – volume: 78 start-page: 1178 year: 1997 end-page: 1182 article-title: High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle‐aged men – a nested case–control study publication-title: Thromb Haemost – volume: 108 start-page: 16729 year: 2011 end-page: 16734 article-title: Specificity and detection of insulin‐reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 915 year: 2007 end-page: 937 article-title: Modeling cyclic waves of circulating T cells in autoimmune diabetes publication-title: SIAM J Appl Math – volume: 45 start-page: 66 year: 2002 end-page: 76 article-title: Progression to insulin‐requiring diabetes in seronegative prediabetic subjects: the role of two HLA‐DQ high‐risk haplotypes publication-title: Diabetologia – volume: 85 start-page: 291 year: 1996 end-page: 297 article-title: Insulin‐dependent diabetes mellitus publication-title: Cell – volume: 7 start-page: 154 year: 1999 end-page: 182 article-title: Preservation of β‐cell function in type 1 diabetes publication-title: Diabetes Rev – volume: 206 start-page: 605 year: 2000 end-page: 619 article-title: A model of beta‐cell mass, insulin, and glucose kinetics: pathways to diabetes publication-title: J Theor Biol – volume: 111 start-page: 217 year: 2003 end-page: 223 article-title: Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood publication-title: J Clin Invest – volume: 75 start-page: 385 year: 2008 end-page: 397 article-title: Type 1 diabetes mellitus: primary, secondary, and tertiary prevention publication-title: Mt Sinai J Med – volume: 104 start-page: 157 year: 2008 end-page: 169 article-title: A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes‐prone (NOD) mice publication-title: J Appl Physiol – volume: 102 start-page: 88 year: 2010 end-page: 98 article-title: Mathematical modelling of immune regulation of type 1 diabetes publication-title: Biosystems – volume: 406 start-page: 739 year: 2000 end-page: 742 article-title: Progression of autoimmune diabetes driven by avidity maturation of a T‐cell population publication-title: Nature – volume: 49 start-page: 1 year: 2000 end-page: 7 article-title: Neonatal beta‐cell apoptosis: a trigger for autoimmune diabetes? publication-title: Diabetes – volume: 157 start-page: 1823 year: 1996 end-page: 1826 article-title: Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? publication-title: J Immunol – volume: 35 start-page: 2762 year: 2005 end-page: 2775 article-title: Soluble, dimeric HLA DR4‐peptide chimeras: an approach for detection and immunoregulation of human type‐1 diabetes publication-title: Eur J Immunol – volume: 32 start-page: 568 year: 2010 end-page: 580 article-title: Reversal of autoimmunity by boosting memory‐like autoregulatory T cells publication-title: Immunity – volume: 9 start-page: 457 year: 2002 end-page: 464 article-title: Clearance of apoptotic beta‐cells is reduced in neonatal autoimmune diabetes‐prone rats publication-title: Cell Death Differ – volume: 346 start-page: 1692 year: 2002 end-page: 1698 article-title: Anti‐CD3 monoclonal antibody in new‐onset type 1 diabetes mellitus publication-title: N Engl J Med – volume: 25 start-page: 235 year: 2005 end-page: 243 article-title: GAD65‐ and proinsulin‐specific CD4+ T‐cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at‐risk subjects publication-title: J Autoimmun – volume: 450 start-page: 887 year: 2007 end-page: 892 article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A publication-title: Nature – volume: 18 start-page: 1067 year: 2006 end-page: 1077 article-title: Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen‐specific therapy publication-title: Int Immunol – volume: 44 start-page: 249 year: 1995 end-page: 256 article-title: Dynamics of beta‐cell mass in the growing rat pancreas. Estimation with a simple mathematical model publication-title: Diabetes – volume: 7 start-page: 988 year: 2007 end-page: 994 article-title: Type 1 diabetes as a relapsing‐remitting disease? publication-title: Nat Rev Immunol – volume: 22 start-page: 571 year: 2010 end-page: 582 article-title: The pathogenicity of self‐antigen decreases at high levels of autoantigenicity: a computational approach publication-title: Int Immunol – volume: 93 start-page: 7855 year: 1996 end-page: 7860 article-title: Peptide vaccination can lead to enhanced tumor growth through specific T‐cell tolerance induction publication-title: Proc Natl Acad Sci USA – volume: 185 start-page: 5962 year: 2010 end-page: 5972 article-title: On how monospecific memory‐like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach publication-title: J Immunol – volume: 223 start-page: 371 year: 2008 end-page: 390 article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities publication-title: Immunol Rev – volume: 352 start-page: 2598 year: 2005 end-page: 2608 article-title: Insulin needs after CD3‐antibody therapy in new‐onset type 1 diabetes publication-title: N Engl J Med – volume: 7 start-page: e51909 year: 2012 article-title: Integrated model of metabolism and autoimmune response in beta‐cell death and progression to type 1 diabetes publication-title: PLoS One – volume: 61 start-page: 780 year: 2012 end-page: 781 article-title: ER stress as a trigger for beta‐cell dysfunction and autoimmunity in type 1 diabetes publication-title: Diabetes – volume: 364 start-page: 1267 year: 2006 end-page: 1282 article-title: Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? publication-title: Philos Transact A Math Phys Eng Sci – volume: 2 start-page: a012831 year: 2012 article-title: Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes publication-title: Cold Spring Harb Perspect Med – volume: 189 start-page: 2975 year: 2012 end-page: 2984 article-title: Autoantigen Recognition Is Required for Recruitment of IGRP206–214‐Autoreactive CD8+ T Cells but Is Dispensable for Tolerance publication-title: J Immunol – volume: 2 start-page: e54 year: 2013 article-title: The impact of mathematical modeling on the understanding of diabetes and related complications publication-title: CPT Pharmacometrics Syst Pharmacol – volume: 45 start-page: 926 year: 1996 end-page: 933 article-title: Prediction of type I diabetes in first‐degree relatives using a combination of insulin, GAD, and ICA512bdc/IA‐2 autoantibodies publication-title: Diabetes – volume: 6 start-page: 184 year: 2005 end-page: 192 article-title: Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies publication-title: Pediatr Diabetes – volume: 323 start-page: 1167 year: 1990 end-page: 1172 article-title: A prospective study of the development of diabetes in relatives of patients with insulin‐dependent diabetes publication-title: N Engl J Med – volume: 42 start-page: 213 year: 1993 end-page: 220 article-title: Can we really predict IDDM? publication-title: Diabetes – volume: 34 start-page: 727 year: 1991 end-page: 733 article-title: Risk for developing type 1 (insulin‐dependent) diabetes mellitus and the presence of islet 64K antibodies publication-title: Diabetologia – volume: 51 start-page: 1375 year: 2002 end-page: 1382 article-title: Detection of GAD65‐specific T‐cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at‐risk subjects publication-title: Diabetes – volume: 78 start-page: 1027 year: 1986 end-page: 1033 article-title: Pittsburgh Insulin‐Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications publication-title: Pediatrics – volume: 91 start-page: 444 year: 1994 end-page: 448 article-title: Peptide‐induced T‐cell tolerance to prevent autoimmune diabetes in a transgenic mouse model publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 321 year: 2013 article-title: MHC Class II polymorphisms, autoreactive T‐cells, and autoimmunity publication-title: Front Immunol – volume: 55 start-page: 2212 year: 2006 end-page: 2219 article-title: Granzyme B‐mediated death of pancreatic beta‐cells requires the proapoptotic BH3‐only molecule bid publication-title: Diabetes – volume: 11 start-page: 16 issue: Suppl 1 year: 1988 end-page: 23 article-title: Mechanisms of pancreatic beta‐cell destruction in type I diabetes publication-title: Diabetes Care – volume: 180 start-page: 3849 year: 2008 end-page: 3856 article-title: First signature of islet beta‐cell‐derived naturally processed peptides selected by diabetogenic class II MHC molecules publication-title: J Immunol – volume: 107 start-page: 10978 year: 2010 end-page: 10983 article-title: Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: e93326 year: 2014 article-title: Predictive models of type 1 diabetes progression: understanding T‐cell cycles and their implications on autoantibody release publication-title: PLoS One – volume: 60 start-page: 1370 year: 2011 end-page: 1379 article-title: How does type 1 diabetes develop? The notion of homicide or beta‐cell suicide revisited publication-title: Diabetes – volume: 298 start-page: 558 year: 1989 end-page: 560 article-title: Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985–1986 publication-title: BMJ – volume: 16 start-page: 753 year: 2004 end-page: 758 article-title: Post‐translational modifications of self antigens: implications for autoimmunity publication-title: Curr Opin Immunol – volume: 19 start-page: 89 year: 2003 end-page: 100 article-title: A role for innate immunity in type 1 diabetes? publication-title: Diabetes Metab Res Rev – volume: 68 start-page: 3781 year: 2011 end-page: 3795 article-title: CD8+ Tregs in autoimmunity: learning “self”‐control from experience publication-title: Cell Mol Life Sci – volume: 54 start-page: 452 year: 2005 end-page: 461 article-title: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta‐cells publication-title: Diabetes – volume: 4 start-page: 252 year: 2001 end-page: 282 article-title: Autoantibodies in human diabetes publication-title: Curr Dir Autoimmun – volume: 309 start-page: 2473 year: 2013 end-page: 2479 article-title: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children publication-title: JAMA – volume: 37 start-page: 1591 year: 1988 end-page: 1594 article-title: How, when, and why to predict IDDM publication-title: Diabetes – volume: 11 start-page: 645 year: 2005 end-page: 652 article-title: Prevention of diabetes by manipulation of anti‐IGRP autoimmunity: high efficiency of a low‐affinity peptide publication-title: Nat Med – volume: 55 start-page: 3061 year: 2006 end-page: 3067 article-title: Identification of novel HLA‐A*0201 – restricted epitopes in recent‐onset type 1 diabetic subjects and antibody‐positive relatives publication-title: Diabetes – volume: 53 start-page: 354 year: 2004 end-page: 359 article-title: Proinsulin expression by Hassall's corpuscles in the mouse thymus publication-title: Diabetes – volume: 23 start-page: 233 year: 2009 end-page: 244 article-title: A model of the unfolded protein response: pancreatic beta‐cell as a case study publication-title: Cell Physiol Biochem – volume: 6 start-page: 753 year: 2009 end-page: 778 article-title: Modeling dynamic changes in type 1 diabetes progression: quantifying beta‐cell variation after the appearance of islet‐specific autoimmune responses publication-title: Math Biosci Eng – volume: 158 start-page: 167 year: 2014 end-page: 174 article-title: Nanomedicine in autoimmunity publication-title: Immunol Lett – volume: 54 start-page: S25 issue: Suppl 2 year: 2005 end-page: S31 article-title: Natural history of type 1 diabetes publication-title: Diabetes – volume: 12 start-page: 699 year: 2000 end-page: 710 article-title: Structural basis of peptide binding and presentation by the type I diabetes‐associated MHC class II molecule of NOD mice publication-title: Immunity – volume: 11 start-page: 350 year: 2010 end-page: 354 article-title: Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes publication-title: Nat Immunol – volume: 59 start-page: 1721 year: 2010 end-page: 1730 article-title: Simultaneous detection of circulating autoreactive CD8+ T‐cells specific for different islet cell‐associated epitopes using combinatorial MHC multimers publication-title: Diabetes – volume: 22 start-page: 443 year: 2001 end-page: 449 article-title: Post‐translational protein modifications in antigen recognition and autoimmunity publication-title: Trends Immunol – volume: 91 start-page: 350 year: 2013 end-page: 359 article-title: Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy publication-title: Immunol Cell Biol – volume: 43 start-page: 1304 year: 1994 end-page: 1310 article-title: Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody‐positive relatives publication-title: Diabetes – volume: 34 start-page: 727 year: 1991 ident: 10.1111/pedi.12148-BIB0044|pedi12148-cit-0044 article-title: Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies publication-title: Diabetologia doi: 10.1007/BF00401518 – volume: 189 start-page: 2975 year: 2012 ident: 10.1111/pedi.12148-BIB0005|pedi12148-cit-0005 article-title: Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance publication-title: J Immunol doi: 10.4049/jimmunol.1201787 – volume: 61 start-page: 780 year: 2012 ident: 10.1111/pedi.12148-BIB0015|pedi12148-cit-0015 article-title: ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes publication-title: Diabetes doi: 10.2337/db12-0091 – volume: 54 start-page: S25 issue: Suppl 2 year: 2005 ident: 10.1111/pedi.12148-BIB0030|pedi12148-cit-0030 article-title: Natural history of type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.suppl_2.S25 – volume: 42 start-page: 213 year: 1993 ident: 10.1111/pedi.12148-BIB0047|pedi12148-cit-0047 article-title: Can we really predict IDDM? publication-title: Diabetes doi: 10.2337/diab.42.2.213 – volume: 46 start-page: 1106 year: 2003 ident: 10.1111/pedi.12148-BIB0019|pedi12148-cit-0019 article-title: Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes publication-title: Diabetologia doi: 10.1007/s00125-003-1164-y – volume: 2 start-page: 1032 year: 2001 ident: 10.1111/pedi.12148-BIB0007|pedi12148-cit-0007 article-title: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self publication-title: Nat Immunol doi: 10.1038/ni723 – volume: 60 start-page: 1370 year: 2011 ident: 10.1111/pedi.12148-BIB0014|pedi12148-cit-0014 article-title: How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited publication-title: Diabetes doi: 10.2337/db10-1797 – volume: 45 start-page: 926 year: 1996 ident: 10.1111/pedi.12148-BIB0028|pedi12148-cit-0028 article-title: Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies publication-title: Diabetes doi: 10.2337/diab.45.7.926 – volume: 92 start-page: 2403 year: 2007 ident: 10.1111/pedi.12148-BIB0031|pedi12148-cit-0031 article-title: Update in type 1 diabetes publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2007-0339 – volume: 223 start-page: 371 year: 2008 ident: 10.1111/pedi.12148-BIB0086|pedi12148-cit-0086 article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2008.00637.x – volume: 32 start-page: 568 year: 2010 ident: 10.1111/pedi.12148-BIB0026|pedi12148-cit-0026 article-title: Reversal of autoimmunity by boosting memory-like autoregulatory T cells publication-title: Immunity doi: 10.1016/j.immuni.2010.03.015 – volume: 51 start-page: 1375 year: 2002 ident: 10.1111/pedi.12148-BIB0002|pedi12148-cit-0002 article-title: Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects publication-title: Diabetes doi: 10.2337/diabetes.51.5.1375 – volume: 12 start-page: 699 year: 2000 ident: 10.1111/pedi.12148-BIB0048|pedi12148-cit-0048 article-title: Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice publication-title: Immunity doi: 10.1016/S1074-7613(00)80220-4 – volume: 4 start-page: 321 year: 2013 ident: 10.1111/pedi.12148-BIB0052|pedi12148-cit-0052 article-title: MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity publication-title: Front Immunol doi: 10.3389/fimmu.2013.00321 – volume: 53 start-page: 354 year: 2004 ident: 10.1111/pedi.12148-BIB0006|pedi12148-cit-0006 article-title: Proinsulin expression by Hassall's corpuscles in the mouse thymus publication-title: Diabetes doi: 10.2337/diabetes.53.2.354 – volume: 45 start-page: 66 year: 2002 ident: 10.1111/pedi.12148-BIB0027|pedi12148-cit-0027 article-title: Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes publication-title: Diabetologia doi: 10.1007/s125-002-8246-5 – volume: 22 start-page: 443 year: 2001 ident: 10.1111/pedi.12148-BIB0057|pedi12148-cit-0057 article-title: Post-translational protein modifications in antigen recognition and autoimmunity publication-title: Trends Immunol doi: 10.1016/S1471-4906(01)01976-7 – volume: 9 start-page: 457 year: 2002 ident: 10.1111/pedi.12148-BIB0009|pedi12148-cit-0009 article-title: Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400973 – volume: 309 start-page: 2473 year: 2013 ident: 10.1111/pedi.12148-BIB0035|pedi12148-cit-0035 article-title: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children publication-title: JAMA doi: 10.1001/jama.2013.6285 – volume: 3 start-page: 232 year: 1992 ident: 10.1111/pedi.12148-BIB0042|pedi12148-cit-0042 article-title: Incidence of insulin-dependent diabetes mellitus in Colorado publication-title: Epidemiology doi: 10.1097/00001648-199205000-00008 – volume: 59 start-page: 1721 year: 2010 ident: 10.1111/pedi.12148-BIB0004|pedi12148-cit-0004 article-title: Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers publication-title: Diabetes doi: 10.2337/db09-1486 – volume: 352 start-page: 2598 year: 2005 ident: 10.1111/pedi.12148-BIB0023|pedi12148-cit-0023 article-title: Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa043980 – volume: 6 start-page: 184 year: 2005 ident: 10.1111/pedi.12148-BIB0037|pedi12148-cit-0037 article-title: Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies publication-title: Pediatr Diabetes doi: 10.1111/j.1399-543X.2005.00127.x – volume: 75 start-page: 385 year: 2008 ident: 10.1111/pedi.12148-BIB0038|pedi12148-cit-0038 article-title: Type 1 diabetes mellitus: primary, secondary, and tertiary prevention publication-title: Mt Sinai J Med doi: 10.1002/msj.20054 – volume: 43 start-page: 1304 year: 1994 ident: 10.1111/pedi.12148-BIB0036|pedi12148-cit-0036 article-title: Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives publication-title: Diabetes doi: 10.2337/diab.43.11.1304 – volume: 37 start-page: S82 issue: Suppl 2 year: 1994 ident: 10.1111/pedi.12148-BIB0061|pedi12148-cit-0061 article-title: On the pathogenesis of IDDM publication-title: Diabetologia doi: 10.1007/BF00400830 – volume: 104 start-page: 157 year: 2008 ident: 10.1111/pedi.12148-BIB0067|pedi12148-cit-0067 article-title: A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00514.2007 – volume: 56 start-page: 1615 year: 2013 ident: 10.1111/pedi.12148-BIB0034|pedi12148-cit-0034 article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children publication-title: Diabetologia doi: 10.1007/s00125-013-2896-y – volume: 233 start-page: 533 year: 2005 ident: 10.1111/pedi.12148-BIB0068|pedi12148-cit-0068 article-title: Quantifying macrophage defects in type 1 diabetes publication-title: J Theor Biol doi: 10.1016/j.jtbi.2004.10.030 – volume: 406 start-page: 739 year: 2000 ident: 10.1111/pedi.12148-BIB0020|pedi12148-cit-0020 article-title: Progression of autoimmune diabetes driven by avidity maturation of a T-cell population publication-title: Nature doi: 10.1038/35021081 – volume: 16 start-page: 753 year: 2004 ident: 10.1111/pedi.12148-BIB0058|pedi12148-cit-0058 article-title: Post-translational modifications of self antigens: implications for autoimmunity publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2004.09.001 – volume: 203 start-page: 79 year: 2006 ident: 10.1111/pedi.12148-BIB0064|pedi12148-cit-0064 article-title: Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling publication-title: Math Biosci doi: 10.1016/j.mbs.2006.03.021 – volume: 11 start-page: 350 year: 2010 ident: 10.1111/pedi.12148-BIB0056|pedi12148-cit-0056 article-title: Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes publication-title: Nat Immunol doi: 10.1038/ni.1850 – volume: 206 start-page: 605 year: 2000 ident: 10.1111/pedi.12148-BIB0066|pedi12148-cit-0066 article-title: A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes publication-title: J Theor Biol doi: 10.1006/jtbi.2000.2150 – volume: 7 start-page: 988 year: 2007 ident: 10.1111/pedi.12148-BIB0079|pedi12148-cit-0079 article-title: Type 1 diabetes as a relapsing-remitting disease? publication-title: Nat Rev Immunol doi: 10.1038/nri2192 – volume: 107 start-page: 10978 year: 2010 ident: 10.1111/pedi.12148-BIB0054|pedi12148-cit-0054 article-title: Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1006545107 – volume: 25 start-page: 235 year: 2005 ident: 10.1111/pedi.12148-BIB0001|pedi12148-cit-0001 article-title: GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects publication-title: J Autoimmun doi: 10.1016/j.jaut.2005.09.018 – volume: 51 start-page: 2481 year: 2002 ident: 10.1111/pedi.12148-BIB0010|pedi12148-cit-0010 article-title: Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced publication-title: Diabetes doi: 10.2337/diabetes.51.8.2481 – volume: 78 start-page: 1027 year: 1986 ident: 10.1111/pedi.12148-BIB0043|pedi12148-cit-0043 article-title: Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications publication-title: Pediatrics doi: 10.1542/peds.78.6.1027 – volume: 329 start-page: 599 year: 1987 ident: 10.1111/pedi.12148-BIB0049|pedi12148-cit-0049 article-title: HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus publication-title: Nature doi: 10.1038/329599a0 – volume: 12 start-page: 279 year: 1999 ident: 10.1111/pedi.12148-BIB0032|pedi12148-cit-0032 article-title: Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives publication-title: J Autoimmun doi: 10.1006/jaut.1999.0281 – volume: 93 start-page: 7855 year: 1996 ident: 10.1111/pedi.12148-BIB0075|pedi12148-cit-0075 article-title: Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.15.7855 – volume: 85 start-page: 8111 year: 1988 ident: 10.1111/pedi.12148-BIB0018|pedi12148-cit-0018 article-title: Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.85.21.8111 – volume: 314 start-page: 1360 year: 1986 ident: 10.1111/pedi.12148-BIB0041|pedi12148-cit-0041 article-title: Type I diabetes mellitus. A chronic autoimmune disease publication-title: N Engl J Med doi: 10.1056/NEJM198605223142106 – volume: 9 start-page: e93326 year: 2014 ident: 10.1111/pedi.12148-BIB0080|pedi12148-cit-0080 article-title: Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release publication-title: PLoS One doi: 10.1371/journal.pone.0093326 – volume: 364 start-page: 1267 year: 2006 ident: 10.1111/pedi.12148-BIB0069|pedi12148-cit-0069 article-title: Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? publication-title: Philos Transact A Math Phys Eng Sci doi: 10.1098/rsta.2006.1769 – volume: 4 start-page: 252 year: 2001 ident: 10.1111/pedi.12148-BIB0029|pedi12148-cit-0029 article-title: Autoantibodies in human diabetes publication-title: Curr Dir Autoimmun doi: 10.1159/000060541 – volume: 22 start-page: 571 year: 2010 ident: 10.1111/pedi.12148-BIB0071|pedi12148-cit-0071 article-title: The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach publication-title: Int Immunol doi: 10.1093/intimm/dxq041 – volume: 67 start-page: 915 year: 2007 ident: 10.1111/pedi.12148-BIB0078|pedi12148-cit-0078 article-title: Modeling cyclic waves of circulating T cells in autoimmune diabetes publication-title: SIAM J Appl Math doi: 10.1137/060661144 – volume: 298 start-page: 558 year: 1989 ident: 10.1111/pedi.12148-BIB0040|pedi12148-cit-0040 article-title: Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986 publication-title: BMJ doi: 10.1136/bmj.298.6673.558 – volume: 323 start-page: 1167 year: 1990 ident: 10.1111/pedi.12148-BIB0045|pedi12148-cit-0045 article-title: A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes publication-title: N Engl J Med doi: 10.1056/NEJM199010253231704 – volume: 55 start-page: 3061 year: 2006 ident: 10.1111/pedi.12148-BIB0003|pedi12148-cit-0003 article-title: Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives publication-title: Diabetes doi: 10.2337/db06-0066 – volume: 157 start-page: 1823 year: 1996 ident: 10.1111/pedi.12148-BIB0072|pedi12148-cit-0072 article-title: Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? publication-title: J Immunol doi: 10.4049/jimmunol.157.5.1823 – volume: 11 start-page: 645 year: 2005 ident: 10.1111/pedi.12148-BIB0073|pedi12148-cit-0073 article-title: Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide publication-title: Nat Med doi: 10.1038/nm1250 – volume: 256 start-page: 126 year: 2009 ident: 10.1111/pedi.12148-BIB0082|pedi12148-cit-0082 article-title: The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.09.019 – volume: 2 start-page: a012831 year: 2012 ident: 10.1111/pedi.12148-BIB0008|pedi12148-cit-0008 article-title: Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a012831 – volume: 78 start-page: 1178 year: 1997 ident: 10.1111/pedi.12148-BIB0033|pedi12148-cit-0033 article-title: High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study publication-title: Thromb Haemost doi: 10.1055/s-0038-1657711 – volume: 180 start-page: 3849 year: 2008 ident: 10.1111/pedi.12148-BIB0053|pedi12148-cit-0053 article-title: First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules publication-title: J Immunol doi: 10.4049/jimmunol.180.6.3849 – volume: 185 start-page: 5962 year: 2010 ident: 10.1111/pedi.12148-BIB0083|pedi12148-cit-0083 article-title: On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach publication-title: J Immunol doi: 10.4049/jimmunol.1001306 – volume: 55 start-page: 2212 year: 2006 ident: 10.1111/pedi.12148-BIB0013|pedi12148-cit-0013 article-title: Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid publication-title: Diabetes doi: 10.2337/db06-0129 – volume: 91 start-page: 444 year: 1994 ident: 10.1111/pedi.12148-BIB0074|pedi12148-cit-0074 article-title: Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.2.444 – volume: 23 start-page: 9 year: 2004 ident: 10.1111/pedi.12148-BIB0070|pedi12148-cit-0070 article-title: NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells publication-title: J Autoimmun doi: 10.1016/j.jaut.2004.03.012 – volume: 18 start-page: 1067 year: 2006 ident: 10.1111/pedi.12148-BIB0076|pedi12148-cit-0076 article-title: Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen-specific therapy publication-title: Int Immunol doi: 10.1093/intimm/dxl040 – volume: 91 start-page: 350 year: 2013 ident: 10.1111/pedi.12148-BIB0084|pedi12148-cit-0084 article-title: Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy publication-title: Immunol Cell Biol doi: 10.1038/icb.2013.9 – volume: 23 start-page: 233 year: 2009 ident: 10.1111/pedi.12148-BIB0016|pedi12148-cit-0016 article-title: A model of the unfolded protein response: pancreatic beta-cell as a case study publication-title: Cell Physiol Biochem doi: 10.1159/000218170 – volume: 7 start-page: e51909 year: 2012 ident: 10.1111/pedi.12148-BIB0065|pedi12148-cit-0065 article-title: Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes publication-title: PLoS One doi: 10.1371/journal.pone.0051909 – volume: 68 start-page: 3781 year: 2011 ident: 10.1111/pedi.12148-BIB0081|pedi12148-cit-0081 article-title: CD8+ Tregs in autoimmunity: learning “self”-control from experience publication-title: Cell Mol Life Sci doi: 10.1007/s00018-011-0738-y – volume: 106 start-page: 2798 year: 2005 ident: 10.1111/pedi.12148-BIB0088|pedi12148-cit-0088 article-title: Functional avidity directs T-cell fate in autoreactive CD4+ T cells publication-title: Blood doi: 10.1182/blood-2004-12-4848 – volume: 158 start-page: 167 year: 2014 ident: 10.1111/pedi.12148-BIB0025|pedi12148-cit-0025 article-title: Nanomedicine in autoimmunity publication-title: Immunol Lett doi: 10.1016/j.imlet.2013.12.018 – volume: 48 start-page: 1677 year: 1999 ident: 10.1111/pedi.12148-BIB0063|pedi12148-cit-0063 article-title: Onset of type 1 diabetes: a dynamical instability publication-title: Diabetes doi: 10.2337/diabetes.48.9.1677 – volume: 102 start-page: 88 year: 2010 ident: 10.1111/pedi.12148-BIB0087|pedi12148-cit-0087 article-title: Mathematical modelling of immune regulation of type 1 diabetes publication-title: Biosystems doi: 10.1016/j.biosystems.2010.07.018 – volume: 450 start-page: 887 year: 2007 ident: 10.1111/pedi.12148-BIB0017|pedi12148-cit-0017 article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A publication-title: Nature doi: 10.1038/nature06406 – volume: 108 start-page: 16729 year: 2011 ident: 10.1111/pedi.12148-BIB0055|pedi12148-cit-0055 article-title: Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1113954108 – volume: 19 start-page: 89 year: 2003 ident: 10.1111/pedi.12148-BIB0011|pedi12148-cit-0011 article-title: A role for innate immunity in type 1 diabetes? publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.341 – volume: 346 start-page: 1692 year: 2002 ident: 10.1111/pedi.12148-BIB0022|pedi12148-cit-0022 article-title: Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus publication-title: N Engl J Med doi: 10.1056/NEJMoa012864 – volume: 44 start-page: 249 year: 1995 ident: 10.1111/pedi.12148-BIB0059|pedi12148-cit-0059 article-title: Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model publication-title: Diabetes doi: 10.2337/diab.44.3.249 – volume: 117 start-page: 3642 year: 2007 ident: 10.1111/pedi.12148-BIB0024|pedi12148-cit-0024 article-title: B cell depletion: a novel therapy for autoimmune diabetes? publication-title: J Clin Invest doi: 10.1172/JCI34236 – volume: 54 start-page: 452 year: 2005 ident: 10.1111/pedi.12148-BIB0012|pedi12148-cit-0012 article-title: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells publication-title: Diabetes doi: 10.2337/diabetes.54.2.452 – volume: 85 start-page: 291 year: 1996 ident: 10.1111/pedi.12148-BIB0050|pedi12148-cit-0050 article-title: Insulin-dependent diabetes mellitus publication-title: Cell doi: 10.1016/S0092-8674(00)81106-X – volume: 115 start-page: 1879 year: 2005 ident: 10.1111/pedi.12148-BIB0089|pedi12148-cit-0089 article-title: Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes publication-title: J Clin Invest doi: 10.1172/JCI24219 – volume: 11 start-page: 16 issue: Suppl 1 year: 1988 ident: 10.1111/pedi.12148-BIB0062|pedi12148-cit-0062 article-title: Mechanisms of pancreatic beta-cell destruction in type I diabetes publication-title: Diabetes Care – volume: 111 start-page: 217 year: 2003 ident: 10.1111/pedi.12148-BIB0077|pedi12148-cit-0077 article-title: Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood publication-title: J Clin Invest doi: 10.1172/JCI200316409 – volume: 2 start-page: e54 year: 2013 ident: 10.1111/pedi.12148-BIB0090|pedi12148-cit-0090 article-title: The impact of mathematical modeling on the understanding of diabetes and related complications publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1038/psp.2013.30 – volume: 6 start-page: 753 year: 2009 ident: 10.1111/pedi.12148-BIB0085|pedi12148-cit-0085 article-title: Modeling dynamic changes in type 1 diabetes progression: quantifying beta-cell variation after the appearance of islet-specific autoimmune responses publication-title: Math Biosci Eng doi: 10.3934/mbe.2009.6.753 – volume: 49 start-page: 1 year: 2000 ident: 10.1111/pedi.12148-BIB0060|pedi12148-cit-0060 article-title: Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? publication-title: Diabetes doi: 10.2337/diabetes.49.1.1 – volume: 35 start-page: 2762 year: 2005 ident: 10.1111/pedi.12148-BIB0021|pedi12148-cit-0021 article-title: Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes publication-title: Eur J Immunol doi: 10.1002/eji.200526158 – volume: 7 start-page: 154 year: 1999 ident: 10.1111/pedi.12148-BIB0039|pedi12148-cit-0039 article-title: Preservation of β-cell function in type 1 diabetes publication-title: Diabetes Rev – volume: 37 start-page: 1591 year: 1988 ident: 10.1111/pedi.12148-BIB0046|pedi12148-cit-0046 article-title: How, when, and why to predict IDDM publication-title: Diabetes doi: 10.2337/diab.37.12.1591 – volume: 154 start-page: 5567 year: 1995 ident: 10.1111/pedi.12148-BIB0051|pedi12148-cit-0051 article-title: Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus publication-title: J Immunol doi: 10.4049/jimmunol.154.10.5567 |
| SSID | ssj0017934 |
| Score | 2.1481202 |
| SecondaryResourceType | review_article |
| Snippet | Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 162 |
| SubjectTerms | Animals autoantibodies Autoantibodies - analysis Autoimmunity avidity B-cells Biomarkers - metabolism Cytotoxicity, Immunologic Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 1 - immunology Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - physiopathology Disease Progression Humans Insulin - metabolism Insulin Secretion Insulin-Secreting Cells - immunology Insulin-Secreting Cells - metabolism Markov models mathematical models Models, Biological predictive algorithms Prognosis T-cells T1D β-cells |
| Title | Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease |
| URI | https://api.istex.fr/ark:/67375/WNG-60P5254R-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpedi.12148 https://www.ncbi.nlm.nih.gov/pubmed/24827702 https://www.proquest.com/docview/1525764033 https://www.proquest.com/docview/1540221994 https://pubmed.ncbi.nlm.nih.gov/PMC4050373 |
| Volume | 15 |
| WOSCitedRecordID | wos000335836000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1399-5448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017934 issn: 1399-543X databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_aOxFfrF_V2FpWFEFpYJNs9kN8KV7PCu1xlFbvLezubfBQkvOSiH--u5tc2sNSEN9CMsuyszO7M5mZ3wC81lpZx2fOQodmGRKi0lBxrkMqGRZYKGw8kPaXUzaZ8NlMTLfgw7oWpsWH6H-4Oc3w57VTcKmqa0q-tIe7w0YgfBuGsRVcMoDh6Hx8edpHEazstU1thQhTksw6eFKXyXM1euNCGjre_r7J2vw7afK6Metvo_HO_63jAdzvrFB01IrNQ9gyxSO4e9bF2R9DcdTU5cKVjhi0arNoTYUWBbqIRmfv0c9GFr44zR6VqO1BXaG6RE1fKYPciPoQ-fSvFvrjELn3yw4yqixQmaMuPPQELsfHFx9Pwq4zQ6iJiHhokkjpiOY8p5wkzGBtCMWGE6GZkNq6gNz6nZoTyVUqKdU5zmU0T-au7FebJNmFQVEW5hkgKmiqpbB2msQkT7XidM6UEnHOrKmZqgDerrcn0x1sueue8SNbuy-OgZlnYACvetplC9ZxI9Ubv8s9iVx9d-ltLM2-Tj5lFE9T6zWfZycBvFyLQWaVzkVSZGHKpspc0yhGCU6S22isax476OUAnrai088YO_BVhuMA2IZQ9QQO9HvzS7H45sG_iQPwYXbed16obllnNj0effZPz_-FeA_uWaOQtEmd-zCoV415AXf0r3pRrQ5gm834QadofwAMeyxZ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rixMxEA_aivrF92N9RhRBuYW0m83Db4e92sO2lKPn9VtI0iwWZbe2u-Kfbya7Xa94HIjfluyEkGQmmcnM_AahN9Yab_gseQxoljGlJo2NEDZmmhNJpCEuAGl_GfPpVCwWctbE5kAuTI0P0T64gWSE8xoEHB6kz0n52p_uAI5AxVXUpZ6P0g7qDk6Gp-PWjeCZr65qK2Wc0mTR4JNCKM-f3ns3UhcW99dF6ubfUZPntdlwHQ1v_-dE7qBbjR6KD2vGuYuuuPweuj5pPO33UX5YlcUKkkcc3tRxtG6LVzme9waTD_hHpfOQnuYPS1xXod7issBVmyuDoUd5gEMAWA3-cYChfd2ARhU5LjLcOIgeoNPh0fzjKG5qM8SWyp6IXdIztscykTFBE-6IdZQRJ6i0XGrrjUDhLU8rqBYm1YzZjGS6t0yWkPhrXZI8RJ28yN1jhJlkqdXSa2qa0Cy1RrAlN0b2M-6VzdRE6N1uf5RtgMuhfsZ3tTNgYAFVWMAIvW5p1zVcx4VUb8M2tyR68w0C3HiqzqafFCOz1NvNJ2oUoVc7PlBe7MCXonNXVFsFZaM4oyRJLqPxxnkfwJcj9KjmnXbEPsCvctKPEN_jqpYAYL_3_-SrrwH-mwKED_fjvg9cdck81exocBy-nvwL8Ut0YzSfjNX4ePr5KbrpVURah3g-Q51yU7nn6Jr9Wa62mxeNvP0G3IwvYQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELdgRRNfeD_C0wiExLRITuP4wbeJrmyiq6ppg36zbMcRFSgpbYL48_E5aVjFNAnxLUrOsny-s-9yd79D6I21xjs-OY8BzTKm1GSxEcLGTHMiiTTEBSDtzxM-nYr5XM663ByohWnxIfofbqAZ4bwGBXfLvLig5Ut_ugM4AhXX0YBmknm9HIxOx-eTPozgha_taitlnNF03uGTQirPn9FbN9IAmPvrMnPz76zJi9ZsuI7Gt_9zIXfQrc4OxQet4NxF11x5D-2edJH2-6g8aOpqAcUjDq_aPFq3xosSnyWjk_f4R6PLUJ7mD0vcdqFe47rCTV8rg2FEvY9DAlgL_rGP4f2yA42qSlwVuAsQPUDn48OzD0dx15shtlQmInZpYmzCClEwQVPuiHWUESeotFxq651A4T1PK6gWJtOM2YIUOsnTHAp_rUvTh2inrEr3GGEmWWa19JaaJrTIrBEs58bIYcG9sZmZCL3b7I-yHXA59M_4rjYODDBQBQZG6HVPu2zhOi6lehu2uSfRq2-Q4MYz9WX6UTEyy7zffKqOIvRqIwfKqx3EUnTpqmatoG0UZ5Sk6VU03jkfAvhyhB61stPPOAT4VU6GEeJbUtUTAOz39pdy8TXAf1OA8OF-3r0gVVesU80OR8fh6cm_EL9Eu7PRWE2Op5-eopveQqRthucztFOvGvcc3bA_68V69aJTt98kqC7c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoimmune+responses+in+T1DM%3A+quantitative+methods+to+understand+onset%2C+progression%2C+and+prevention+of+disease&rft.jtitle=Pediatric+diabetes&rft.au=Jaberi-Douraki%2C+Majid&rft.au=Liu%2C+Shang+Wan+Shalon&rft.au=Pietropaolo%2C+Massimo&rft.au=Khadra%2C+Anmar&rft.date=2014-05-01&rft.eissn=1399-5448&rft.volume=15&rft.issue=3&rft.spage=162&rft_id=info:doi/10.1111%2Fpedi.12148&rft_id=info%3Apmid%2F24827702&rft.externalDocID=24827702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-543X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-543X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-543X&client=summon |