A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system
Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations i...
Uložené v:
| Vydané v: | International journal for numerical methods in biomedical engineering Ročník 31; číslo 9; s. e02721 - n/a |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.09.2015
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 2040-7939, 2040-7947 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
In this study, a joint‐space numerical model of metabolic energy expenditure (MEE) is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, and a constrained multi‐objective optimization algorithm is established to estimate the model parameters. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates while avoiding the limitations in experimental measurements (phase delays, steady‐state and task restrictions) or muscle‐based models (excessive degrees of freedom, wrapping, and in vitro parameters). The model enables real‐time calculations of instantaneous MEE rate as a function of time for complex non‐periodic tasks. |
|---|---|
| AbstractList | Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on
in vitro
parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd. Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd. In this study, a joint‐space numerical model of metabolic energy expenditure (MEE) is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, and a constrained multi‐objective optimization algorithm is established to estimate the model parameters. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates while avoiding the limitations in experimental measurements (phase delays, steady‐state and task restrictions) or muscle‐based models (excessive degrees of freedom, wrapping, and in vitro parameters). The model enables real‐time calculations of instantaneous MEE rate as a function of time for complex non‐periodic tasks. Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6±3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd. |
| Author | Kim, Joo H. Roberts, Dustyn |
| Author_xml | – sequence: 1 givenname: Joo H. surname: Kim fullname: Kim, Joo H. email: Correspondence to: Joo H. Kim, Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA., joo.h.kim@nyu.edu organization: Department of Mechanical and Aerospace Engineering, New York University, NY, Brooklyn, USA – sequence: 2 givenname: Dustyn surname: Roberts fullname: Roberts, Dustyn organization: Department of Mechanical and Aerospace Engineering, New York University, NY, Brooklyn, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25914404$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10U1v1DAQBmALtaKlVOIXIEtcuGRrO3YcH6sFFqSyID5UbsZxJuAlthc7Ec2_J8u2i0AwF8_h8Wg07wN0FGIAhB5RsqCEsAsb_IJJRu-hU0Y4KaTi8ujQl-oEnee8IXMxpZQs76MTJhTlnPBT9PkSb6ILQ5G3xgIOo4fkrOmxjy30OHbYw2Ca2DuLIUD6MmG42UJo3TAmwF1M-OvoTcB-7AfXxHbC7RSMn3me8gD-ITruTJ_h_PY9Qx9fPP-wfFlcvVm9Wl5eFZYrSgslWGdMLSSrjWg6W0MFHIS0FTUVsbXphGJl3ShV8UaQVpWc1aQG0wHltKPlGXq6n7tN8fsIedDeZQt9bwLEMWsqiZKkqpWY6ZO_6CaOKczb_VK8UoTv1ONbNTYeWr1Nzps06bvbzWCxBzbFnBN02rrBDC6GIRnXa0r0Lh8956N3-fxe8fDhbuY_aLGnP1wP03-dXq5f_-ndfPObgzfpm65kKYW-Xq_0evXs_bu35JO-Ln8Cjfqstw |
| CitedBy_id | crossref_primary_10_1017_wtc_2023_9 crossref_primary_10_1109_ACCESS_2025_3555182 crossref_primary_10_3390_app14125210 crossref_primary_10_1186_s12984_024_01424_8 crossref_primary_10_3389_fbioe_2025_1579085 crossref_primary_10_3390_s24010063 crossref_primary_10_3390_s21165588 crossref_primary_10_1109_TBME_2023_3331271 crossref_primary_10_1371_journal_pone_0267120 crossref_primary_10_1371_journal_pcbi_1008280 crossref_primary_10_1007_s11044_022_09855_8 |
| Cites_doi | 10.1016/j.pbiomolbio.2003.11.014 10.1126/science.131.3404.897 10.1007/s00158-009-0423-z 10.1007/BF00699624 10.1109/MEMB.2009.935463 10.1016/j.jbiomech.2011.06.019 10.1098/rsif.2012.0980 10.1006/jtbi.1997.0407 10.1109/TRO.2008.2008747 10.1016/S0006-3495(00)76349-1 10.1016/j.jbiomech.2012.03.032 10.1016/0021-9290(80)90172-4 10.1016/j.jbiomech.2009.04.048 10.1242/jeb.023267 10.1123/jab.28.6.726 10.1016/j.jbiomech.2009.12.012 10.1242/jeb.044297 10.1115/1.1392310 10.1115/DETC2013-13633 10.1007/s004220050560 10.1371/journal.pone.0078373 10.1016/j.jbiomech.2014.01.049 10.1016/j.plrev.2006.02.002 10.1007/BF00357705 10.1007/s00221-002-1001-4 10.1016/S0021-9290(97)00129-2 10.1016/j.jbiomech.2008.06.039 10.1007/s11044-013-9376-5 10.1113/jphysiol.1949.sp004363 10.1242/jeb.000950 10.1115/1.4024755 10.1242/jeb.205.23.3717 10.1093/ajcn/51.2.241 10.1098/rsif.2010.0084 10.1111/j.1748-1716.2006.01522.x 10.1177/0954411912473398 10.1017/S0263574708005110 10.1123/jab.13.4.466 10.1098/rspb.1938.0050 10.1007/BF00230049 10.1152/jappl.1989.67.1.453 10.1016/S0021-9290(00)00155-X 10.1016/j.jbiomech.2006.10.037 10.1016/j.jtbi.2005.04.004 10.1002/9780470549148 10.1299/jsmec1993.40.25 10.1007/s12195-012-0259-2 10.1080/0002889778507831 10.1115/1.4023390 10.1007/BF02684166 10.1126/science.1149860 10.1016/S0021-9290(03)00239-2 10.3109/08990220.2012.725680 10.1249/01.MSS.0000147584.87788.0E 10.1152/jappl.1975.38.6.1132 10.1098/rsif.2011.0182 10.1080/1025584031000091678 10.1152/jappl.1997.83.3.867 10.1016/0021-9290(91)90323-F 10.1016/0021-9290(82)90089-6 10.1002/jor.1100010109 10.1152/jn.2002.88.2.991 10.1016/0021-9290(85)90289-1 10.1016/S0966-6362(99)00009-0 10.1016/j.jbiomech.2007.03.022 10.1016/j.jelekin.2012.02.001 10.1098/rsif.2009.0544 10.1016/j.jelekin.2005.07.005 10.1007/s11044-010-9193-z 10.1016/0021-9290(87)90310-1 10.1007/s00421-005-0088-2 10.1093/ajcn/52.1.66 10.1016/j.jada.2005.02.005 10.1002/jor.1100140620 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/cnm.2721 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2040-7947 |
| EndPage | n/a |
| ExternalDocumentID | 3797588841 25914404 10_1002_cnm_2721 CNM2721 ark_67375_WNG_NGDSRP0X_W |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NSF funderid: CMMI‐1436636 – fundername: US National Science Foundation (NSF) Graduate Research Fellowship funderid: DGE‐1104522 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c4911-952faa85728a5bfc8e6e4e57c61a60c8af59238b9964b50d9342808eafe141f13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360759700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2040-7939 |
| IngestDate | Fri Nov 07 06:41:59 EST 2025 Wed Aug 13 06:40:38 EDT 2025 Thu Apr 03 06:58:22 EDT 2025 Sat Nov 29 03:05:14 EST 2025 Tue Nov 18 21:00:39 EST 2025 Sun Sep 21 06:23:19 EDT 2025 Sun Sep 21 06:17:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | first law of thermodynamics mechanical work metabolic energy expenditure joint space muscle activation generalized coordinates heat dissipation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4911-952faa85728a5bfc8e6e4e57c61a60c8af59238b9964b50d9342808eafe141f13 |
| Notes | ark:/67375/WNG-NGDSRP0X-W NSF - No. CMMI-1436636 ArticleID:CNM2721 US National Science Foundation (NSF) Graduate Research Fellowship - No. DGE-1104522 istex:1BBA826A29FAF8FBC1C7DC21D72872558D984B5C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnm.2721 |
| PMID | 25914404 |
| PQID | 1709469045 |
| PQPubID | 2034586 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_1709706895 proquest_journals_1709469045 pubmed_primary_25914404 crossref_citationtrail_10_1002_cnm_2721 crossref_primary_10_1002_cnm_2721 wiley_primary_10_1002_cnm_2721_CNM2721 istex_primary_ark_67375_WNG_NGDSRP0X_W |
| PublicationCentury | 2000 |
| PublicationDate | September 2015 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chichester |
| PublicationTitle | International journal for numerical methods in biomedical engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Biomed. Engng |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Thompson WR, Gordon NF, Pescatello LS (Eds). ACSM's Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. Lin Y-C, Kim HJ, Pandy MG. A computationally efficient method for assessing muscle function during human locomotion. International Journal for Numerical Methods in Engineering 2011; 27(3):436-449. Winter DA. Biomechanics and Motor Control of Human Movement. Wiley: Hoboken, NJ, USA, 2009. Hatze H, Buys JD. Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics 1977; 27(1):9-20. Yang J, Feng X, Xiang Y, Kim JH, Rajulu S. Determining the three-dimensional relation between the skeletal elements of the human shoulder complex. Journal of Biomechanics 2009; 42(11):1762-1767. Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 2001; 34(2):153-161. Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure of walking and running: comparison with prediction equations. Medicine and Science in Sports and Exercise 2004; 36(12):2128-2134. Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. Journal of Neurophysiology 2002; 88(2):991-1004. Walcott S. A differential equation model for tropomyosin-induced myosin cooperativity describes myosin-myosin interactions at low calcium. Cellular and Molecular Bioengineering 2013; 6(1):13-25. Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. Journal of the American Dietetic Association 2005; 105(5):775-789. Neptune RR, van den Bogert AJ. Standard mechanical energy analyses do not correlate with muscle work in cycling. Journal of Biomechanics 1997; 31(3):239-245. Hase K, Yamazaki N. Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME International Journal Series C Dynamics, control, robotics, design and manufacturing 1997; 40(1):25-32. Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics 2009; 25(1):51-66. Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 1989; 17(4):359-411. Burdett RG, Skrinar GS, Simon SR. Comparison of mechanical work and metabolic energy consumption during normal gait. Journal of Orthopaedic Research 1983; 1(1):63-72. He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophysical Journal 2000; 79(2):945-961. Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait & Posture 1999; 9(3):207-231. Hunter IW, Kearney RE. Dynamics of human ankle stiffness: variation with mean ankle torque. Journal of Biomechanics 1982; 15(10):747-752. Modenese L, Phillips ATM, Bull AMJ. An open source lower limb model: hip joint validation. Journal of Biomechanics 2011; 44(12):2185-2193. Geraldes DM, Phillips ATM. A comparative study of orthotropic and isotropic bone adaptation in the femur. International Journal for Numerical Methods in Engineering 2014; 30(9):873-889. Srinivasan M. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Journal of the Royal Society Interface 2011; 8(54):74-98. Umberger BR. Stance and swing phase costs in human walking. Journal of the Royal Society Interface 2010; 7(50):1329-1340. Umberger BR, Gerritsen KGM, Martin PE. A model of human muscle energy expenditure. Computer Methods in Biomechanics and Biomedical Engineering 2003; 6(2):99-111. Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica 2006; 186(2):127-139. Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait. Journal of Biomechanics 2010; 43(6):1055-1060. Seale JL, Rumpler WV, Conway JM, Miles CW. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men. American Journal of Clinical Nutrition 1990; 52(1):66-71. Mummolo C, Mangialardi L, Kim JH. Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(9):091006-1-091006-10. Langhaar HL. Energy Methods in Applied Mechanics. R.E. Krieger Publishing Co.: Malabar, Fla, 1989. Black WZ, Hartley JG. Thermodynamics. Harpercollins College Division: New York, NY, USA, 1991. Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. Academic Press: Waltham, MA, USA, 1985. Minetti AE, Alexander RM. A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology 1997; 186(4):467-476. Long LL, Srinivasan M. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. Journal of the Royal Society Interface 2013; 10(81):1-10. Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(2):021004-1-021004-11. Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007; 210(18):3255-3265. Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. Journal of Biomechanics 2007; 40(14):3105-3113. de V Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 1949; 109(1-2):1-9. Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of Biomechanics 1987; 20(2):187-201. Karduna AR, Williams GR, Iannotti JP, Williams JL. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. Journal of Orthopaedic Research 1996; 14(6):986-993. Sasaki K, Neptune RR, Kautz SA. The relationships between muscle, external, internal and joint mechanical work during normal walking. Journal of Experimental Biology 2009; 212(5):738-744. Ruina A, Bertram JEA, Srinivasan M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology 2005; 237(2):170-192. Hawkins D, Molé P. Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee. Annals of Biomedical Engineering 1997; 25(5):822-830. Kim JH, Xiang Y, Yang J, Arora JS, Abdel-Malek K. Dynamic motion planning of overarm throw for a biped human multibody system. Multibody System Dynamics 2010; 24(1):1-24. Kim JH, Yang J, Abdel-Malek K. Planning load-effective dynamic motions of highly articulated human model for generic tasks. Robotica 2009; 27(5):739-747. Ma S, Zahalak GI. A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics 1991; 24(1):21-35. Zelik KE, Kuo AD. Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology 2010; 213(24):4257-4264. Van Bolhuis BM, Gielen CCAM. A comparison of models explaining muscle activation patterns for isometric contractions. Biological Cybernetics 1999; 81(3):249-261. Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. Journal of the Royal Society Interface 2012; 9(66):110-118. Milner TE, Cloutier C, Leger AB, Franklin DW. Inability to activate muscles maximally during cocontraction and the effect on joint stiffness. Experimental Brain Research 1995; 107(2):293-305. Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces-measurements in the first patient 7 months postoperatively. Journal of Biomechanics 2007; 40(10):2139-2149. Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B-Biological Sciences 1938; 126(843):136-195. Sousa AS, Silva A, Tavares JMR. Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy-based analysis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 2013; 227(3):327-333. Ryschon TW, Fowler MD, Wysong RE, Anthony A-R, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. Journal of Applied Physiology 1997; 83(3):867-874. Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of Biomechanics 2008; 41(16):3303-3308. Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. Journal of Applied Physiology 1975; 38(6):1132-1139. Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008; 319(5864):807-810. Frey-Law L, Laake A, Avin KG, Heitsman J, Marler T, Abdel-Malek K. Knee and elbow 3D strength surfaces: peak torque-angle-velocity relationships. Journal of Applied Biomechanics 2012; 28(6):726-737. Damm P, Dymke J, Ackermann R, Bender A, Graichen F, Halder A, Beier A, Bergmann G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS ONE 2013; 8(11):e78373. Robertson DGE, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Bi 1968; 25 1990; 51 1990; 52 1982; 15 1997; 40 1997; 83 2009; 42 1977; 27 1983; 1 1978; 39 1999; 81 2013; 8 1949; 109 2013; 6 1938; 126 1985; 25 1985; 18 2010; 24 2013; 10 2002; 143 2010; 29 2004; 36 1997; 186 2003; 6 2007; 210 2004; 37 1997; 13 2005; 105 2008; 319 2002; 88 1985 2012; 29 2012; 28 2011; 27 2012; 22 2010; 7 1989 2009; 25 2001; 123 2006; 96 1989; 67 2006; 16 1960; 131 1997; 25 1975; 38 2005; 237 2013; 227 2009 2014; 47 2006 2009; 212 2006; 3 2005 1991 1996; 14 2011; 8 2010; 41 2009; 27 2005; 88 1999; 9 2010; 43 1987; 20 1991; 24 1997; 31 2000; 79 1980; 13 2010; 213 2002; 205 1995; 107 2011; 44 2006; 186 2013; 135 2007; 40 2008; 41 2013 2014; 30 2001; 34 2012; 45 1989; 17 2012; 9 2014; 31 e_1_2_7_5_1 e_1_2_7_3_1 Zajac F (e_1_2_7_32_1) 1989; 17 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 Osu R (e_1_2_7_68_1) 2002; 88 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Glass S (e_1_2_7_7_1) 2006 Ting LH (e_1_2_7_29_1) 2012; 28 Thompson WR (e_1_2_7_6_1) 2009 Black WZ (e_1_2_7_57_1) 1991 Peronnet F (e_1_2_7_55_1) 1989; 67 Lin Y‐C (e_1_2_7_46_1) 2011; 27 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 Geraldes DM (e_1_2_7_35_1) 2014; 30 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Falconer K (e_1_2_7_65_1) 1985; 25 Woledge RC (e_1_2_7_24_1) 1985 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 Langhaar HL (e_1_2_7_58_1) 1989 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – reference: Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 2001; 34(2):153-161. – reference: Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait. Journal of Biomechanics 2010; 43(6):1055-1060. – reference: Neptune RR, van den Bogert AJ. Standard mechanical energy analyses do not correlate with muscle work in cycling. Journal of Biomechanics 1997; 31(3):239-245. – reference: Thompson WR, Gordon NF, Pescatello LS (Eds). ACSM's Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. – reference: Sousa AS, Silva A, Tavares JMR. Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy-based analysis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 2013; 227(3):327-333. – reference: Smith NP, Barclay CJ, Loiselle DS. The efficiency of muscle contraction. Progress in Biophysics and Molecular Biology 2005; 88(1):1-58. – reference: Ward-Smith AJ. A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes. Journal of Biomechanics 1985; 18(5):337-349. – reference: Burdett RG, Skrinar GS, Simon SR. Comparison of mechanical work and metabolic energy consumption during normal gait. Journal of Orthopaedic Research 1983; 1(1):63-72. – reference: Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of Biomechanics 2008; 41(16):3303-3308. – reference: Srinivasan M. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Journal of the Royal Society Interface 2011; 8(54):74-98. – reference: Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008; 319(5864):807-810. – reference: Milner TE, Cloutier C, Leger AB, Franklin DW. Inability to activate muscles maximally during cocontraction and the effect on joint stiffness. Experimental Brain Research 1995; 107(2):293-305. – reference: Da Fonseca ST, Vaz DV, de Aquino CF, Brício RS. Muscular co-contraction during walking and landing from a jump: comparison between genders and influence of activity level. Journal of Electromyography and Kinesiology 2006; 16(3):273-280. – reference: Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. Journal of the Royal Society Interface 2012; 9(66):110-118. – reference: Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces-measurements in the first patient 7 months postoperatively. Journal of Biomechanics 2007; 40(10):2139-2149. – reference: Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007; 210(18):3255-3265. – reference: Umberger BR. Stance and swing phase costs in human walking. Journal of the Royal Society Interface 2010; 7(50):1329-1340. – reference: Brychta R, Wohlers E, Moon J, Chen K. Energy expenditure: measurement of human metabolism. IEEE Engineering in Medicine and Biology Magazine 2010; 29(1):42-47. – reference: Robertson DGE, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Biomechanics 1980; 13(10):845-854. – reference: Morton RH. The critical power and related whole-body bioenergetic models. European Journal of Applied Physiology 2006; 96(4):339-354. – reference: Minetti AE, Alexander RM. A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology 1997; 186(4):467-476. – reference: Ting LH, Chvatal SA, Safavynia SA, Lucas McKay J. Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. International Journal for Numerical Methods in Engineering 2012; 28(10):1003-1014. – reference: Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(2):021004-1-021004-11. – reference: He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophysical Journal 2000; 79(2):945-961. – reference: Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. Journal of Biomechanics 2007; 40(14):3105-3113. – reference: Kim JH, Xiang Y, Yang J, Arora JS, Abdel-Malek K. Dynamic motion planning of overarm throw for a biped human multibody system. Multibody System Dynamics 2010; 24(1):1-24. – reference: Hill AV. Production and absorption of work by muscle. Science 1960; 131(3404):897-903. – reference: Glass S, Dwyer GB (Eds). ACSM's Metabolic Calculations Handbook. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. – reference: Sousa ASP, Silva A, Tavares JMRS. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review. Somatosensory and Motor Research 2012; 29(4):131-143. – reference: Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica 2006; 186(2):127-139. – reference: Kim JH, Yang J, Abdel-Malek K. Planning load-effective dynamic motions of highly articulated human model for generic tasks. Robotica 2009; 27(5):739-747. – reference: Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B-Biological Sciences 1938; 126(843):136-195. – reference: Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 1989; 17(4):359-411. – reference: Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. Journal of Applied Physiology 1975; 38(6):1132-1139. – reference: Black WZ, Hartley JG. Thermodynamics. Harpercollins College Division: New York, NY, USA, 1991. – reference: Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure of walking and running: comparison with prediction equations. Medicine and Science in Sports and Exercise 2004; 36(12):2128-2134. – reference: Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. Journal of the American Dietetic Association 2005; 105(5):775-789. – reference: Frey-Law L, Laake A, Avin KG, Heitsman J, Marler T, Abdel-Malek K. Knee and elbow 3D strength surfaces: peak torque-angle-velocity relationships. Journal of Applied Biomechanics 2012; 28(6):726-737. – reference: Mifflin M, St Jeor S, Hill L, Scott B, Daugherty S, Koh Y. A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition 1990; 51(2):241-247. – reference: Winter DA. Biomechanics and Motor Control of Human Movement. Wiley: Hoboken, NJ, USA, 2009. – reference: Walcott S. A differential equation model for tropomyosin-induced myosin cooperativity describes myosin-myosin interactions at low calcium. Cellular and Molecular Bioengineering 2013; 6(1):13-25. – reference: Sasaki K, Neptune RR, Kautz SA. The relationships between muscle, external, internal and joint mechanical work during normal walking. Journal of Experimental Biology 2009; 212(5):738-744. – reference: Hase K, Yamazaki N. Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME International Journal Series C Dynamics, control, robotics, design and manufacturing 1997; 40(1):25-32. – reference: Seale JL, Rumpler WV, Conway JM, Miles CW. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men. American Journal of Clinical Nutrition 1990; 52(1):66-71. – reference: Geraldes DM, Phillips ATM. A comparative study of orthotropic and isotropic bone adaptation in the femur. International Journal for Numerical Methods in Engineering 2014; 30(9):873-889. – reference: Vologodskii A. Energy transformation in biological molecular motors. Physics of Life Reviews 2006; 3(2):119-132. – reference: Van Bolhuis BM, Gielen CCAM. A comparison of models explaining muscle activation patterns for isometric contractions. Biological Cybernetics 1999; 81(3):249-261. – reference: Anderson FC, Pandy MG. Dynamic optimization of human walking. Journal of Biomechanical Engineering-Transactions of the ASME 2001; 123(5):381-390. – reference: Mummolo C, Mangialardi L, Kim JH. Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(9):091006-1-091006-10. – reference: Langhaar HL. Energy Methods in Applied Mechanics. R.E. Krieger Publishing Co.: Malabar, Fla, 1989. – reference: Hunter IW, Kearney RE. Dynamics of human ankle stiffness: variation with mean ankle torque. Journal of Biomechanics 1982; 15(10):747-752. – reference: Karduna AR, Williams GR, Iannotti JP, Williams JL. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. Journal of Orthopaedic Research 1996; 14(6):986-993. – reference: Kim JH, Joo CB. Numerical construction of balanced state manifold for single-support legged mechanism in sagittal plane. Multibody System Dynamics 2014; 31(3):257-281. – reference: Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. Journal of Neurophysiology 2002; 88(2):991-1004. – reference: Umberger BR, Gerritsen KGM, Martin PE. A model of human muscle energy expenditure. Computer Methods in Biomechanics and Biomedical Engineering 2003; 6(2):99-111. – reference: Prilutsky BI. Work, energy expenditure, and efficiency of the stretch-shortening cycle. Journal of Applied Biomechanics 1997; 13(4):466-470. – reference: Falconer K, Winter DA. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyography and Clinical Neurophysiology 1985; 25(2-3):135-149. – reference: Damm P, Dymke J, Ackermann R, Bender A, Graichen F, Halder A, Beier A, Bergmann G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS ONE 2013; 8(11):e78373. – reference: Silder A, Besier T, Delp SL. Predicting the metabolic cost of incline walking from muscle activity and walking mechanics. Journal of Biomechanics 2012; 45(10):1842-1849. – reference: Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Internationale Zeitschrift für Angewandte Physiologie 1968; 25:339-351. – reference: Knarr BA, Zeni JA, Higginson JS. Comparison of electromyography and joint moment as indicators of co-contraction. Journal of Electromyography and Kinesiology 2012; 22:607-611. – reference: Long LL, Srinivasan M. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. Journal of the Royal Society Interface 2013; 10(81):1-10. – reference: Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. Academic Press: Waltham, MA, USA, 1985. – reference: Modenese L, Phillips ATM, Bull AMJ. An open source lower limb model: hip joint validation. Journal of Biomechanics 2011; 44(12):2185-2193. – reference: Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait & Posture 1999; 9(3):207-231. – reference: Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. Journal of Experimental Biology 2002; 205(23):3717-3727. – reference: Zelik KE, Kuo AD. Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology 2010; 213(24):4257-4264. – reference: Ma S, Zahalak GI. A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics 1991; 24(1):21-35. – reference: Ruina A, Bertram JEA, Srinivasan M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology 2005; 237(2):170-192. – reference: Peronnet F, Thibault G. Mathematical analysis of running performance and world running records. Journal of Applied Physiology 1989; 67(1):453-465. – reference: Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics 2009; 25(1):51-66. – reference: de V Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 1949; 109(1-2):1-9. – reference: Xiang Y, Chung H-J, Kim JH, Bhatt R, Rahmatalla S, Yang J, Marler T, Arora JS, Abdel-Malek K. Predictive dynamics: an optimization-based novel approach for human motion simulation. Structural and Multidisciplinary Optimization 2010; 41(3):465-479. – reference: Ryschon TW, Fowler MD, Wysong RE, Anthony A-R, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. Journal of Applied Physiology 1997; 83(3):867-874. – reference: Milner T. Adaptation to destabilizing dynamics by means of muscle cocontraction. Experimental Brain Research 2002; 143(4):406-416. – reference: Hatze H, Buys JD. Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics 1977; 27(1):9-20. – reference: Lin Y-C, Kim HJ, Pandy MG. A computationally efficient method for assessing muscle function during human locomotion. International Journal for Numerical Methods in Engineering 2011; 27(3):436-449. – reference: Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of Biomechanics 1987; 20(2):187-201. – reference: Garg A, Chaffin DB, Herrin GD. Prediction of metabolic rates for manual materials handling jobs. American Industrial Hygiene Association Journal 1978; 39(8):661-674. – reference: Yang J, Feng X, Xiang Y, Kim JH, Rajulu S. Determining the three-dimensional relation between the skeletal elements of the human shoulder complex. Journal of Biomechanics 2009; 42(11):1762-1767. – reference: Bhargava LJ, Pandy MG, Anderson FC. A phenomenological model for estimating metabolic energy consumption in muscle contraction. Journal of Biomechanics 2004; 37(1):81-88. – reference: Miller RH. A comparison of muscle energy models for simulating human walking in three dimensions. Journal of Biomechanics 2014; 47(6):1373-1381. – reference: Hawkins D, Molé P. Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee. Annals of Biomedical Engineering 1997; 25(5):822-830. – year: 1985 – volume: 44 start-page: 2185 issue: 12 year: 2011 end-page: 2193 article-title: An open source lower limb model: hip joint validation publication-title: Journal of Biomechanics – year: 2009 – volume: 41 start-page: 465 issue: 3 year: 2010 end-page: 479 article-title: Predictive dynamics: an optimization‐based novel approach for human motion simulation publication-title: Structural and Multidisciplinary Optimization – volume: 47 start-page: 1373 issue: 6 year: 2014 end-page: 1381 article-title: A comparison of muscle energy models for simulating human walking in three dimensions publication-title: Journal of Biomechanics – volume: 205 start-page: 3717 issue: 23 year: 2002 end-page: 3727 article-title: Mechanical work for step‐to‐step transitions is a major determinant of the metabolic cost of human walking publication-title: Journal of Experimental Biology – year: 2005 – volume: 212 start-page: 738 issue: 5 year: 2009 end-page: 744 article-title: The relationships between muscle, external, internal and joint mechanical work during normal walking publication-title: Journal of Experimental Biology – volume: 88 start-page: 1 issue: 1 year: 2005 end-page: 58 article-title: The efficiency of muscle contraction publication-title: Progress in Biophysics and Molecular Biology – volume: 319 start-page: 807 issue: 5864 year: 2008 end-page: 810 article-title: Biomechanical energy harvesting: generating electricity during walking with minimal user effort publication-title: Science – volume: 27 start-page: 436 issue: 3 year: 2011 end-page: 449 article-title: A computationally efficient method for assessing muscle function during human locomotion publication-title: International Journal for Numerical Methods in Engineering – volume: 34 start-page: 153 issue: 2 year: 2001 end-page: 161 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: Journal of Biomechanics – volume: 22 start-page: 607 year: 2012 end-page: 611 article-title: Comparison of electromyography and joint moment as indicators of co‐contraction publication-title: Journal of Electromyography and Kinesiology – volume: 8 start-page: 74 issue: 54 year: 2011 end-page: 98 article-title: Fifteen observations on the structure of energy‐minimizing gaits in many simple biped models publication-title: Journal of the Royal Society Interface – year: 1989 – volume: 42 start-page: 1762 issue: 11 year: 2009 end-page: 1767 article-title: Determining the three‐dimensional relation between the skeletal elements of the human shoulder complex publication-title: Journal of Biomechanics – volume: 96 start-page: 339 issue: 4 year: 2006 end-page: 354 article-title: The critical power and related whole‐body bioenergetic models publication-title: European Journal of Applied Physiology – volume: 20 start-page: 187 issue: 2 year: 1987 end-page: 201 article-title: A dynamic optimization technique for predicting muscle forces in the swing phase of gait publication-title: Journal of Biomechanics – volume: 1 start-page: 63 issue: 1 year: 1983 end-page: 72 article-title: Comparison of mechanical work and metabolic energy consumption during normal gait publication-title: Journal of Orthopaedic Research – volume: 25 start-page: 51 issue: 1 year: 2009 end-page: 66 article-title: Powered ankle‐foot prosthesis improves walking metabolic economy publication-title: IEEE Transactions on Robotics – volume: 83 start-page: 867 issue: 3 year: 1997 end-page: 874 article-title: Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action publication-title: Journal of Applied Physiology – volume: 7 start-page: 1329 issue: 50 year: 2010 end-page: 1340 article-title: Stance and swing phase costs in human walking publication-title: Journal of the Royal Society Interface – volume: 29 start-page: 42 issue: 1 year: 2010 end-page: 47 article-title: Energy expenditure: measurement of human metabolism publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 6 start-page: 99 issue: 2 year: 2003 end-page: 111 article-title: A model of human muscle energy expenditure publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 210 start-page: 3255 issue: 18 year: 2007 end-page: 3265 article-title: Mechanical power and efficiency of level walking with different stride rates publication-title: Journal of Experimental Biology – volume: 67 start-page: 453 issue: 1 year: 1989 end-page: 465 article-title: Mathematical analysis of running performance and world running records publication-title: Journal of Applied Physiology – volume: 37 start-page: 81 issue: 1 year: 2004 end-page: 88 article-title: A phenomenological model for estimating metabolic energy consumption in muscle contraction publication-title: Journal of Biomechanics – volume: 41 start-page: 3303 issue: 16 year: 2008 end-page: 3308 article-title: Effects of aging and arm swing on the metabolic cost of stability in human walking publication-title: Journal of Biomechanics – volume: 24 start-page: 21 issue: 1 year: 1991 end-page: 35 article-title: A distribution‐moment model of energetics in skeletal muscle publication-title: Journal of Biomechanics – volume: 9 start-page: 110 issue: 66 year: 2012 end-page: 118 article-title: The mechanics and energetics of human walking and running: a joint level perspective publication-title: Journal of the Royal Society Interface – volume: 6 start-page: 13 issue: 1 year: 2013 end-page: 25 article-title: A differential equation model for tropomyosin‐induced myosin cooperativity describes myosin–myosin interactions at low calcium publication-title: Cellular and Molecular Bioengineering – volume: 39 start-page: 661 issue: 8 year: 1978 end-page: 674 article-title: Prediction of metabolic rates for manual materials handling jobs publication-title: American Industrial Hygiene Association Journal – volume: 17 start-page: 359 issue: 4 year: 1989 end-page: 411 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Critical Reviews in Biomedical Engineering – volume: 107 start-page: 293 issue: 2 year: 1995 end-page: 305 article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness publication-title: Experimental Brain Research – volume: 3 start-page: 119 issue: 2 year: 2006 end-page: 132 article-title: Energy transformation in biological molecular motors publication-title: Physics of Life Reviews – volume: 38 start-page: 1132 issue: 6 year: 1975 end-page: 1139 article-title: Muscular efficiency during steady‐rate exercise: effects of speed and work rate publication-title: Journal of Applied Physiology – volume: 51 start-page: 241 issue: 2 year: 1990 end-page: 247 article-title: A new predictive equation for resting energy expenditure in healthy individuals publication-title: American Journal of Clinical Nutrition – volume: 25 start-page: 822 issue: 5 year: 1997 end-page: 830 article-title: Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee publication-title: Annals of Biomedical Engineering – volume: 105 start-page: 775 issue: 5 year: 2005 end-page: 789 article-title: Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review publication-title: Journal of the American Dietetic Association – volume: 40 start-page: 2139 issue: 10 year: 2007 end-page: 2149 article-title: glenohumeral contact forces—measurements in the first patient 7 months postoperatively publication-title: Journal of Biomechanics – volume: 131 start-page: 897 issue: 3404 year: 1960 end-page: 903 article-title: Production and absorption of work by muscle publication-title: Science – volume: 135 start-page: 021004–1 issue: 2 year: 2013 end-page: 021004–11 article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME – volume: 9 start-page: 207 issue: 3 year: 1999 end-page: 231 article-title: The energy expenditure of normal and pathologic gait publication-title: Gait & Posture – volume: 126 start-page: 136 issue: 843 year: 1938 end-page: 195 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 15 start-page: 747 issue: 10 year: 1982 end-page: 752 article-title: Dynamics of human ankle stiffness: variation with mean ankle torque publication-title: Journal of Biomechanics – volume: 25 start-page: 135 issue: 2–3 year: 1985 end-page: 149 article-title: Quantitative assessment of co‐contraction at the ankle joint in walking publication-title: Electromyography and Clinical Neurophysiology – volume: 30 start-page: 873 issue: 9 year: 2014 end-page: 889 article-title: A comparative study of orthotropic and isotropic bone adaptation in the femur publication-title: International Journal for Numerical Methods in Engineering – volume: 88 start-page: 991 issue: 2 year: 2002 end-page: 1004 article-title: Short‐ and long‐term changes in joint co‐contraction associated with motor learning as revealed from surface EMG publication-title: Journal of Neurophysiology – volume: 8 start-page: e78373 issue: 11 year: 2013 article-title: Friction in total hip joint prosthesis measured during walking publication-title: PLoS ONE – volume: 13 start-page: 466 issue: 4 year: 1997 end-page: 470 article-title: Work, energy expenditure, and efficiency of the stretch‐shortening cycle publication-title: Journal of Applied Biomechanics – volume: 29 start-page: 131 issue: 4 year: 2012 end-page: 143 article-title: Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review publication-title: Somatosensory and Motor Research – volume: 27 start-page: 9 issue: 1 year: 1977 end-page: 20 article-title: Energy‐optimal controls in the mammalian neuromuscular system publication-title: Biological Cybernetics – volume: 24 start-page: 1 issue: 1 year: 2010 end-page: 24 article-title: Dynamic motion planning of overarm throw for a biped human multibody system publication-title: Multibody System Dynamics – volume: 16 start-page: 273 issue: 3 year: 2006 end-page: 280 article-title: Muscular co‐contraction during walking and landing from a jump: comparison between genders and influence of activity level publication-title: Journal of Electromyography and Kinesiology – volume: 36 start-page: 2128 issue: 12 year: 2004 end-page: 2134 article-title: Energy expenditure of walking and running: comparison with prediction equations publication-title: Medicine and Science in Sports and Exercise – volume: 186 start-page: 127 issue: 2 year: 2006 end-page: 139 article-title: Metabolic cost, mechanical work, and efficiency during walking in young and older men publication-title: Acta Physiologica – volume: 31 start-page: 239 issue: 3 year: 1997 end-page: 245 article-title: Standard mechanical energy analyses do not correlate with muscle work in cycling publication-title: Journal of Biomechanics – volume: 123 start-page: 381 issue: 5 year: 2001 end-page: 390 article-title: Dynamic optimization of human walking publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME – volume: 81 start-page: 249 issue: 3 year: 1999 end-page: 261 article-title: A comparison of models explaining muscle activation patterns for isometric contractions publication-title: Biological Cybernetics – volume: 52 start-page: 66 issue: 1 year: 1990 end-page: 71 article-title: Comparison of doubly labeled water, intake‐balance, and direct‐ and indirect‐calorimetry methods for measuring energy expenditure in adult men publication-title: American Journal of Clinical Nutrition – volume: 14 start-page: 986 issue: 6 year: 1996 end-page: 993 article-title: Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry publication-title: Journal of Orthopaedic Research – volume: 18 start-page: 337 issue: 5 year: 1985 end-page: 349 article-title: A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world‐class athletes publication-title: Journal of Biomechanics – volume: 109 start-page: 1 issue: 1–2 year: 1949 end-page: 9 article-title: New methods for calculating metabolic rate with special reference to protein metabolism publication-title: Journal of Physiology – volume: 143 start-page: 406 issue: 4 year: 2002 end-page: 416 article-title: Adaptation to destabilizing dynamics by means of muscle cocontraction publication-title: Experimental Brain Research – volume: 237 start-page: 170 issue: 2 year: 2005 end-page: 192 article-title: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo‐elastic leg behavior in running and the walk‐to‐run transition publication-title: Journal of Theoretical Biology – volume: 31 start-page: 257 issue: 3 year: 2014 end-page: 281 article-title: Numerical construction of balanced state manifold for single‐support legged mechanism in sagittal plane publication-title: Multibody System Dynamics – volume: 79 start-page: 945 issue: 2 year: 2000 end-page: 961 article-title: ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition publication-title: Biophysical Journal – volume: 213 start-page: 4257 issue: 24 year: 2010 end-page: 4264 article-title: Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return publication-title: Journal of Experimental Biology – volume: 40 start-page: 3105 issue: 14 year: 2007 end-page: 3113 article-title: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb publication-title: Journal of Biomechanics – volume: 40 start-page: 25 issue: 1 year: 1997 end-page: 32 article-title: Development of three‐dimensional whole‐body musculoskeletal model for various motion analyses publication-title: JSME International Journal Series C Dynamics, control, robotics, design and manufacturing – volume: 28 start-page: 726 issue: 6 year: 2012 end-page: 737 article-title: Knee and elbow 3D strength surfaces: peak torque‐angle‐velocity relationships publication-title: Journal of Applied Biomechanics – volume: 28 start-page: 1003 issue: 10 year: 2012 end-page: 1014 article-title: Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement publication-title: International Journal for Numerical Methods in Engineering – volume: 10 start-page: 1 issue: 81 year: 2013 end-page: 10 article-title: Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures publication-title: Journal of the Royal Society Interface – volume: 13 start-page: 845 issue: 10 year: 1980 end-page: 854 article-title: Mechanical energy generation, absorption and transfer amongst segments during walking publication-title: Journal of Biomechanics – year: 2006 – volume: 43 start-page: 1055 issue: 6 year: 2010 end-page: 1060 article-title: Optimality principles for model‐based prediction of human gait publication-title: Journal of Biomechanics – volume: 227 start-page: 327 issue: 3 year: 2013 end-page: 333 article-title: Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy‐based analysis publication-title: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine – volume: 25 start-page: 339 year: 1968 end-page: 351 article-title: Positive and negative work performances and their efficiencies in human locomotion publication-title: Internationale Zeitschrift für Angewandte Physiologie – volume: 135 start-page: 091006–1 issue: 9 year: 2013 end-page: 091006–10 article-title: Quantifying dynamic characteristics of human walking for comprehensive gait cycle publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME – volume: 45 start-page: 1842 issue: 10 year: 2012 end-page: 1849 article-title: Predicting the metabolic cost of incline walking from muscle activity and walking mechanics publication-title: Journal of Biomechanics – volume: 186 start-page: 467 issue: 4 year: 1997 end-page: 476 article-title: A theory of metabolic costs for bipedal gaits publication-title: Journal of Theoretical Biology – volume: 27 start-page: 739 issue: 5 year: 2009 end-page: 747 article-title: Planning load‐effective dynamic motions of highly articulated human model for generic tasks publication-title: Robotica – year: 1991 – year: 2013 – volume: 28 start-page: 1003 issue: 10 year: 2012 ident: e_1_2_7_29_1 article-title: Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement publication-title: International Journal for Numerical Methods in Engineering – volume: 30 start-page: 873 issue: 9 year: 2014 ident: e_1_2_7_35_1 article-title: A comparative study of orthotropic and isotropic bone adaptation in the femur publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_7_85_1 doi: 10.1016/j.pbiomolbio.2003.11.014 – ident: e_1_2_7_72_1 doi: 10.1126/science.131.3404.897 – ident: e_1_2_7_47_1 doi: 10.1007/s00158-009-0423-z – ident: e_1_2_7_19_1 doi: 10.1007/BF00699624 – ident: e_1_2_7_11_1 doi: 10.1109/MEMB.2009.935463 – ident: e_1_2_7_31_1 doi: 10.1016/j.jbiomech.2011.06.019 – ident: e_1_2_7_5_1 doi: 10.1098/rsif.2012.0980 – ident: e_1_2_7_51_1 doi: 10.1006/jtbi.1997.0407 – ident: e_1_2_7_56_1 – ident: e_1_2_7_9_1 doi: 10.1109/TRO.2008.2008747 – ident: e_1_2_7_86_1 doi: 10.1016/S0006-3495(00)76349-1 – volume: 27 start-page: 436 issue: 3 year: 2011 ident: e_1_2_7_46_1 article-title: A computationally efficient method for assessing muscle function during human locomotion publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_7_50_1 doi: 10.1016/j.jbiomech.2012.03.032 – ident: e_1_2_7_44_1 doi: 10.1016/0021-9290(80)90172-4 – ident: e_1_2_7_42_1 doi: 10.1016/j.jbiomech.2009.04.048 – ident: e_1_2_7_60_1 doi: 10.1242/jeb.023267 – ident: e_1_2_7_52_1 doi: 10.1123/jab.28.6.726 – ident: e_1_2_7_12_1 doi: 10.1016/j.jbiomech.2009.12.012 – ident: e_1_2_7_59_1 doi: 10.1242/jeb.044297 – ident: e_1_2_7_39_1 doi: 10.1115/1.1392310 – ident: e_1_2_7_30_1 doi: 10.1115/DETC2013-13633 – ident: e_1_2_7_28_1 doi: 10.1007/s004220050560 – ident: e_1_2_7_87_1 doi: 10.1371/journal.pone.0078373 – ident: e_1_2_7_41_1 doi: 10.1016/j.jbiomech.2014.01.049 – ident: e_1_2_7_38_1 doi: 10.1016/j.plrev.2006.02.002 – ident: e_1_2_7_74_1 doi: 10.1007/BF00357705 – ident: e_1_2_7_69_1 doi: 10.1007/s00221-002-1001-4 – volume: 25 start-page: 135 issue: 2 year: 1985 ident: e_1_2_7_65_1 article-title: Quantitative assessment of co‐contraction at the ankle joint in walking publication-title: Electromyography and Clinical Neurophysiology – ident: e_1_2_7_17_1 doi: 10.1016/S0021-9290(97)00129-2 – ident: e_1_2_7_80_1 doi: 10.1016/j.jbiomech.2008.06.039 – ident: e_1_2_7_83_1 doi: 10.1007/s11044-013-9376-5 – ident: e_1_2_7_13_1 doi: 10.1113/jphysiol.1949.sp004363 – ident: e_1_2_7_21_1 doi: 10.1242/jeb.000950 – ident: e_1_2_7_45_1 doi: 10.1115/1.4024755 – ident: e_1_2_7_16_1 doi: 10.1242/jeb.205.23.3717 – volume-title: ACSM's Guidelines for Exercise Testing and Prescription year: 2009 ident: e_1_2_7_6_1 – ident: e_1_2_7_78_1 doi: 10.1093/ajcn/51.2.241 – ident: e_1_2_7_3_1 doi: 10.1098/rsif.2010.0084 – volume-title: ACSM's Metabolic Calculations Handbook year: 2006 ident: e_1_2_7_7_1 – ident: e_1_2_7_10_1 doi: 10.1111/j.1748-1716.2006.01522.x – ident: e_1_2_7_26_1 doi: 10.1177/0954411912473398 – ident: e_1_2_7_49_1 doi: 10.1017/S0263574708005110 – ident: e_1_2_7_20_1 doi: 10.1123/jab.13.4.466 – volume-title: Energetic Aspects of Muscle Contraction year: 1985 ident: e_1_2_7_24_1 – ident: e_1_2_7_63_1 doi: 10.1098/rspb.1938.0050 – ident: e_1_2_7_70_1 doi: 10.1007/BF00230049 – volume: 67 start-page: 453 issue: 1 year: 1989 ident: e_1_2_7_55_1 article-title: Mathematical analysis of running performance and world running records publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1989.67.1.453 – ident: e_1_2_7_64_1 doi: 10.1016/S0021-9290(00)00155-X – ident: e_1_2_7_88_1 doi: 10.1016/j.jbiomech.2006.10.037 – ident: e_1_2_7_25_1 doi: 10.1016/j.jtbi.2005.04.004 – ident: e_1_2_7_40_1 – ident: e_1_2_7_18_1 doi: 10.1002/9780470549148 – ident: e_1_2_7_73_1 doi: 10.1299/jsmec1993.40.25 – ident: e_1_2_7_36_1 doi: 10.1007/s12195-012-0259-2 – ident: e_1_2_7_15_1 doi: 10.1080/0002889778507831 – ident: e_1_2_7_34_1 doi: 10.1115/1.4023390 – ident: e_1_2_7_43_1 doi: 10.1007/BF02684166 – ident: e_1_2_7_8_1 doi: 10.1126/science.1149860 – ident: e_1_2_7_62_1 doi: 10.1016/S0021-9290(03)00239-2 – ident: e_1_2_7_23_1 doi: 10.3109/08990220.2012.725680 – volume-title: Thermodynamics year: 1991 ident: e_1_2_7_57_1 – ident: e_1_2_7_27_1 doi: 10.1249/01.MSS.0000147584.87788.0E – ident: e_1_2_7_84_1 doi: 10.1152/jappl.1975.38.6.1132 – ident: e_1_2_7_22_1 doi: 10.1098/rsif.2011.0182 – ident: e_1_2_7_75_1 doi: 10.1080/1025584031000091678 – ident: e_1_2_7_76_1 doi: 10.1152/jappl.1997.83.3.867 – ident: e_1_2_7_37_1 doi: 10.1016/0021-9290(91)90323-F – ident: e_1_2_7_71_1 doi: 10.1016/0021-9290(82)90089-6 – volume-title: Energy Methods in Applied Mechanics year: 1989 ident: e_1_2_7_58_1 – ident: e_1_2_7_81_1 doi: 10.1002/jor.1100010109 – volume: 88 start-page: 991 issue: 2 year: 2002 ident: e_1_2_7_68_1 article-title: Short‐ and long‐term changes in joint co‐contraction associated with motor learning as revealed from surface EMG publication-title: Journal of Neurophysiology doi: 10.1152/jn.2002.88.2.991 – ident: e_1_2_7_53_1 doi: 10.1016/0021-9290(85)90289-1 – ident: e_1_2_7_4_1 doi: 10.1016/S0966-6362(99)00009-0 – ident: e_1_2_7_77_1 – ident: e_1_2_7_79_1 doi: 10.1016/j.jbiomech.2007.03.022 – ident: e_1_2_7_66_1 doi: 10.1016/j.jelekin.2012.02.001 – ident: e_1_2_7_2_1 doi: 10.1098/rsif.2009.0544 – ident: e_1_2_7_67_1 doi: 10.1016/j.jelekin.2005.07.005 – ident: e_1_2_7_48_1 doi: 10.1007/s11044-010-9193-z – ident: e_1_2_7_61_1 doi: 10.1016/0021-9290(87)90310-1 – ident: e_1_2_7_54_1 doi: 10.1007/s00421-005-0088-2 – volume: 17 start-page: 359 issue: 4 year: 1989 ident: e_1_2_7_32_1 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Critical Reviews in Biomedical Engineering – ident: e_1_2_7_14_1 doi: 10.1093/ajcn/52.1.66 – ident: e_1_2_7_82_1 doi: 10.1016/j.jada.2005.02.005 – ident: e_1_2_7_33_1 doi: 10.1002/jor.1100140620 |
| SSID | ssj0000299973 |
| Score | 2.1132514 |
| Snippet | Summary
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is... Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by... Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by... Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e02721 |
| SubjectTerms | Adult Energy Metabolism Female first law of thermodynamics generalized coordinates Heart Rate heat dissipation Hot Temperature Humans joint space Joints - physiology Knee - physiology Male mechanical work metabolic energy expenditure Models, Biological Movement muscle activation Muscle, Skeletal - physiology Nontherapeutic Human Experimentation Reproducibility of Results Thermodynamics Walking Young Adult |
| Title | A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system |
| URI | https://api.istex.fr/ark:/67375/WNG-NGDSRP0X-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2721 https://www.ncbi.nlm.nih.gov/pubmed/25914404 https://www.proquest.com/docview/1709469045 https://www.proquest.com/docview/1709706895 |
| Volume | 31 |
| WOSCitedRecordID | wos000360759700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2040-7947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 issn: 2040-7939 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZglwMXWl5l21IZCcEp1HHiODlWbbccSlQVSvdm-SktbBO0D1Ru_IT-Rn4JYzsbVKlISJxyyEQe2TOTbzwvhF5zZ5ziVidGFuCgUKcSJRlJaJ6Z3BipbahK-3zK67qcTKqzLqvS18LE_hD9hZvXjGCvvYJLtdj_0zRUN1fvKPc15EMKYssGaHh0Pr447W9YCFjaKoSYaUibq7Jq3X2W0P3157f-R0O_tdd3gc3b2DX8fMYb_8P2JnrUQU58EGXkMbpnmydoo4OfuFPuxVOkDvCXdtosf_28ATOjLW5WMZwzw2FeDm4dvrJLkJrZVGMbigaxnxDgo96rucWAf3GY-YdDmqJqzQ9s4sR7HDtGP0MX4-NPh--TbgRDonMwg0nFqJOyZJyWkimnS1vY3DKui1QWRJfSMUCIpQKvKVeMmCoDd4aUVjqb5qlLs-do0LSNfYFwxhxTJjUpD9FeQJaSUJ05qR04yVUxQm_XByF015_cj8mYidhZmQrYOuG3boRe9ZTfYk-OO2jehLPsCeT8q89h40xc1ieiPjn6eH5GJuJyhHbXhy069V0I4LHy9wY5g7X616B4PpoiG9uuIg0nRVkBzVYUkn4x8Cl90DwHLoIs_JVNcVh_8M_tfyXcQQ8BsrGY5baLBsv5yr5ED_T35XQx30P3-aTc6xThNxA5C-A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqLhJcKG-2FDASglOo83ASq6eqZVvENqpKS_dm-SktbBO0jwpu_IT-Rn4JYzsJqlQkJE45ZCKP7JnJN54XQq8Lq60sjIq0yMFBSayMpKAkSrJUZ1oLZXxV2udxUVXlZMKO19BOVwsT-kP0F25OM7y9dgruLqS3_3QNVfXFu6RwReSDDKQIxHuwfzI6G_dXLARMLfMx5sTnzbGUde1nSbLdfX7thzRwe_v9JrR5Hbz6v89o47_4vofutqAT7wYpuY_WTP0AbbQAFLfqvXiI5C7-0kzr5a-fV2BolMH1KgR0ZthPzMGNxRdmCXIzmypsfNkgdjMCXNx7NTcYEDD2U_-wT1SUjf6BdZh5j0PP6EfobPT-dO8waocwRCoDQxgxmlghSlokpaDSqtLkJjO0UHkscqJKYSlgxFKC35RJSjRLwaEhpRHWxFls4_QxWq-b2jxFOKWWSh3ruPDxXsCWgiQqtUJZcJNZPkRvu5Pgqu1Q7gZlzHjorZxw2Drutm6IXvWU30JXjhto3vjD7AnE_KvLYisoP68OeHWw_-nkmEz4-RBtdafNWwVecOCRuZuDjMJa_WtQPRdPEbVpVoGmIHnJgOZJkJJ-MfAqXdg8Ay68MPyVTb5XHbnn5r8SvkS3D0-Pxnz8ofr4DN0BAEdDztsWWl_OV-Y5uqUul9PF_EWrD78BvgIO6A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYS4UN4sFDASglNoHnYSi1PVZQtiiVaF0r1ZfkoL26TaB4IbP4HfyC9hbCdBlYqExCmHTOSRPTP5xvNC6FlhtZWFUZEWOTgoqZWRFDSOUpJporVQxlelfZoWVVXO52y2g151tTChP0R_4eY0w9trp-DmXNv9P11DVX32Mi1cEfmQuBkyAzQcH09Opv0VSwymlvkYc-rz5ljGuvazcbrffX7hhzR0e_vtMrR5Ebz6v89k97_4voGut6ATHwQpuYl2TH0L7bYAFLfqvb6N5AH-3Czqza8fP8HQKIPrbQjoLLGfmIMbi8_MBuRmuVDY-LJB7GYEuLj3dmUwIGDsp_5hn6goG_0d6zDzHoee0XfQyeT1x8M3UTuEIVIEDGHEaGqFKGmRloJKq0qTG2JoofJE5LEqhaWAEUsJfhORNNYsA4cmLo2wJiGJTbK7aFA3tbmPcEYtlTrRSeHjvYAtRZyqzAplwU1m-Qi96E6Cq7ZDuRuUseSht3LKYeu427oRetpTnoeuHJfQPPeH2ROI1ReXxVZQflod8epo_OF4Fs_56QjtdafNWwVec-CRuZsDQmGt_jWonouniNo020BTxHnJgOZekJJ-MfAqXdicABdeGP7KJj-s3rvng38lfIKuzsYTPn1bvXuIrgF-oyHlbQ8NNquteYSuqK-bxXr1uFWH3zT4DmM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+joint%E2%80%90space+numerical+model+of+metabolic+energy+expenditure+for+human+multibody+dynamic+system&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Kim%2C+Joo+H.&rft.au=Roberts%2C+Dustyn&rft.date=2015-09-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=31&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.2721&rft.externalDBID=10.1002%252Fcnm.2721&rft.externalDocID=CNM2721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |