A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system

Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in biomedical engineering Ročník 31; číslo 9; s. e02721 - n/a
Hlavní autori: Kim, Joo H., Roberts, Dustyn
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Predmet:
ISSN:2040-7939, 2040-7947
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd. In this study, a joint‐space numerical model of metabolic energy expenditure (MEE) is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, and a constrained multi‐objective optimization algorithm is established to estimate the model parameters. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates while avoiding the limitations in experimental measurements (phase delays, steady‐state and task restrictions) or muscle‐based models (excessive degrees of freedom, wrapping, and in vitro parameters). The model enables real‐time calculations of instantaneous MEE rate as a function of time for complex non‐periodic tasks.
AbstractList Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications.
Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle‐space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi‐objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non‐periodic tasks that may not be experimentally verifiable. This model also enables real‐time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd. In this study, a joint‐space numerical model of metabolic energy expenditure (MEE) is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, and a constrained multi‐objective optimization algorithm is established to estimate the model parameters. The joint‐space parameters estimated directly from active subjects provide reliable MEE estimates while avoiding the limitations in experimental measurements (phase delays, steady‐state and task restrictions) or muscle‐based models (excessive degrees of freedom, wrapping, and in vitro parameters). The model enables real‐time calculations of instantaneous MEE rate as a function of time for complex non‐periodic tasks.
Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6±3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
Author Kim, Joo H.
Roberts, Dustyn
Author_xml – sequence: 1
  givenname: Joo H.
  surname: Kim
  fullname: Kim, Joo H.
  email: Correspondence to: Joo H. Kim, Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA., joo.h.kim@nyu.edu
  organization: Department of Mechanical and Aerospace Engineering, New York University, NY, Brooklyn, USA
– sequence: 2
  givenname: Dustyn
  surname: Roberts
  fullname: Roberts, Dustyn
  organization: Department of Mechanical and Aerospace Engineering, New York University, NY, Brooklyn, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25914404$$D View this record in MEDLINE/PubMed
BookMark eNp10U1v1DAQBmALtaKlVOIXIEtcuGRrO3YcH6sFFqSyID5UbsZxJuAlthc7Ec2_J8u2i0AwF8_h8Wg07wN0FGIAhB5RsqCEsAsb_IJJRu-hU0Y4KaTi8ujQl-oEnee8IXMxpZQs76MTJhTlnPBT9PkSb6ILQ5G3xgIOo4fkrOmxjy30OHbYw2Ca2DuLIUD6MmG42UJo3TAmwF1M-OvoTcB-7AfXxHbC7RSMn3me8gD-ITruTJ_h_PY9Qx9fPP-wfFlcvVm9Wl5eFZYrSgslWGdMLSSrjWg6W0MFHIS0FTUVsbXphGJl3ShV8UaQVpWc1aQG0wHltKPlGXq6n7tN8fsIedDeZQt9bwLEMWsqiZKkqpWY6ZO_6CaOKczb_VK8UoTv1ONbNTYeWr1Nzps06bvbzWCxBzbFnBN02rrBDC6GIRnXa0r0Lh8956N3-fxe8fDhbuY_aLGnP1wP03-dXq5f_-ndfPObgzfpm65kKYW-Xq_0evXs_bu35JO-Ln8Cjfqstw
CitedBy_id crossref_primary_10_1017_wtc_2023_9
crossref_primary_10_1109_ACCESS_2025_3555182
crossref_primary_10_3390_app14125210
crossref_primary_10_1186_s12984_024_01424_8
crossref_primary_10_3389_fbioe_2025_1579085
crossref_primary_10_3390_s24010063
crossref_primary_10_3390_s21165588
crossref_primary_10_1109_TBME_2023_3331271
crossref_primary_10_1371_journal_pone_0267120
crossref_primary_10_1371_journal_pcbi_1008280
crossref_primary_10_1007_s11044_022_09855_8
Cites_doi 10.1016/j.pbiomolbio.2003.11.014
10.1126/science.131.3404.897
10.1007/s00158-009-0423-z
10.1007/BF00699624
10.1109/MEMB.2009.935463
10.1016/j.jbiomech.2011.06.019
10.1098/rsif.2012.0980
10.1006/jtbi.1997.0407
10.1109/TRO.2008.2008747
10.1016/S0006-3495(00)76349-1
10.1016/j.jbiomech.2012.03.032
10.1016/0021-9290(80)90172-4
10.1016/j.jbiomech.2009.04.048
10.1242/jeb.023267
10.1123/jab.28.6.726
10.1016/j.jbiomech.2009.12.012
10.1242/jeb.044297
10.1115/1.1392310
10.1115/DETC2013-13633
10.1007/s004220050560
10.1371/journal.pone.0078373
10.1016/j.jbiomech.2014.01.049
10.1016/j.plrev.2006.02.002
10.1007/BF00357705
10.1007/s00221-002-1001-4
10.1016/S0021-9290(97)00129-2
10.1016/j.jbiomech.2008.06.039
10.1007/s11044-013-9376-5
10.1113/jphysiol.1949.sp004363
10.1242/jeb.000950
10.1115/1.4024755
10.1242/jeb.205.23.3717
10.1093/ajcn/51.2.241
10.1098/rsif.2010.0084
10.1111/j.1748-1716.2006.01522.x
10.1177/0954411912473398
10.1017/S0263574708005110
10.1123/jab.13.4.466
10.1098/rspb.1938.0050
10.1007/BF00230049
10.1152/jappl.1989.67.1.453
10.1016/S0021-9290(00)00155-X
10.1016/j.jbiomech.2006.10.037
10.1016/j.jtbi.2005.04.004
10.1002/9780470549148
10.1299/jsmec1993.40.25
10.1007/s12195-012-0259-2
10.1080/0002889778507831
10.1115/1.4023390
10.1007/BF02684166
10.1126/science.1149860
10.1016/S0021-9290(03)00239-2
10.3109/08990220.2012.725680
10.1249/01.MSS.0000147584.87788.0E
10.1152/jappl.1975.38.6.1132
10.1098/rsif.2011.0182
10.1080/1025584031000091678
10.1152/jappl.1997.83.3.867
10.1016/0021-9290(91)90323-F
10.1016/0021-9290(82)90089-6
10.1002/jor.1100010109
10.1152/jn.2002.88.2.991
10.1016/0021-9290(85)90289-1
10.1016/S0966-6362(99)00009-0
10.1016/j.jbiomech.2007.03.022
10.1016/j.jelekin.2012.02.001
10.1098/rsif.2009.0544
10.1016/j.jelekin.2005.07.005
10.1007/s11044-010-9193-z
10.1016/0021-9290(87)90310-1
10.1007/s00421-005-0088-2
10.1093/ajcn/52.1.66
10.1016/j.jada.2005.02.005
10.1002/jor.1100140620
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.2721
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 3797588841
25914404
10_1002_cnm_2721
CNM2721
ark_67375_WNG_NGDSRP0X_W
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: CMMI‐1436636
– fundername: US National Science Foundation (NSF) Graduate Research Fellowship
  funderid: DGE‐1104522
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4911-952faa85728a5bfc8e6e4e57c61a60c8af59238b9964b50d9342808eafe141f13
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360759700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-7939
IngestDate Fri Nov 07 06:41:59 EST 2025
Wed Aug 13 06:40:38 EDT 2025
Thu Apr 03 06:58:22 EDT 2025
Sat Nov 29 03:05:14 EST 2025
Tue Nov 18 21:00:39 EST 2025
Sun Sep 21 06:23:19 EDT 2025
Sun Sep 21 06:17:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords first law of thermodynamics
mechanical work
metabolic energy expenditure
joint space
muscle activation
generalized coordinates
heat dissipation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4911-952faa85728a5bfc8e6e4e57c61a60c8af59238b9964b50d9342808eafe141f13
Notes ark:/67375/WNG-NGDSRP0X-W
NSF - No. CMMI-1436636
ArticleID:CNM2721
US National Science Foundation (NSF) Graduate Research Fellowship - No. DGE-1104522
istex:1BBA826A29FAF8FBC1C7DC21D72872558D984B5C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnm.2721
PMID 25914404
PQID 1709469045
PQPubID 2034586
PageCount 23
ParticipantIDs proquest_miscellaneous_1709706895
proquest_journals_1709469045
pubmed_primary_25914404
crossref_citationtrail_10_1002_cnm_2721
crossref_primary_10_1002_cnm_2721
wiley_primary_10_1002_cnm_2721_CNM2721
istex_primary_ark_67375_WNG_NGDSRP0X_W
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Thompson WR, Gordon NF, Pescatello LS (Eds). ACSM's Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009.
Lin Y-C, Kim HJ, Pandy MG. A computationally efficient method for assessing muscle function during human locomotion. International Journal for Numerical Methods in Engineering 2011; 27(3):436-449.
Winter DA. Biomechanics and Motor Control of Human Movement. Wiley: Hoboken, NJ, USA, 2009.
Hatze H, Buys JD. Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics 1977; 27(1):9-20.
Yang J, Feng X, Xiang Y, Kim JH, Rajulu S. Determining the three-dimensional relation between the skeletal elements of the human shoulder complex. Journal of Biomechanics 2009; 42(11):1762-1767.
Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 2001; 34(2):153-161.
Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure of walking and running: comparison with prediction equations. Medicine and Science in Sports and Exercise 2004; 36(12):2128-2134.
Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. Journal of Neurophysiology 2002; 88(2):991-1004.
Walcott S. A differential equation model for tropomyosin-induced myosin cooperativity describes myosin-myosin interactions at low calcium. Cellular and Molecular Bioengineering 2013; 6(1):13-25.
Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. Journal of the American Dietetic Association 2005; 105(5):775-789.
Neptune RR, van den Bogert AJ. Standard mechanical energy analyses do not correlate with muscle work in cycling. Journal of Biomechanics 1997; 31(3):239-245.
Hase K, Yamazaki N. Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME International Journal Series C Dynamics, control, robotics, design and manufacturing 1997; 40(1):25-32.
Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics 2009; 25(1):51-66.
Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 1989; 17(4):359-411.
Burdett RG, Skrinar GS, Simon SR. Comparison of mechanical work and metabolic energy consumption during normal gait. Journal of Orthopaedic Research 1983; 1(1):63-72.
He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophysical Journal 2000; 79(2):945-961.
Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait & Posture 1999; 9(3):207-231.
Hunter IW, Kearney RE. Dynamics of human ankle stiffness: variation with mean ankle torque. Journal of Biomechanics 1982; 15(10):747-752.
Modenese L, Phillips ATM, Bull AMJ. An open source lower limb model: hip joint validation. Journal of Biomechanics 2011; 44(12):2185-2193.
Geraldes DM, Phillips ATM. A comparative study of orthotropic and isotropic bone adaptation in the femur. International Journal for Numerical Methods in Engineering 2014; 30(9):873-889.
Srinivasan M. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Journal of the Royal Society Interface 2011; 8(54):74-98.
Umberger BR. Stance and swing phase costs in human walking. Journal of the Royal Society Interface 2010; 7(50):1329-1340.
Umberger BR, Gerritsen KGM, Martin PE. A model of human muscle energy expenditure. Computer Methods in Biomechanics and Biomedical Engineering 2003; 6(2):99-111.
Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica 2006; 186(2):127-139.
Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait. Journal of Biomechanics 2010; 43(6):1055-1060.
Seale JL, Rumpler WV, Conway JM, Miles CW. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men. American Journal of Clinical Nutrition 1990; 52(1):66-71.
Mummolo C, Mangialardi L, Kim JH. Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(9):091006-1-091006-10.
Langhaar HL. Energy Methods in Applied Mechanics. R.E. Krieger Publishing Co.: Malabar, Fla, 1989.
Black WZ, Hartley JG. Thermodynamics. Harpercollins College Division: New York, NY, USA, 1991.
Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. Academic Press: Waltham, MA, USA, 1985.
Minetti AE, Alexander RM. A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology 1997; 186(4):467-476.
Long LL, Srinivasan M. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. Journal of the Royal Society Interface 2013; 10(81):1-10.
Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(2):021004-1-021004-11.
Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007; 210(18):3255-3265.
Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. Journal of Biomechanics 2007; 40(14):3105-3113.
de V Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 1949; 109(1-2):1-9.
Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of Biomechanics 1987; 20(2):187-201.
Karduna AR, Williams GR, Iannotti JP, Williams JL. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. Journal of Orthopaedic Research 1996; 14(6):986-993.
Sasaki K, Neptune RR, Kautz SA. The relationships between muscle, external, internal and joint mechanical work during normal walking. Journal of Experimental Biology 2009; 212(5):738-744.
Ruina A, Bertram JEA, Srinivasan M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology 2005; 237(2):170-192.
Hawkins D, Molé P. Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee. Annals of Biomedical Engineering 1997; 25(5):822-830.
Kim JH, Xiang Y, Yang J, Arora JS, Abdel-Malek K. Dynamic motion planning of overarm throw for a biped human multibody system. Multibody System Dynamics 2010; 24(1):1-24.
Kim JH, Yang J, Abdel-Malek K. Planning load-effective dynamic motions of highly articulated human model for generic tasks. Robotica 2009; 27(5):739-747.
Ma S, Zahalak GI. A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics 1991; 24(1):21-35.
Zelik KE, Kuo AD. Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology 2010; 213(24):4257-4264.
Van Bolhuis BM, Gielen CCAM. A comparison of models explaining muscle activation patterns for isometric contractions. Biological Cybernetics 1999; 81(3):249-261.
Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. Journal of the Royal Society Interface 2012; 9(66):110-118.
Milner TE, Cloutier C, Leger AB, Franklin DW. Inability to activate muscles maximally during cocontraction and the effect on joint stiffness. Experimental Brain Research 1995; 107(2):293-305.
Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces-measurements in the first patient 7 months postoperatively. Journal of Biomechanics 2007; 40(10):2139-2149.
Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B-Biological Sciences 1938; 126(843):136-195.
Sousa AS, Silva A, Tavares JMR. Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy-based analysis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 2013; 227(3):327-333.
Ryschon TW, Fowler MD, Wysong RE, Anthony A-R, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. Journal of Applied Physiology 1997; 83(3):867-874.
Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of Biomechanics 2008; 41(16):3303-3308.
Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. Journal of Applied Physiology 1975; 38(6):1132-1139.
Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008; 319(5864):807-810.
Frey-Law L, Laake A, Avin KG, Heitsman J, Marler T, Abdel-Malek K. Knee and elbow 3D strength surfaces: peak torque-angle-velocity relationships. Journal of Applied Biomechanics 2012; 28(6):726-737.
Damm P, Dymke J, Ackermann R, Bender A, Graichen F, Halder A, Beier A, Bergmann G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS ONE 2013; 8(11):e78373.
Robertson DGE, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Bi
1968; 25
1990; 51
1990; 52
1982; 15
1997; 40
1997; 83
2009; 42
1977; 27
1983; 1
1978; 39
1999; 81
2013; 8
1949; 109
2013; 6
1938; 126
1985; 25
1985; 18
2010; 24
2013; 10
2002; 143
2010; 29
2004; 36
1997; 186
2003; 6
2007; 210
2004; 37
1997; 13
2005; 105
2008; 319
2002; 88
1985
2012; 29
2012; 28
2011; 27
2012; 22
2010; 7
1989
2009; 25
2001; 123
2006; 96
1989; 67
2006; 16
1960; 131
1997; 25
1975; 38
2005; 237
2013; 227
2009
2014; 47
2006
2009; 212
2006; 3
2005
1991
1996; 14
2011; 8
2010; 41
2009; 27
2005; 88
1999; 9
2010; 43
1987; 20
1991; 24
1997; 31
2000; 79
1980; 13
2010; 213
2002; 205
1995; 107
2011; 44
2006; 186
2013; 135
2007; 40
2008; 41
2013
2014; 30
2001; 34
2012; 45
1989; 17
2012; 9
2014; 31
e_1_2_7_5_1
e_1_2_7_3_1
Zajac F (e_1_2_7_32_1) 1989; 17
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
Osu R (e_1_2_7_68_1) 2002; 88
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Glass S (e_1_2_7_7_1) 2006
Ting LH (e_1_2_7_29_1) 2012; 28
Thompson WR (e_1_2_7_6_1) 2009
Black WZ (e_1_2_7_57_1) 1991
Peronnet F (e_1_2_7_55_1) 1989; 67
Lin Y‐C (e_1_2_7_46_1) 2011; 27
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
Geraldes DM (e_1_2_7_35_1) 2014; 30
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Falconer K (e_1_2_7_65_1) 1985; 25
Woledge RC (e_1_2_7_24_1) 1985
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
Langhaar HL (e_1_2_7_58_1) 1989
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – reference: Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics 2001; 34(2):153-161.
– reference: Ackermann M, van den Bogert AJ. Optimality principles for model-based prediction of human gait. Journal of Biomechanics 2010; 43(6):1055-1060.
– reference: Neptune RR, van den Bogert AJ. Standard mechanical energy analyses do not correlate with muscle work in cycling. Journal of Biomechanics 1997; 31(3):239-245.
– reference: Thompson WR, Gordon NF, Pescatello LS (Eds). ACSM's Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009.
– reference: Sousa AS, Silva A, Tavares JMR. Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy-based analysis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 2013; 227(3):327-333.
– reference: Smith NP, Barclay CJ, Loiselle DS. The efficiency of muscle contraction. Progress in Biophysics and Molecular Biology 2005; 88(1):1-58.
– reference: Ward-Smith AJ. A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes. Journal of Biomechanics 1985; 18(5):337-349.
– reference: Burdett RG, Skrinar GS, Simon SR. Comparison of mechanical work and metabolic energy consumption during normal gait. Journal of Orthopaedic Research 1983; 1(1):63-72.
– reference: Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of Biomechanics 2008; 41(16):3303-3308.
– reference: Srinivasan M. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Journal of the Royal Society Interface 2011; 8(54):74-98.
– reference: Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008; 319(5864):807-810.
– reference: Milner TE, Cloutier C, Leger AB, Franklin DW. Inability to activate muscles maximally during cocontraction and the effect on joint stiffness. Experimental Brain Research 1995; 107(2):293-305.
– reference: Da Fonseca ST, Vaz DV, de Aquino CF, Brício RS. Muscular co-contraction during walking and landing from a jump: comparison between genders and influence of activity level. Journal of Electromyography and Kinesiology 2006; 16(3):273-280.
– reference: Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. Journal of the Royal Society Interface 2012; 9(66):110-118.
– reference: Bergmann G, Graichen F, Bender A, Kääb M, Rohlmann A, Westerhoff P. In vivo glenohumeral contact forces-measurements in the first patient 7 months postoperatively. Journal of Biomechanics 2007; 40(10):2139-2149.
– reference: Umberger BR, Martin PE. Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007; 210(18):3255-3265.
– reference: Umberger BR. Stance and swing phase costs in human walking. Journal of the Royal Society Interface 2010; 7(50):1329-1340.
– reference: Brychta R, Wohlers E, Moon J, Chen K. Energy expenditure: measurement of human metabolism. IEEE Engineering in Medicine and Biology Magazine 2010; 29(1):42-47.
– reference: Robertson DGE, Winter DA. Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Biomechanics 1980; 13(10):845-854.
– reference: Morton RH. The critical power and related whole-body bioenergetic models. European Journal of Applied Physiology 2006; 96(4):339-354.
– reference: Minetti AE, Alexander RM. A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology 1997; 186(4):467-476.
– reference: Ting LH, Chvatal SA, Safavynia SA, Lucas McKay J. Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. International Journal for Numerical Methods in Engineering 2012; 28(10):1003-1014.
– reference: Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(2):021004-1-021004-11.
– reference: He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophysical Journal 2000; 79(2):945-961.
– reference: Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. Journal of Biomechanics 2007; 40(14):3105-3113.
– reference: Kim JH, Xiang Y, Yang J, Arora JS, Abdel-Malek K. Dynamic motion planning of overarm throw for a biped human multibody system. Multibody System Dynamics 2010; 24(1):1-24.
– reference: Hill AV. Production and absorption of work by muscle. Science 1960; 131(3404):897-903.
– reference: Glass S, Dwyer GB (Eds). ACSM's Metabolic Calculations Handbook. Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006.
– reference: Sousa ASP, Silva A, Tavares JMRS. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review. Somatosensory and Motor Research 2012; 29(4):131-143.
– reference: Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica 2006; 186(2):127-139.
– reference: Kim JH, Yang J, Abdel-Malek K. Planning load-effective dynamic motions of highly articulated human model for generic tasks. Robotica 2009; 27(5):739-747.
– reference: Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B-Biological Sciences 1938; 126(843):136-195.
– reference: Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering 1989; 17(4):359-411.
– reference: Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. Journal of Applied Physiology 1975; 38(6):1132-1139.
– reference: Black WZ, Hartley JG. Thermodynamics. Harpercollins College Division: New York, NY, USA, 1991.
– reference: Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure of walking and running: comparison with prediction equations. Medicine and Science in Sports and Exercise 2004; 36(12):2128-2134.
– reference: Frankenfield D, Roth-Yousey L, Compher C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review. Journal of the American Dietetic Association 2005; 105(5):775-789.
– reference: Frey-Law L, Laake A, Avin KG, Heitsman J, Marler T, Abdel-Malek K. Knee and elbow 3D strength surfaces: peak torque-angle-velocity relationships. Journal of Applied Biomechanics 2012; 28(6):726-737.
– reference: Mifflin M, St Jeor S, Hill L, Scott B, Daugherty S, Koh Y. A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition 1990; 51(2):241-247.
– reference: Winter DA. Biomechanics and Motor Control of Human Movement. Wiley: Hoboken, NJ, USA, 2009.
– reference: Walcott S. A differential equation model for tropomyosin-induced myosin cooperativity describes myosin-myosin interactions at low calcium. Cellular and Molecular Bioengineering 2013; 6(1):13-25.
– reference: Sasaki K, Neptune RR, Kautz SA. The relationships between muscle, external, internal and joint mechanical work during normal walking. Journal of Experimental Biology 2009; 212(5):738-744.
– reference: Hase K, Yamazaki N. Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME International Journal Series C Dynamics, control, robotics, design and manufacturing 1997; 40(1):25-32.
– reference: Seale JL, Rumpler WV, Conway JM, Miles CW. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men. American Journal of Clinical Nutrition 1990; 52(1):66-71.
– reference: Geraldes DM, Phillips ATM. A comparative study of orthotropic and isotropic bone adaptation in the femur. International Journal for Numerical Methods in Engineering 2014; 30(9):873-889.
– reference: Vologodskii A. Energy transformation in biological molecular motors. Physics of Life Reviews 2006; 3(2):119-132.
– reference: Van Bolhuis BM, Gielen CCAM. A comparison of models explaining muscle activation patterns for isometric contractions. Biological Cybernetics 1999; 81(3):249-261.
– reference: Anderson FC, Pandy MG. Dynamic optimization of human walking. Journal of Biomechanical Engineering-Transactions of the ASME 2001; 123(5):381-390.
– reference: Mummolo C, Mangialardi L, Kim JH. Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of Biomechanical Engineering-Transactions of the ASME 2013; 135(9):091006-1-091006-10.
– reference: Langhaar HL. Energy Methods in Applied Mechanics. R.E. Krieger Publishing Co.: Malabar, Fla, 1989.
– reference: Hunter IW, Kearney RE. Dynamics of human ankle stiffness: variation with mean ankle torque. Journal of Biomechanics 1982; 15(10):747-752.
– reference: Karduna AR, Williams GR, Iannotti JP, Williams JL. Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry. Journal of Orthopaedic Research 1996; 14(6):986-993.
– reference: Kim JH, Joo CB. Numerical construction of balanced state manifold for single-support legged mechanism in sagittal plane. Multibody System Dynamics 2014; 31(3):257-281.
– reference: Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. Journal of Neurophysiology 2002; 88(2):991-1004.
– reference: Umberger BR, Gerritsen KGM, Martin PE. A model of human muscle energy expenditure. Computer Methods in Biomechanics and Biomedical Engineering 2003; 6(2):99-111.
– reference: Prilutsky BI. Work, energy expenditure, and efficiency of the stretch-shortening cycle. Journal of Applied Biomechanics 1997; 13(4):466-470.
– reference: Falconer K, Winter DA. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyography and Clinical Neurophysiology 1985; 25(2-3):135-149.
– reference: Damm P, Dymke J, Ackermann R, Bender A, Graichen F, Halder A, Beier A, Bergmann G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS ONE 2013; 8(11):e78373.
– reference: Silder A, Besier T, Delp SL. Predicting the metabolic cost of incline walking from muscle activity and walking mechanics. Journal of Biomechanics 2012; 45(10):1842-1849.
– reference: Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Internationale Zeitschrift für Angewandte Physiologie 1968; 25:339-351.
– reference: Knarr BA, Zeni JA, Higginson JS. Comparison of electromyography and joint moment as indicators of co-contraction. Journal of Electromyography and Kinesiology 2012; 22:607-611.
– reference: Long LL, Srinivasan M. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures. Journal of the Royal Society Interface 2013; 10(81):1-10.
– reference: Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. Academic Press: Waltham, MA, USA, 1985.
– reference: Modenese L, Phillips ATM, Bull AMJ. An open source lower limb model: hip joint validation. Journal of Biomechanics 2011; 44(12):2185-2193.
– reference: Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait & Posture 1999; 9(3):207-231.
– reference: Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. Journal of Experimental Biology 2002; 205(23):3717-3727.
– reference: Zelik KE, Kuo AD. Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology 2010; 213(24):4257-4264.
– reference: Ma S, Zahalak GI. A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics 1991; 24(1):21-35.
– reference: Ruina A, Bertram JEA, Srinivasan M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology 2005; 237(2):170-192.
– reference: Peronnet F, Thibault G. Mathematical analysis of running performance and world running records. Journal of Applied Physiology 1989; 67(1):453-465.
– reference: Au SK, Weber J, Herr H. Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics 2009; 25(1):51-66.
– reference: de V Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 1949; 109(1-2):1-9.
– reference: Xiang Y, Chung H-J, Kim JH, Bhatt R, Rahmatalla S, Yang J, Marler T, Arora JS, Abdel-Malek K. Predictive dynamics: an optimization-based novel approach for human motion simulation. Structural and Multidisciplinary Optimization 2010; 41(3):465-479.
– reference: Ryschon TW, Fowler MD, Wysong RE, Anthony A-R, Balaban RS. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. Journal of Applied Physiology 1997; 83(3):867-874.
– reference: Milner T. Adaptation to destabilizing dynamics by means of muscle cocontraction. Experimental Brain Research 2002; 143(4):406-416.
– reference: Hatze H, Buys JD. Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics 1977; 27(1):9-20.
– reference: Lin Y-C, Kim HJ, Pandy MG. A computationally efficient method for assessing muscle function during human locomotion. International Journal for Numerical Methods in Engineering 2011; 27(3):436-449.
– reference: Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Journal of Biomechanics 1987; 20(2):187-201.
– reference: Garg A, Chaffin DB, Herrin GD. Prediction of metabolic rates for manual materials handling jobs. American Industrial Hygiene Association Journal 1978; 39(8):661-674.
– reference: Yang J, Feng X, Xiang Y, Kim JH, Rajulu S. Determining the three-dimensional relation between the skeletal elements of the human shoulder complex. Journal of Biomechanics 2009; 42(11):1762-1767.
– reference: Bhargava LJ, Pandy MG, Anderson FC. A phenomenological model for estimating metabolic energy consumption in muscle contraction. Journal of Biomechanics 2004; 37(1):81-88.
– reference: Miller RH. A comparison of muscle energy models for simulating human walking in three dimensions. Journal of Biomechanics 2014; 47(6):1373-1381.
– reference: Hawkins D, Molé P. Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee. Annals of Biomedical Engineering 1997; 25(5):822-830.
– year: 1985
– volume: 44
  start-page: 2185
  issue: 12
  year: 2011
  end-page: 2193
  article-title: An open source lower limb model: hip joint validation
  publication-title: Journal of Biomechanics
– year: 2009
– volume: 41
  start-page: 465
  issue: 3
  year: 2010
  end-page: 479
  article-title: Predictive dynamics: an optimization‐based novel approach for human motion simulation
  publication-title: Structural and Multidisciplinary Optimization
– volume: 47
  start-page: 1373
  issue: 6
  year: 2014
  end-page: 1381
  article-title: A comparison of muscle energy models for simulating human walking in three dimensions
  publication-title: Journal of Biomechanics
– volume: 205
  start-page: 3717
  issue: 23
  year: 2002
  end-page: 3727
  article-title: Mechanical work for step‐to‐step transitions is a major determinant of the metabolic cost of human walking
  publication-title: Journal of Experimental Biology
– year: 2005
– volume: 212
  start-page: 738
  issue: 5
  year: 2009
  end-page: 744
  article-title: The relationships between muscle, external, internal and joint mechanical work during normal walking
  publication-title: Journal of Experimental Biology
– volume: 88
  start-page: 1
  issue: 1
  year: 2005
  end-page: 58
  article-title: The efficiency of muscle contraction
  publication-title: Progress in Biophysics and Molecular Biology
– volume: 319
  start-page: 807
  issue: 5864
  year: 2008
  end-page: 810
  article-title: Biomechanical energy harvesting: generating electricity during walking with minimal user effort
  publication-title: Science
– volume: 27
  start-page: 436
  issue: 3
  year: 2011
  end-page: 449
  article-title: A computationally efficient method for assessing muscle function during human locomotion
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 34
  start-page: 153
  issue: 2
  year: 2001
  end-page: 161
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: Journal of Biomechanics
– volume: 22
  start-page: 607
  year: 2012
  end-page: 611
  article-title: Comparison of electromyography and joint moment as indicators of co‐contraction
  publication-title: Journal of Electromyography and Kinesiology
– volume: 8
  start-page: 74
  issue: 54
  year: 2011
  end-page: 98
  article-title: Fifteen observations on the structure of energy‐minimizing gaits in many simple biped models
  publication-title: Journal of the Royal Society Interface
– year: 1989
– volume: 42
  start-page: 1762
  issue: 11
  year: 2009
  end-page: 1767
  article-title: Determining the three‐dimensional relation between the skeletal elements of the human shoulder complex
  publication-title: Journal of Biomechanics
– volume: 96
  start-page: 339
  issue: 4
  year: 2006
  end-page: 354
  article-title: The critical power and related whole‐body bioenergetic models
  publication-title: European Journal of Applied Physiology
– volume: 20
  start-page: 187
  issue: 2
  year: 1987
  end-page: 201
  article-title: A dynamic optimization technique for predicting muscle forces in the swing phase of gait
  publication-title: Journal of Biomechanics
– volume: 1
  start-page: 63
  issue: 1
  year: 1983
  end-page: 72
  article-title: Comparison of mechanical work and metabolic energy consumption during normal gait
  publication-title: Journal of Orthopaedic Research
– volume: 25
  start-page: 51
  issue: 1
  year: 2009
  end-page: 66
  article-title: Powered ankle‐foot prosthesis improves walking metabolic economy
  publication-title: IEEE Transactions on Robotics
– volume: 83
  start-page: 867
  issue: 3
  year: 1997
  end-page: 874
  article-title: Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action
  publication-title: Journal of Applied Physiology
– volume: 7
  start-page: 1329
  issue: 50
  year: 2010
  end-page: 1340
  article-title: Stance and swing phase costs in human walking
  publication-title: Journal of the Royal Society Interface
– volume: 29
  start-page: 42
  issue: 1
  year: 2010
  end-page: 47
  article-title: Energy expenditure: measurement of human metabolism
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 6
  start-page: 99
  issue: 2
  year: 2003
  end-page: 111
  article-title: A model of human muscle energy expenditure
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 210
  start-page: 3255
  issue: 18
  year: 2007
  end-page: 3265
  article-title: Mechanical power and efficiency of level walking with different stride rates
  publication-title: Journal of Experimental Biology
– volume: 67
  start-page: 453
  issue: 1
  year: 1989
  end-page: 465
  article-title: Mathematical analysis of running performance and world running records
  publication-title: Journal of Applied Physiology
– volume: 37
  start-page: 81
  issue: 1
  year: 2004
  end-page: 88
  article-title: A phenomenological model for estimating metabolic energy consumption in muscle contraction
  publication-title: Journal of Biomechanics
– volume: 41
  start-page: 3303
  issue: 16
  year: 2008
  end-page: 3308
  article-title: Effects of aging and arm swing on the metabolic cost of stability in human walking
  publication-title: Journal of Biomechanics
– volume: 24
  start-page: 21
  issue: 1
  year: 1991
  end-page: 35
  article-title: A distribution‐moment model of energetics in skeletal muscle
  publication-title: Journal of Biomechanics
– volume: 9
  start-page: 110
  issue: 66
  year: 2012
  end-page: 118
  article-title: The mechanics and energetics of human walking and running: a joint level perspective
  publication-title: Journal of the Royal Society Interface
– volume: 6
  start-page: 13
  issue: 1
  year: 2013
  end-page: 25
  article-title: A differential equation model for tropomyosin‐induced myosin cooperativity describes myosin–myosin interactions at low calcium
  publication-title: Cellular and Molecular Bioengineering
– volume: 39
  start-page: 661
  issue: 8
  year: 1978
  end-page: 674
  article-title: Prediction of metabolic rates for manual materials handling jobs
  publication-title: American Industrial Hygiene Association Journal
– volume: 17
  start-page: 359
  issue: 4
  year: 1989
  end-page: 411
  article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control
  publication-title: Critical Reviews in Biomedical Engineering
– volume: 107
  start-page: 293
  issue: 2
  year: 1995
  end-page: 305
  article-title: Inability to activate muscles maximally during cocontraction and the effect on joint stiffness
  publication-title: Experimental Brain Research
– volume: 3
  start-page: 119
  issue: 2
  year: 2006
  end-page: 132
  article-title: Energy transformation in biological molecular motors
  publication-title: Physics of Life Reviews
– volume: 38
  start-page: 1132
  issue: 6
  year: 1975
  end-page: 1139
  article-title: Muscular efficiency during steady‐rate exercise: effects of speed and work rate
  publication-title: Journal of Applied Physiology
– volume: 51
  start-page: 241
  issue: 2
  year: 1990
  end-page: 247
  article-title: A new predictive equation for resting energy expenditure in healthy individuals
  publication-title: American Journal of Clinical Nutrition
– volume: 25
  start-page: 822
  issue: 5
  year: 1997
  end-page: 830
  article-title: Modeling energy expenditure associated with isometric, concentric, and eccentric muscle action at the knee
  publication-title: Annals of Biomedical Engineering
– volume: 105
  start-page: 775
  issue: 5
  year: 2005
  end-page: 789
  article-title: Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review
  publication-title: Journal of the American Dietetic Association
– volume: 40
  start-page: 2139
  issue: 10
  year: 2007
  end-page: 2149
  article-title: glenohumeral contact forces—measurements in the first patient 7 months postoperatively
  publication-title: Journal of Biomechanics
– volume: 131
  start-page: 897
  issue: 3404
  year: 1960
  end-page: 903
  article-title: Production and absorption of work by muscle
  publication-title: Science
– volume: 135
  start-page: 021004–1
  issue: 2
  year: 2013
  end-page: 021004–11
  article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics
  publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME
– volume: 9
  start-page: 207
  issue: 3
  year: 1999
  end-page: 231
  article-title: The energy expenditure of normal and pathologic gait
  publication-title: Gait & Posture
– volume: 126
  start-page: 136
  issue: 843
  year: 1938
  end-page: 195
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 15
  start-page: 747
  issue: 10
  year: 1982
  end-page: 752
  article-title: Dynamics of human ankle stiffness: variation with mean ankle torque
  publication-title: Journal of Biomechanics
– volume: 25
  start-page: 135
  issue: 2–3
  year: 1985
  end-page: 149
  article-title: Quantitative assessment of co‐contraction at the ankle joint in walking
  publication-title: Electromyography and Clinical Neurophysiology
– volume: 30
  start-page: 873
  issue: 9
  year: 2014
  end-page: 889
  article-title: A comparative study of orthotropic and isotropic bone adaptation in the femur
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 88
  start-page: 991
  issue: 2
  year: 2002
  end-page: 1004
  article-title: Short‐ and long‐term changes in joint co‐contraction associated with motor learning as revealed from surface EMG
  publication-title: Journal of Neurophysiology
– volume: 8
  start-page: e78373
  issue: 11
  year: 2013
  article-title: Friction in total hip joint prosthesis measured during walking
  publication-title: PLoS ONE
– volume: 13
  start-page: 466
  issue: 4
  year: 1997
  end-page: 470
  article-title: Work, energy expenditure, and efficiency of the stretch‐shortening cycle
  publication-title: Journal of Applied Biomechanics
– volume: 29
  start-page: 131
  issue: 4
  year: 2012
  end-page: 143
  article-title: Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review
  publication-title: Somatosensory and Motor Research
– volume: 27
  start-page: 9
  issue: 1
  year: 1977
  end-page: 20
  article-title: Energy‐optimal controls in the mammalian neuromuscular system
  publication-title: Biological Cybernetics
– volume: 24
  start-page: 1
  issue: 1
  year: 2010
  end-page: 24
  article-title: Dynamic motion planning of overarm throw for a biped human multibody system
  publication-title: Multibody System Dynamics
– volume: 16
  start-page: 273
  issue: 3
  year: 2006
  end-page: 280
  article-title: Muscular co‐contraction during walking and landing from a jump: comparison between genders and influence of activity level
  publication-title: Journal of Electromyography and Kinesiology
– volume: 36
  start-page: 2128
  issue: 12
  year: 2004
  end-page: 2134
  article-title: Energy expenditure of walking and running: comparison with prediction equations
  publication-title: Medicine and Science in Sports and Exercise
– volume: 186
  start-page: 127
  issue: 2
  year: 2006
  end-page: 139
  article-title: Metabolic cost, mechanical work, and efficiency during walking in young and older men
  publication-title: Acta Physiologica
– volume: 31
  start-page: 239
  issue: 3
  year: 1997
  end-page: 245
  article-title: Standard mechanical energy analyses do not correlate with muscle work in cycling
  publication-title: Journal of Biomechanics
– volume: 123
  start-page: 381
  issue: 5
  year: 2001
  end-page: 390
  article-title: Dynamic optimization of human walking
  publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME
– volume: 81
  start-page: 249
  issue: 3
  year: 1999
  end-page: 261
  article-title: A comparison of models explaining muscle activation patterns for isometric contractions
  publication-title: Biological Cybernetics
– volume: 52
  start-page: 66
  issue: 1
  year: 1990
  end-page: 71
  article-title: Comparison of doubly labeled water, intake‐balance, and direct‐ and indirect‐calorimetry methods for measuring energy expenditure in adult men
  publication-title: American Journal of Clinical Nutrition
– volume: 14
  start-page: 986
  issue: 6
  year: 1996
  end-page: 993
  article-title: Kinematics of the glenohumeral joint: influences of muscle forces, ligamentous constraints, and articular geometry
  publication-title: Journal of Orthopaedic Research
– volume: 18
  start-page: 337
  issue: 5
  year: 1985
  end-page: 349
  article-title: A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world‐class athletes
  publication-title: Journal of Biomechanics
– volume: 109
  start-page: 1
  issue: 1–2
  year: 1949
  end-page: 9
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: Journal of Physiology
– volume: 143
  start-page: 406
  issue: 4
  year: 2002
  end-page: 416
  article-title: Adaptation to destabilizing dynamics by means of muscle cocontraction
  publication-title: Experimental Brain Research
– volume: 237
  start-page: 170
  issue: 2
  year: 2005
  end-page: 192
  article-title: A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo‐elastic leg behavior in running and the walk‐to‐run transition
  publication-title: Journal of Theoretical Biology
– volume: 31
  start-page: 257
  issue: 3
  year: 2014
  end-page: 281
  article-title: Numerical construction of balanced state manifold for single‐support legged mechanism in sagittal plane
  publication-title: Multibody System Dynamics
– volume: 79
  start-page: 945
  issue: 2
  year: 2000
  end-page: 961
  article-title: ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition
  publication-title: Biophysical Journal
– volume: 213
  start-page: 4257
  issue: 24
  year: 2010
  end-page: 4264
  article-title: Human walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return
  publication-title: Journal of Experimental Biology
– volume: 40
  start-page: 3105
  issue: 14
  year: 2007
  end-page: 3113
  article-title: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb
  publication-title: Journal of Biomechanics
– volume: 40
  start-page: 25
  issue: 1
  year: 1997
  end-page: 32
  article-title: Development of three‐dimensional whole‐body musculoskeletal model for various motion analyses
  publication-title: JSME International Journal Series C Dynamics, control, robotics, design and manufacturing
– volume: 28
  start-page: 726
  issue: 6
  year: 2012
  end-page: 737
  article-title: Knee and elbow 3D strength surfaces: peak torque‐angle‐velocity relationships
  publication-title: Journal of Applied Biomechanics
– volume: 28
  start-page: 1003
  issue: 10
  year: 2012
  end-page: 1014
  article-title: Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 10
  start-page: 1
  issue: 81
  year: 2013
  end-page: 10
  article-title: Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures
  publication-title: Journal of the Royal Society Interface
– volume: 13
  start-page: 845
  issue: 10
  year: 1980
  end-page: 854
  article-title: Mechanical energy generation, absorption and transfer amongst segments during walking
  publication-title: Journal of Biomechanics
– year: 2006
– volume: 43
  start-page: 1055
  issue: 6
  year: 2010
  end-page: 1060
  article-title: Optimality principles for model‐based prediction of human gait
  publication-title: Journal of Biomechanics
– volume: 227
  start-page: 327
  issue: 3
  year: 2013
  end-page: 333
  article-title: Interlimb relation during the double support phase of gait: an electromyographic, mechanical and energy‐based analysis
  publication-title: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine
– volume: 25
  start-page: 339
  year: 1968
  end-page: 351
  article-title: Positive and negative work performances and their efficiencies in human locomotion
  publication-title: Internationale Zeitschrift für Angewandte Physiologie
– volume: 135
  start-page: 091006–1
  issue: 9
  year: 2013
  end-page: 091006–10
  article-title: Quantifying dynamic characteristics of human walking for comprehensive gait cycle
  publication-title: Journal of Biomechanical Engineering‐Transactions of the ASME
– volume: 45
  start-page: 1842
  issue: 10
  year: 2012
  end-page: 1849
  article-title: Predicting the metabolic cost of incline walking from muscle activity and walking mechanics
  publication-title: Journal of Biomechanics
– volume: 186
  start-page: 467
  issue: 4
  year: 1997
  end-page: 476
  article-title: A theory of metabolic costs for bipedal gaits
  publication-title: Journal of Theoretical Biology
– volume: 27
  start-page: 739
  issue: 5
  year: 2009
  end-page: 747
  article-title: Planning load‐effective dynamic motions of highly articulated human model for generic tasks
  publication-title: Robotica
– year: 1991
– year: 2013
– volume: 28
  start-page: 1003
  issue: 10
  year: 2012
  ident: e_1_2_7_29_1
  article-title: Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 30
  start-page: 873
  issue: 9
  year: 2014
  ident: e_1_2_7_35_1
  article-title: A comparative study of orthotropic and isotropic bone adaptation in the femur
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_7_85_1
  doi: 10.1016/j.pbiomolbio.2003.11.014
– ident: e_1_2_7_72_1
  doi: 10.1126/science.131.3404.897
– ident: e_1_2_7_47_1
  doi: 10.1007/s00158-009-0423-z
– ident: e_1_2_7_19_1
  doi: 10.1007/BF00699624
– ident: e_1_2_7_11_1
  doi: 10.1109/MEMB.2009.935463
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jbiomech.2011.06.019
– ident: e_1_2_7_5_1
  doi: 10.1098/rsif.2012.0980
– ident: e_1_2_7_51_1
  doi: 10.1006/jtbi.1997.0407
– ident: e_1_2_7_56_1
– ident: e_1_2_7_9_1
  doi: 10.1109/TRO.2008.2008747
– ident: e_1_2_7_86_1
  doi: 10.1016/S0006-3495(00)76349-1
– volume: 27
  start-page: 436
  issue: 3
  year: 2011
  ident: e_1_2_7_46_1
  article-title: A computationally efficient method for assessing muscle function during human locomotion
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jbiomech.2012.03.032
– ident: e_1_2_7_44_1
  doi: 10.1016/0021-9290(80)90172-4
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jbiomech.2009.04.048
– ident: e_1_2_7_60_1
  doi: 10.1242/jeb.023267
– ident: e_1_2_7_52_1
  doi: 10.1123/jab.28.6.726
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jbiomech.2009.12.012
– ident: e_1_2_7_59_1
  doi: 10.1242/jeb.044297
– ident: e_1_2_7_39_1
  doi: 10.1115/1.1392310
– ident: e_1_2_7_30_1
  doi: 10.1115/DETC2013-13633
– ident: e_1_2_7_28_1
  doi: 10.1007/s004220050560
– ident: e_1_2_7_87_1
  doi: 10.1371/journal.pone.0078373
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jbiomech.2014.01.049
– ident: e_1_2_7_38_1
  doi: 10.1016/j.plrev.2006.02.002
– ident: e_1_2_7_74_1
  doi: 10.1007/BF00357705
– ident: e_1_2_7_69_1
  doi: 10.1007/s00221-002-1001-4
– volume: 25
  start-page: 135
  issue: 2
  year: 1985
  ident: e_1_2_7_65_1
  article-title: Quantitative assessment of co‐contraction at the ankle joint in walking
  publication-title: Electromyography and Clinical Neurophysiology
– ident: e_1_2_7_17_1
  doi: 10.1016/S0021-9290(97)00129-2
– ident: e_1_2_7_80_1
  doi: 10.1016/j.jbiomech.2008.06.039
– ident: e_1_2_7_83_1
  doi: 10.1007/s11044-013-9376-5
– ident: e_1_2_7_13_1
  doi: 10.1113/jphysiol.1949.sp004363
– ident: e_1_2_7_21_1
  doi: 10.1242/jeb.000950
– ident: e_1_2_7_45_1
  doi: 10.1115/1.4024755
– ident: e_1_2_7_16_1
  doi: 10.1242/jeb.205.23.3717
– volume-title: ACSM's Guidelines for Exercise Testing and Prescription
  year: 2009
  ident: e_1_2_7_6_1
– ident: e_1_2_7_78_1
  doi: 10.1093/ajcn/51.2.241
– ident: e_1_2_7_3_1
  doi: 10.1098/rsif.2010.0084
– volume-title: ACSM's Metabolic Calculations Handbook
  year: 2006
  ident: e_1_2_7_7_1
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1748-1716.2006.01522.x
– ident: e_1_2_7_26_1
  doi: 10.1177/0954411912473398
– ident: e_1_2_7_49_1
  doi: 10.1017/S0263574708005110
– ident: e_1_2_7_20_1
  doi: 10.1123/jab.13.4.466
– volume-title: Energetic Aspects of Muscle Contraction
  year: 1985
  ident: e_1_2_7_24_1
– ident: e_1_2_7_63_1
  doi: 10.1098/rspb.1938.0050
– ident: e_1_2_7_70_1
  doi: 10.1007/BF00230049
– volume: 67
  start-page: 453
  issue: 1
  year: 1989
  ident: e_1_2_7_55_1
  article-title: Mathematical analysis of running performance and world running records
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1989.67.1.453
– ident: e_1_2_7_64_1
  doi: 10.1016/S0021-9290(00)00155-X
– ident: e_1_2_7_88_1
  doi: 10.1016/j.jbiomech.2006.10.037
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jtbi.2005.04.004
– ident: e_1_2_7_40_1
– ident: e_1_2_7_18_1
  doi: 10.1002/9780470549148
– ident: e_1_2_7_73_1
  doi: 10.1299/jsmec1993.40.25
– ident: e_1_2_7_36_1
  doi: 10.1007/s12195-012-0259-2
– ident: e_1_2_7_15_1
  doi: 10.1080/0002889778507831
– ident: e_1_2_7_34_1
  doi: 10.1115/1.4023390
– ident: e_1_2_7_43_1
  doi: 10.1007/BF02684166
– ident: e_1_2_7_8_1
  doi: 10.1126/science.1149860
– ident: e_1_2_7_62_1
  doi: 10.1016/S0021-9290(03)00239-2
– ident: e_1_2_7_23_1
  doi: 10.3109/08990220.2012.725680
– volume-title: Thermodynamics
  year: 1991
  ident: e_1_2_7_57_1
– ident: e_1_2_7_27_1
  doi: 10.1249/01.MSS.0000147584.87788.0E
– ident: e_1_2_7_84_1
  doi: 10.1152/jappl.1975.38.6.1132
– ident: e_1_2_7_22_1
  doi: 10.1098/rsif.2011.0182
– ident: e_1_2_7_75_1
  doi: 10.1080/1025584031000091678
– ident: e_1_2_7_76_1
  doi: 10.1152/jappl.1997.83.3.867
– ident: e_1_2_7_37_1
  doi: 10.1016/0021-9290(91)90323-F
– ident: e_1_2_7_71_1
  doi: 10.1016/0021-9290(82)90089-6
– volume-title: Energy Methods in Applied Mechanics
  year: 1989
  ident: e_1_2_7_58_1
– ident: e_1_2_7_81_1
  doi: 10.1002/jor.1100010109
– volume: 88
  start-page: 991
  issue: 2
  year: 2002
  ident: e_1_2_7_68_1
  article-title: Short‐ and long‐term changes in joint co‐contraction associated with motor learning as revealed from surface EMG
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2002.88.2.991
– ident: e_1_2_7_53_1
  doi: 10.1016/0021-9290(85)90289-1
– ident: e_1_2_7_4_1
  doi: 10.1016/S0966-6362(99)00009-0
– ident: e_1_2_7_77_1
– ident: e_1_2_7_79_1
  doi: 10.1016/j.jbiomech.2007.03.022
– ident: e_1_2_7_66_1
  doi: 10.1016/j.jelekin.2012.02.001
– ident: e_1_2_7_2_1
  doi: 10.1098/rsif.2009.0544
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jelekin.2005.07.005
– ident: e_1_2_7_48_1
  doi: 10.1007/s11044-010-9193-z
– ident: e_1_2_7_61_1
  doi: 10.1016/0021-9290(87)90310-1
– ident: e_1_2_7_54_1
  doi: 10.1007/s00421-005-0088-2
– volume: 17
  start-page: 359
  issue: 4
  year: 1989
  ident: e_1_2_7_32_1
  article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control
  publication-title: Critical Reviews in Biomedical Engineering
– ident: e_1_2_7_14_1
  doi: 10.1093/ajcn/52.1.66
– ident: e_1_2_7_82_1
  doi: 10.1016/j.jada.2005.02.005
– ident: e_1_2_7_33_1
  doi: 10.1002/jor.1100140620
SSID ssj0000299973
Score 2.1132514
Snippet Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is...
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint‐space numerical model of MEE is derived by...
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by...
Summary Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e02721
SubjectTerms Adult
Energy Metabolism
Female
first law of thermodynamics
generalized coordinates
Heart Rate
heat dissipation
Hot Temperature
Humans
joint space
Joints - physiology
Knee - physiology
Male
mechanical work
metabolic energy expenditure
Models, Biological
Movement
muscle activation
Muscle, Skeletal - physiology
Nontherapeutic Human Experimentation
Reproducibility of Results
Thermodynamics
Walking
Young Adult
Title A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system
URI https://api.istex.fr/ark:/67375/WNG-NGDSRP0X-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2721
https://www.ncbi.nlm.nih.gov/pubmed/25914404
https://www.proquest.com/docview/1709469045
https://www.proquest.com/docview/1709706895
Volume 31
WOSCitedRecordID wos000360759700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZglwMXWl5l21IZCcEp1HHiODlWbbccSlQVSvdm-SktbBO0D1Ru_IT-Rn4JYzsbVKlISJxyyEQe2TOTbzwvhF5zZ5ziVidGFuCgUKcSJRlJaJ6Z3BipbahK-3zK67qcTKqzLqvS18LE_hD9hZvXjGCvvYJLtdj_0zRUN1fvKPc15EMKYssGaHh0Pr447W9YCFjaKoSYaUibq7Jq3X2W0P3157f-R0O_tdd3gc3b2DX8fMYb_8P2JnrUQU58EGXkMbpnmydoo4OfuFPuxVOkDvCXdtosf_28ATOjLW5WMZwzw2FeDm4dvrJLkJrZVGMbigaxnxDgo96rucWAf3GY-YdDmqJqzQ9s4sR7HDtGP0MX4-NPh--TbgRDonMwg0nFqJOyZJyWkimnS1vY3DKui1QWRJfSMUCIpQKvKVeMmCoDd4aUVjqb5qlLs-do0LSNfYFwxhxTJjUpD9FeQJaSUJ05qR04yVUxQm_XByF015_cj8mYidhZmQrYOuG3boRe9ZTfYk-OO2jehLPsCeT8q89h40xc1ieiPjn6eH5GJuJyhHbXhy069V0I4LHy9wY5g7X616B4PpoiG9uuIg0nRVkBzVYUkn4x8Cl90DwHLoIs_JVNcVh_8M_tfyXcQQ8BsrGY5baLBsv5yr5ED_T35XQx30P3-aTc6xThNxA5C-A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqLhJcKG-2FDASglOo83ASq6eqZVvENqpKS_dm-SktbBO0jwpu_IT-Rn4JYzsJqlQkJE45ZCKP7JnJN54XQq8Lq60sjIq0yMFBSayMpKAkSrJUZ1oLZXxV2udxUVXlZMKO19BOVwsT-kP0F25OM7y9dgruLqS3_3QNVfXFu6RwReSDDKQIxHuwfzI6G_dXLARMLfMx5sTnzbGUde1nSbLdfX7thzRwe_v9JrR5Hbz6v89o47_4vofutqAT7wYpuY_WTP0AbbQAFLfqvXiI5C7-0kzr5a-fV2BolMH1KgR0ZthPzMGNxRdmCXIzmypsfNkgdjMCXNx7NTcYEDD2U_-wT1SUjf6BdZh5j0PP6EfobPT-dO8waocwRCoDQxgxmlghSlokpaDSqtLkJjO0UHkscqJKYSlgxFKC35RJSjRLwaEhpRHWxFls4_QxWq-b2jxFOKWWSh3ruPDxXsCWgiQqtUJZcJNZPkRvu5Pgqu1Q7gZlzHjorZxw2Drutm6IXvWU30JXjhto3vjD7AnE_KvLYisoP68OeHWw_-nkmEz4-RBtdafNWwVecOCRuZuDjMJa_WtQPRdPEbVpVoGmIHnJgOZJkJJ-MfAqXdg8Ay68MPyVTb5XHbnn5r8SvkS3D0-Pxnz8ofr4DN0BAEdDztsWWl_OV-Y5uqUul9PF_EWrD78BvgIO6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXYS4UN4sFDASglNoHnYSi1PVZQtiiVaF0r1ZfkoL26TaB4IbP4HfyC9hbCdBlYqExCmHTOSRPTP5xvNC6FlhtZWFUZEWOTgoqZWRFDSOUpJporVQxlelfZoWVVXO52y2g151tTChP0R_4eY0w9trp-DmXNv9P11DVX32Mi1cEfmQuBkyAzQcH09Opv0VSwymlvkYc-rz5ljGuvazcbrffX7hhzR0e_vtMrR5Ebz6v89k97_4voGut6ATHwQpuYl2TH0L7bYAFLfqvb6N5AH-3Czqza8fP8HQKIPrbQjoLLGfmIMbi8_MBuRmuVDY-LJB7GYEuLj3dmUwIGDsp_5hn6goG_0d6zDzHoee0XfQyeT1x8M3UTuEIVIEDGHEaGqFKGmRloJKq0qTG2JoofJE5LEqhaWAEUsJfhORNNYsA4cmLo2wJiGJTbK7aFA3tbmPcEYtlTrRSeHjvYAtRZyqzAplwU1m-Qi96E6Cq7ZDuRuUseSht3LKYeu427oRetpTnoeuHJfQPPeH2ROI1ReXxVZQflod8epo_OF4Fs_56QjtdafNWwVec-CRuZsDQmGt_jWonouniNo020BTxHnJgOZekJJ-MfAqXdicABdeGP7KJj-s3rvng38lfIKuzsYTPn1bvXuIrgF-oyHlbQ8NNquteYSuqK-bxXr1uFWH3zT4DmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+joint%E2%80%90space+numerical+model+of+metabolic+energy+expenditure+for+human+multibody+dynamic+system&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Kim%2C+Joo+H.&rft.au=Roberts%2C+Dustyn&rft.date=2015-09-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=31&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.2721&rft.externalDBID=10.1002%252Fcnm.2721&rft.externalDocID=CNM2721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon