Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the...
Uložené v:
| Vydané v: | Frontiers in cellular neuroscience Ročník 14; s. 51 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Research Foundation
19.03.2020
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1662-5102, 1662-5102 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca
) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca
ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca
-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences. |
|---|---|
| AbstractList | A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca
) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca
ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca
-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences. A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences. A plethora of neurological disorders share a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent leading cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both of which are responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupt oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, a subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic cascade. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied with the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic cascade, and who is the unsuspecting victim? In this review, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins and consequences. A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences. |
| Author | Tureckova, Jana Anderova, Miroslava Kriska, Jan Belov Kirdajova, Denisa |
| AuthorAffiliation | 1 Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR) , Prague , Czechia 2 Second Faculty of Medicine, Charles University , Prague , Czechia |
| AuthorAffiliation_xml | – name: 1 Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR) , Prague , Czechia – name: 2 Second Faculty of Medicine, Charles University , Prague , Czechia |
| Author_xml | – sequence: 1 givenname: Denisa surname: Belov Kirdajova fullname: Belov Kirdajova, Denisa – sequence: 2 givenname: Jan surname: Kriska fullname: Kriska, Jan – sequence: 3 givenname: Jana surname: Tureckova fullname: Tureckova, Jana – sequence: 4 givenname: Miroslava surname: Anderova fullname: Anderova, Miroslava |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32265656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Uk1rGzEUFCWl-WjvPZWFXnpZVx8raXUpFJMPQyA9pGchad_aMrsrV5JD8u8j22lIAkGHJ55mhvc0c4qOpjABQl8JnjHWqp_95GCYUUzxDGPMyQd0QoSgNSeYHr24H6PTlNYYCyqa9hM6ZpQKXs4Julkkt4LRm_o2-uUSInTV5bDNZjQZqvN753PI4d6X-lBdxDBWeQXVH4hpAy77O6hCXwjeDNUchiF9Rh97MyT48lTP0N-L89v5VX19c7mY_76uXaNwrnsL2BigfWudsJKAYdYZLLBrZONch4FyYTlVSspGCEYUEz3YDojljkrJztDioNsFs9ab6EcTH3QwXu8bIS61idm7AXRZW1rKeMNZ36iWWS4xGKOYavsGGlW0fh20Nls7QudgytEMr0Rfv0x-pZfhTktc5KgoAj-eBGL4t4WU9ehTcWYwE4Rt0pS1UiiCCS_Q72-g67CNU_mqgpKKClFMKqhvLyd6HuW_bwWADwAXQ0oR-mcIwXoXDb2Pht5FQ--jUSjiDaV4arIPu5388D7xEcEzvlg |
| CitedBy_id | crossref_primary_10_3389_fphar_2021_669701 crossref_primary_10_1007_s11064_023_04090_9 crossref_primary_10_31482_mmsl_2023_002 crossref_primary_10_1016_j_neuint_2022_105458 crossref_primary_10_3390_cells11071139 crossref_primary_10_3390_cells13131144 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107184 crossref_primary_10_1016_j_neuroimage_2021_118833 crossref_primary_10_3390_cells10071714 crossref_primary_10_1016_j_expneurol_2025_115223 crossref_primary_10_1016_j_neuron_2025_03_024 crossref_primary_10_3389_fvets_2022_879007 crossref_primary_10_1186_s12916_022_02408_y crossref_primary_10_1007_s12602_025_10513_6 crossref_primary_10_1016_j_jchemneu_2022_102201 crossref_primary_10_3390_molecules26195883 crossref_primary_10_3390_biomedicines12040880 crossref_primary_10_3390_cells14120910 crossref_primary_10_3390_dairy6030022 crossref_primary_10_3390_ijms242417302 crossref_primary_10_4103_NRR_NRR_D_24_00924 crossref_primary_10_1016_j_clineuro_2022_107306 crossref_primary_10_3390_cells14120918 crossref_primary_10_1016_j_ibmb_2021_103674 crossref_primary_10_1177_0271678X241281547 crossref_primary_10_3390_metabo12010056 crossref_primary_10_31083_j_jin2003078 crossref_primary_10_3389_fphar_2022_866738 crossref_primary_10_3390_cells14131006 crossref_primary_10_3390_metabo11080516 crossref_primary_10_3390_ijms23094925 crossref_primary_10_3389_fcell_2024_1334861 crossref_primary_10_3390_jcm14020386 crossref_primary_10_1016_j_brainres_2022_148207 crossref_primary_10_3390_ijms22189689 crossref_primary_10_1016_j_lfs_2021_119257 crossref_primary_10_2174_0118715249302594240801171612 crossref_primary_10_1002_jnr_25247 crossref_primary_10_1007_s11064_022_03732_8 crossref_primary_10_3390_ijms232315114 crossref_primary_10_1016_j_injury_2021_08_004 crossref_primary_10_3390_biomedicines10010032 crossref_primary_10_3390_pharmaceutics15122697 crossref_primary_10_3390_ijms242316728 crossref_primary_10_1177_02537176231181512 crossref_primary_10_1016_j_sjbs_2021_10_033 crossref_primary_10_1016_j_neurot_2024_e00504 crossref_primary_10_1242_jeb_245355 crossref_primary_10_3390_ijms24098249 crossref_primary_10_20935_AcadBiol7285 crossref_primary_10_1038_s41380_020_00971_5 crossref_primary_10_1016_j_jddst_2025_107310 crossref_primary_10_3389_fncel_2021_640217 crossref_primary_10_1007_s12265_021_10187_9 crossref_primary_10_1016_j_aanat_2025_152729 crossref_primary_10_31718_2077_1096_25_2_319 crossref_primary_10_3390_nu16060901 crossref_primary_10_1016_j_biopha_2021_111796 crossref_primary_10_1016_j_phymed_2024_155583 crossref_primary_10_1016_j_ijbiomac_2025_139945 crossref_primary_10_3389_fphar_2025_1620533 crossref_primary_10_3390_ijms23169381 crossref_primary_10_3390_ijms231810373 crossref_primary_10_1038_s41598_023_48702_4 crossref_primary_10_1186_s12938_022_01062_y crossref_primary_10_2147_JIR_S503231 crossref_primary_10_1016_j_ceca_2023_102818 crossref_primary_10_1016_j_jchemneu_2022_102230 crossref_primary_10_1016_j_neurot_2024_e00516 crossref_primary_10_2147_DDDT_S310686 crossref_primary_10_3390_ijms25126680 crossref_primary_10_3390_biom15050732 crossref_primary_10_1016_j_brainresbull_2025_111349 crossref_primary_10_1016_j_toxicon_2025_108568 crossref_primary_10_17221_43_2021_VETMED crossref_primary_10_1016_j_pbb_2024_173930 crossref_primary_10_1111_jnc_15331 crossref_primary_10_3390_ijms23179628 crossref_primary_10_3390_antiox11010042 crossref_primary_10_1007_s12035_020_02223_7 crossref_primary_10_12968_hmed_2024_0771 crossref_primary_10_3390_ijms22157994 crossref_primary_10_1002_VIW_20250013 crossref_primary_10_3389_fnagi_2021_783120 crossref_primary_10_1016_j_seizure_2025_09_002 crossref_primary_10_1038_s41467_025_61948_y crossref_primary_10_1007_s11010_025_05324_w crossref_primary_10_3390_nano15151173 crossref_primary_10_1007_s12094_022_03009_0 crossref_primary_10_1186_s12974_023_02806_w crossref_primary_10_3390_ijms21239333 crossref_primary_10_3390_jcm13144258 crossref_primary_10_1007_s11011_022_01003_7 crossref_primary_10_1016_j_ibneur_2025_04_015 crossref_primary_10_1021_acschemneuro_4c00090 crossref_primary_10_1080_10406638_2023_2261586 crossref_primary_10_1134_S0006297922120161 crossref_primary_10_1016_j_pharmthera_2023_108366 crossref_primary_10_1161_STROKEAHA_124_047803 crossref_primary_10_5472_marumj_816319 crossref_primary_10_3389_fimmu_2022_897022 crossref_primary_10_1111_jnc_15347 crossref_primary_10_1080_17425247_2023_2279115 crossref_primary_10_1016_j_autneu_2021_102909 crossref_primary_10_1016_j_tiv_2024_105977 crossref_primary_10_3390_ijms26093947 crossref_primary_10_1186_s40659_022_00387_1 crossref_primary_10_1016_j_amsu_2021_102877 crossref_primary_10_1016_j_isci_2025_112256 crossref_primary_10_1007_s11011_025_01635_5 crossref_primary_10_3390_molecules27217620 crossref_primary_10_1159_000539695 crossref_primary_10_3390_ijms23169054 crossref_primary_10_1371_journal_pone_0255164 crossref_primary_10_3389_fphar_2021_794933 crossref_primary_10_3389_fnins_2022_1003145 crossref_primary_10_1002_ange_202406867 crossref_primary_10_1016_j_neuroscience_2023_12_013 crossref_primary_10_3389_fcell_2024_1524723 crossref_primary_10_1016_j_bbrc_2024_150418 crossref_primary_10_1111_cns_70092 crossref_primary_10_1038_s41598_022_08031_4 crossref_primary_10_4103_1673_5374_369099 crossref_primary_10_1371_journal_pone_0304966 crossref_primary_10_4103_1673_5374_389365 crossref_primary_10_1039_D3FO04501C crossref_primary_10_1016_j_phymed_2025_157223 crossref_primary_10_3390_ijms251910475 crossref_primary_10_1083_jcb_202102136 crossref_primary_10_1186_s43094_025_00782_x crossref_primary_10_1002_anie_202406867 crossref_primary_10_1016_j_brainresbull_2022_09_021 crossref_primary_10_3390_molecules29174159 crossref_primary_10_1055_a_1903_2387 crossref_primary_10_1016_j_exer_2024_110074 crossref_primary_10_3390_biomedicines11051363 crossref_primary_10_3390_ph18070935 crossref_primary_10_3390_antiox11020189 crossref_primary_10_3390_nano14020160 crossref_primary_10_1016_j_jtcme_2023_09_003 crossref_primary_10_3390_gels10070476 crossref_primary_10_3390_antiox13101272 crossref_primary_10_3389_fnins_2025_1614924 crossref_primary_10_4097_kja_25073 crossref_primary_10_1007_s12640_022_00568_6 crossref_primary_10_1016_j_freeradbiomed_2023_07_004 crossref_primary_10_1177_10738584241246530 crossref_primary_10_3389_fncel_2022_837650 crossref_primary_10_4103_NRR_NRR_D_24_00536 crossref_primary_10_1038_s41598_022_18719_2 crossref_primary_10_1161_SVIN_123_000972 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107736 crossref_primary_10_3389_fneur_2024_1393274 crossref_primary_10_1016_j_sjbs_2022_01_018 crossref_primary_10_1016_j_bbamem_2021_183573 crossref_primary_10_1016_j_neuint_2024_105867 crossref_primary_10_3390_ijms24108696 crossref_primary_10_1016_j_neuint_2024_105862 crossref_primary_10_1093_ijfood_vvae067 crossref_primary_10_1016_j_bbadis_2021_166115 crossref_primary_10_1038_s41598_023_49835_2 crossref_primary_10_3389_fphar_2022_888222 crossref_primary_10_1016_j_abb_2024_109951 crossref_primary_10_3390_ph16070989 crossref_primary_10_3390_ijms222111678 crossref_primary_10_3389_fncel_2021_627682 crossref_primary_10_1007_s00415_024_12352_x crossref_primary_10_1007_s12602_024_10295_3 crossref_primary_10_3390_ijms25021221 crossref_primary_10_1002_jat_4839 crossref_primary_10_3390_jpm12071126 crossref_primary_10_1038_s41419_025_07806_7 crossref_primary_10_3389_fnana_2022_937504 crossref_primary_10_3389_fnagi_2020_570210 crossref_primary_10_1002_eji_202250233 crossref_primary_10_3389_fphar_2022_948600 crossref_primary_10_2147_IJN_S405454 crossref_primary_10_1177_10738584251316558 crossref_primary_10_1177_10781552221077037 crossref_primary_10_1177_20420986231165674 crossref_primary_10_1111_cns_70053 crossref_primary_10_3390_ijms222011131 crossref_primary_10_1134_S0006350922040224 crossref_primary_10_1016_j_neuint_2022_105401 crossref_primary_10_1016_j_brainresbull_2024_111056 crossref_primary_10_1080_1354750X_2022_2145496 crossref_primary_10_3390_biom13121784 crossref_primary_10_1002_med_21986 crossref_primary_10_3389_fneur_2022_829090 crossref_primary_10_1016_j_exer_2025_110603 crossref_primary_10_1016_j_bbi_2024_10_032 crossref_primary_10_3389_fnins_2021_628983 crossref_primary_10_3389_fphys_2024_1394740 crossref_primary_10_3390_ijms25126554 crossref_primary_10_3390_ijms26167966 crossref_primary_10_1590_1678_9199_jvatitd_2023_0065 crossref_primary_10_1007_s11011_024_01511_8 crossref_primary_10_1038_s41380_023_02051_w crossref_primary_10_3390_metabo12050459 crossref_primary_10_1007_s43440_024_00657_7 crossref_primary_10_3390_diagnostics15162103 crossref_primary_10_3892_etm_2021_11002 crossref_primary_10_1007_s11064_021_03500_0 crossref_primary_10_3390_biom12040538 crossref_primary_10_1007_s12035_021_02700_7 crossref_primary_10_3390_biom15081111 crossref_primary_10_1016_j_neuropharm_2021_108935 crossref_primary_10_1016_j_cellsig_2021_109951 crossref_primary_10_3390_cells14020094 crossref_primary_10_1007_s12035_024_04012_y crossref_primary_10_1007_s12028_020_01094_z crossref_primary_10_3389_fncel_2021_735300 crossref_primary_10_3390_genes11070804 crossref_primary_10_3233_ADR_220108 crossref_primary_10_3389_fnmol_2023_1171101 crossref_primary_10_1016_j_neuint_2021_105244 crossref_primary_10_3390_ijms25126297 crossref_primary_10_3390_ijms26104736 crossref_primary_10_3390_nu16172996 crossref_primary_10_1007_s10654_023_00988_4 crossref_primary_10_1016_j_ejphar_2023_175903 crossref_primary_10_1016_j_isci_2024_111373 crossref_primary_10_1146_annurev_pharmtox_052220_103416 crossref_primary_10_1007_s10787_025_01923_7 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108221 crossref_primary_10_1016_j_neulet_2021_136013 crossref_primary_10_1007_s11064_024_04194_w crossref_primary_10_1186_s12944_025_02633_3 crossref_primary_10_3390_ijms24065897 crossref_primary_10_3390_ijms232314753 crossref_primary_10_3390_ijms26104623 crossref_primary_10_3389_fncel_2022_888232 crossref_primary_10_1186_s12915_023_01518_0 crossref_primary_10_1186_s13041_025_01201_1 crossref_primary_10_3389_fncel_2023_1233762 crossref_primary_10_4103_1673_5374_317962 crossref_primary_10_1016_j_bcp_2023_115591 crossref_primary_10_1038_s41598_024_77495_3 crossref_primary_10_3389_fcell_2022_842320 crossref_primary_10_4103_1673_5374_379041 crossref_primary_10_3390_cells13231962 crossref_primary_10_3390_ijms23074028 crossref_primary_10_3390_biomedicines11030855 crossref_primary_10_3390_biomedicines12112603 crossref_primary_10_1016_j_neurad_2025_101323 crossref_primary_10_3389_fncel_2021_637784 crossref_primary_10_1007_s12035_024_04398_9 crossref_primary_10_1016_j_neuroscience_2025_05_308 crossref_primary_10_1016_j_brainres_2024_149130 crossref_primary_10_1007_s00210_023_02476_8 crossref_primary_10_1002_advs_202401085 crossref_primary_10_1111_micc_12689 crossref_primary_10_1016_j_bbr_2025_115804 crossref_primary_10_3390_molecules27217207 crossref_primary_10_3390_psychiatryint6030104 crossref_primary_10_1007_s13273_022_00276_4 crossref_primary_10_1016_j_arr_2024_102465 crossref_primary_10_1016_j_neuint_2023_105509 crossref_primary_10_3390_a17100451 crossref_primary_10_3390_ijms252111638 crossref_primary_10_1016_j_bbih_2024_100835 crossref_primary_10_1016_j_neuroimage_2024_120910 crossref_primary_10_1186_s13020_021_00521_3 |
| Cites_doi | 10.1093/hmg/ddn139 10.1006/nbdi.2001.0457 10.1038/s41419-018-1089-5 10.1523/JNEUROSCI.23-24-08568.2003 10.3390/ijms19092834 10.2174/138945013804806479 10.1002/glia.23036 10.1002/glia.20835 10.1007/s00424-004-1318-x 10.1124/mol.112.080457 10.1523/jneurosci.23-08-03364.2003 10.1523/jneurosci.3770-03.2004 10.1046/j.1471-4159.2002.01191.x 10.1016/s0006-8993(96)01022-0 10.1503/cmaj.080282 10.1016/0896-6273(95)90158-2 10.1016/s0896-6273(03)00717-7 10.1097/00004647-199603000-00003 10.3389/fcell.2016.00107 10.1016/j.expneurol.2005.06.005 10.1074/jbc.m211558200 10.1016/j.redox.2014.05.006 10.1002/jnr.490250111 10.1016/j.neures.2004.06.013 10.1002/gps.938 10.1056/nejm199403033300907 10.1016/bs.apha.2014.06.013 10.1523/jneurosci.19-14-j0002.1999 10.1002/jcb.27519 10.1016/s0079-6123(01)32081-2 10.1016/j.ncl.2005.10.004 10.1111/jog.13568 10.1074/jbc.m500003200 10.1016/j.brainres.2017.06.011 10.1002/glia.20958 10.1161/01.str.8.1.51 10.1016/s0006-2952(03)00538-0 10.1113/jphysiol.2010.187609 10.1016/j.nbd.2015.03.028 10.1007/s12264-013-1311-5 10.1073/pnas.97.10.5610 10.1007/s10495-019-01556-6 10.1111/j.1471-4159.2008.05553.x 10.1016/j.brainres.2019.06.016 10.1097/00004647-200112000-00008 10.4049/jimmunol.178.10.6549 10.1038/sj.jcbfm.9600441 10.1093/cercor/bhz179 10.1016/j.tins.2007.07.007 10.1016/j.ejphar.2008.05.047 10.1172/jci71886 10.1523/JNEUROSCI.21-17-06512.2001 10.1016/j.neuropharm.2019.03.002 10.1016/j.neuroscience.2006.08.070 10.1038/srep33609 10.1016/j.nbd.2011.12.014 10.1523/jneurosci.18-21-08751.1998 10.1002/glia.23231 10.1016/j.nbd.2009.09.019 10.1523/jneurosci.2390-10.2010 10.1007/s11010-016-2885-9 10.1038/nature14893 10.1016/s0306-4522(99)00036-6 10.1542/peds.2006-1416 10.1523/jneurosci.4694-06.2007 10.14336/ad.2017.1126 10.1097/00005072-197101000-00008 10.1016/j.cyto.2019.154774 10.1016/0896-6273(95)90159-0 10.1038/35002090 10.1016/0006-8993(91)90730-j 10.1016/j.physbeh.2019.01.005 10.1007/bf00239385 10.1126/science.1252826 10.1007/s12035-015-9339-3 10.1523/jneurosci.1093-14.2014 10.1016/j.nbd.2005.08.014 10.1152/physrev.00024.2014 10.1038/nn2004 10.1523/JNEUROSCI.23-12-04958.2003 10.1161/STROKEAHA.111.632448 10.1002/jnr.24153 10.1074/jbc.m601567200 10.1016/j.neuron.2008.10.013 10.1007/s12031-011-9598-z 10.1111/j.1476-5381.2011.01374.x 10.1523/JNEUROSCI.23-04-01320.2003 10.1161/01.str.0000143329.81997.8a 10.1126/science.284.5421.1845 10.1016/j.neuropharm.2005.05.002 10.1016/j.neuropharm.2008.01.005 10.1007/s004290050051 10.1016/j.neuropharm.2015.09.015 10.1007/s12035-016-0227-2 10.1016/s0169-328x(00)00022-x 10.1038/nrn916 10.1523/jneurosci.5200-05.2006 10.1590/s0004-282x2000000300030 10.1080/02699050701311125 10.1016/j.neuropharm.2005.05.009 10.1159/000049119 10.1002/glia.21121 10.1002/syn.22067 10.1016/j.neuropharm.2015.11.007 10.1042/an20110060 10.2174/1570159x11311030002 10.1016/j.cell.2012.09.005 10.1016/j.neuron.2017.09.056 10.1002/glia.20400 10.1038/s41467-018-03427-1 10.1007/bf00691853 10.1523/jneurosci.20-03-01190.2000 10.3389/fphar.2013.00088 10.1002/glia.20275 10.1007/s11064-014-1374-3 10.1186/1744-8069-5-15 10.1038/jcbfm.2009.286 10.1016/j.nec.2016.05.008 10.1523/jneurosci.22-14-05879.2002 10.1007/s11064-011-0639-3 10.1155/2018/6501031 10.1016/j.neuroscience.2009.12.040 10.1016/j.tins.2011.11.010 10.2174/1570161115666161104095522 10.1002/(sici)1097-4547(19980501)52:3<307::aid-jnr7>3.0.co;2-h 10.1523/JNEUROSCI.0016-17.2017 10.1038/nature04474 10.1016/s0165-3806(01)00303-0 10.1038/aps.2016.162 10.3390/ijms19030651 10.1161/01.str.0000124127.57946.a1 10.1002/glia.20849 10.7150/ijbs.16823 10.1016/j.neuropharm.2018.08.004 10.1016/j.neuroscience.2014.10.059 10.1002/glia.23514 10.1002/hipo.20015 10.1007/s11064-012-0777-2 10.1523/jneurosci.5048-07.2008 10.1186/s12974-018-1230-5 10.1002/glia.20471 10.1016/S0021-9258(17)31741-6 10.1016/j.expneurol.2015.03.014 10.1097/01.wcb.0000145666.68576.71 10.1111/j.1365-2559.2007.02703.x 10.1097/00004647-199712000-00003 10.3892/mmr.2012.816 10.1002/glia.23465 10.1523/jneurosci.3696-05.2006 10.1371/journal.pone.0022135 10.1007/978-3-319-08894-5_8 10.1038/sj.jcbfm.9600438 10.1002/ana.21359 10.1038/nm1568 10.3389/fnins.2019.00767 10.1152/ajpcell.00478.2001 10.1016/s0306-4522(97)00025-0 10.1007/bf03160362 10.1523/JNEUROSCI.3213-17.2018 10.1016/s0161-813x(02)00196-1 10.1002/glia.20174 10.1523/jneurosci.04-07-01884.1984 10.1097/00004647-199903000-00011 10.1016/j.bbadis.2009.09.002 10.1007/s11064-008-9694-9 10.1016/j.bbrc.2019.04.045 10.1523/jneurosci.10-05-01583.1990 10.1152/physrev.00015.2002 10.1016/j.neuint.2007.03.012 10.1016/j.bbabio.2012.02.023 10.3389/fphys.2019.00417 10.1016/j.tins.2014.08.010 10.1111/j.1469-7793.2001.0367k.x 10.1007/s00424-015-1765-6 10.1038/s41593-017-0033-9 10.1177/0963689718781330 10.1016/j.neuroscience.2008.05.059 10.1161/strokeaha.108.531632 10.1016/j.neuropharm.2013.05.032 10.1111/j.1471-4159.2004.02316.x 10.1177/0271678x19861604 10.1046/j.1460-9568.1999.00639.x 10.1113/jp270060 10.1016/j.brainres.2011.08.029 10.1523/JNEUROSCI.0473-04.2004 10.3390/ijms20102450 10.1038/nature04302 10.1523/JNEUROSCI.5137-07.2008 10.1097/00004647-199703000-00006 10.1016/j.neuroscience.2005.08.043 10.1016/j.redox.2018.03.002 10.1002/glia.20634 10.1186/s12868-016-0316-1 10.4137/oed.s17671 10.1093/jnen/62.5.441 10.1002/cne.21823 10.1073/pnas.261713299 10.1161/01.str.0000199613.38911.b2 10.1152/physrev.2001.81.3.1065 10.1073/pnas.0705046104 10.2174/157015909789152146 10.1161/strokeaha.107.489765 10.1111/j.1469-7580.2010.01339.x 10.1038/nn.4647 10.1523/jneurosci.4486-04.2005 10.1038/nature04301 10.1046/j.1471-4159.1994.63031143.x 10.1002/(sici)1098-1136(199903)26:1<1::aid-glia1>3.0.co;2-z 10.1523/jneurosci.0579-07.2007 10.1016/j.neuron.2014.02.007 10.1172/jci89354 10.1371/journal.pone.0036816 10.1007/s10565-013-9252-3 10.1002/glia.22404 10.1113/jphysiol.2010.195503 10.1523/JNEUROSCI.20-01-00034.2000 10.1016/j.pneurobio.2013.11.006 10.1159/000346682 10.1371/journal.pone.0016803 10.1523/JNEUROSCI.18-10-03606.1998 10.1038/nature18928 10.1016/j.neurobiolaging.2011.11.007 10.1038/sj.emboj.7600234 10.1038/72256 10.1016/s0006-8993(97)00921-9 10.3389/fnins.2011.00040 10.1097/wnr.0000000000000700 10.5772/64991 10.1172/jci10203 10.1177/0271678X19830791 10.1152/physrev.00011.2017 10.3390/biology5040037 10.1523/jneurosci.23-05-01750.2003 10.1016/j.neuroscience.2014.11.048 10.1002/glia.20940 10.2174/1871527315666160922104848 10.1002/cne.20972 10.1111/j.1460-9568.1995.tb01090.x 10.1016/s0014-2999(02)01847-2 10.1179/1476830514y.0000000127 10.1007/s004410050702 10.1038/ncomms8066 10.1152/ajpcell.1993.264.4.c836 10.1002/cne.21289 10.1016/j.neuint.2010.08.021 10.1161/STROKEAHA.108.533166 10.2174/1381612822666151214125950 10.1007/s00109-019-01745-5 10.1161/01.str.21.10.1470 10.1007/s12640-018-9911-5 10.1097/00004647-199712000-00002 10.1523/jneurosci.0017-17.2017 10.1038/nm1390 10.1074/jbc.M606459200 10.1002/jnr.20674 10.1111/cns.12263 10.1073/pnas.0307850101 10.1016/0006-8993(90)90189-i 10.1007/s12035-008-8028-x 10.1038/nrn2803 10.1161/01.str.0000136149.81831.c5 10.1523/jneurosci.20-01-00251.2000 10.1016/j.fct.2018.01.023 10.1371/journal.pone.0039959 10.1097/01.wcb.0000111614.19196.04 10.2174/1567205043480591 10.1124/pr.110.003889 10.1007/s12035-015-9278-z 10.1523/jneurosci.0531-04.2004 10.1046/j.1471-4159.2002.00866.x 10.1016/j.bbamem.2017.03.018 10.1523/jneurosci.4689-05.2006 10.1161/01.str.30.11.2320 10.1038/nrm1150 10.3389/fnmol.2018.00344 10.1007/s00726-011-0865-7 10.1002/glia.20114 10.1523/jneurosci.23-08-03394.2003 10.1523/JNEUROSCI.0455-06.2006 10.1161/01.str.0000048846.09677.62 10.1002/glia.22517 10.1161/strokeaha.111.626911 10.1007/978-3-7091-9115-6_3 10.1038/s41419-018-0351-1 10.1016/j.neuint.2010.08.016 10.1016/j.cell.2004.11.049 10.1177/1756286418774254 10.1023/a:1010956711295 10.3171/jns.2000.93.4.0647 10.1038/aps.2014.1 10.5607/en.2016.25.5.222 10.1371/journal.pone.0087420 10.1016/j.neuint.2012.02.013 10.3389/fnins.2018.00241 10.1016/j.brainres.2004.05.017 10.1002/(sici)1098-1136(199804)22:4<371::aid-glia6>3.0.co;2-6 10.2174/1381612823666170710161858 10.1002/glia.20649 10.1016/j.expneurol.2018.01.019 10.1016/j.neulet.2018.11.031 10.1016/s0034-5687(01)00306-1 10.1002/ana.21659 10.1113/jp275053 10.1016/j.brainresbull.2012.02.002 10.1523/jneurosci.5578-10.2011 10.1038/jcbfm.2010.168 10.1523/jneurosci.17-23-09212.1997 10.1074/jbc.m600504200 10.1038/nn1246 10.1016/j.jchemneu.2019.04.004 10.1002/glia.20717 10.1038/375599a0 10.1007/s12031-012-9875-5 10.1016/0028-3908(94)00129-g 10.1007/s12035-015-9652-x 10.1016/j.ijdevneu.2011.02.012 10.1007/s11064-017-2434-2 10.1016/j.neuroscience.2006.09.034 10.1097/00004647-199805000-00007 10.1074/jbc.M114.582155 10.1523/JNEUROSCI.18-02-00698.1998 10.1007/s00424-003-1146-4 10.1136/practneurol-2013-000782 10.7150/thno.30879 10.1016/j.neuroscience.2008.08.043 10.1016/j.brainresbull.2017.01.015 10.1016/0006-8993(95)00832-b 10.1002/glia.22556 10.1016/j.neuroscience.2009.11.062 10.1097/00004647-200101000-00002 10.2174/092986712799462711 10.1016/bs.ctm.2018.07.005 10.1152/ajpcell.00538.2001 10.1016/bs.ctm.2018.07.006 10.1016/j.neuint.2003.06.001 10.1523/jneurosci.22-01-00209.2002 10.3389/fnins.2018.00523 10.1016/j.freeradbiomed.2018.02.036 10.1523/JNEUROSCI.17-21-08363.1997 10.1074/jbc.274.45.31891 10.1073/pnas.1404651111 10.1016/j.pediatrneurol.2013.12.007 10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s 10.1248/bpb.b15-00133 10.3892/ijo.22.1.15 10.1177/0271678X16654495 10.1139/y92-280 10.1016/j.neulet.2013.03.010 10.1093/cercor/bhr254 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 10.1089/neu.2013.3223 10.1523/jneurosci.4255-14.2015 10.1111/jnc.12314 10.1016/j.steroids.2011.02.013 10.1016/0006-8993(91)91596-s 10.1161/01.str.0000143730.29964.93 10.2174/187152710793361612 10.1016/j.neuron.2019.03.029 10.1093/brain/awl392 10.1523/JNEUROSCI.22-02-00455.2002 10.1038/nn1472 10.1002/jnr.22139 10.4414/smw.2017.14538 10.1016/0304-3940(93)90458-w 10.1038/nm0398-291 10.1113/jphysiol.2005.103820 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Belov Kirdajova, Kriska, Tureckova and Anderova. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Belov Kirdajova, Kriska, Tureckova and Anderova. 2020 Belov Kirdajova, Kriska, Tureckova and Anderova |
| Copyright_xml | – notice: Copyright © 2020 Belov Kirdajova, Kriska, Tureckova and Anderova. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Belov Kirdajova, Kriska, Tureckova and Anderova. 2020 Belov Kirdajova, Kriska, Tureckova and Anderova |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fncel.2020.00051 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1662-5102 |
| ExternalDocumentID | oai_doaj_org_article_0067b235453f4983b570eaa9398f4e49 PMC7098326 32265656 10_3389_fncel_2020_00051 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Grantová Agentura České Republiky grantid: 19-02046S, 19-03016S |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-fbe0aae2f8bc6b71ea3bca060c474ccd0e256b52997746631936febde1b5c2773 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 299 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525584500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5102 |
| IngestDate | Mon Nov 10 04:31:19 EST 2025 Tue Nov 04 02:00:25 EST 2025 Fri Sep 05 08:15:22 EDT 2025 Fri Jul 25 11:50:38 EDT 2025 Thu Apr 03 06:55:54 EDT 2025 Tue Nov 18 22:35:47 EST 2025 Sat Nov 29 05:35:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | glutamate excitotoxicity ischemic pathway cell death glutamate uptake/release oligodendrocytes astrocytes NG2 glia glutamate receptors and transporters |
| Language | English |
| License | Copyright © 2020 Belov Kirdajova, Kriska, Tureckova and Anderova. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-fbe0aae2f8bc6b71ea3bca060c474ccd0e256b52997746631936febde1b5c2773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Balázs Pál, University of Debrecen, Hungary Reviewed by: Yuriy Pankratov, University of Warwick, United Kingdom; Mario Valentino, University of Malta, Malta |
| OpenAccessLink | https://www.proquest.com/docview/2379266062?pq-origsite=%requestingapplication% |
| PMID | 32265656 |
| PQID | 2379266062 |
| PQPubID | 4424410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0067b235453f4983b570eaa9398f4e49 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098326 proquest_miscellaneous_2387691015 proquest_journals_2379266062 pubmed_primary_32265656 crossref_primary_10_3389_fncel_2020_00051 crossref_citationtrail_10_3389_fncel_2020_00051 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-19 |
| PublicationDateYYYYMMDD | 2020-03-19 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in cellular neuroscience |
| PublicationTitleAlternate | Front Cell Neurosci |
| PublicationYear | 2020 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Unal-Cevik (B333) 2004; 35 Dave (B69) 2005; 82 Linying (B189) 2014; 50 Davalos (B68) 2005; 8 Dhodda (B78) 2004; 89 Kimelberg (B165) 1990; 10 Diaz-Ruiz (B79) 2016; 27 Pignataro (B257) 2004; 35 Shibata (B300) 2000; 106 Tannenberg (B324) 2004; 1 Astrup (B18) 1977; 8 Marmiroli (B202) 2012; 19 Erecińska (B92) 2001; 128 Kahles (B150) 2007; 38 Strong (B314) 2007; 130 Angulo (B14) 2004; 24 Burns (B42) 2009; 57 Falahati (B95) 2013; 35 Belayev (B27) 1997; 17 O’Kane (B235) 1999; 274 Rama (B269) 2016 Micu (B214) 2006; 439 Deng (B76) 2014; 9 Van Damme (B335) 2007; 104 Xiao (B354) 2018 Lehre (B181) 1997; 744 Segovia (B293) 2008; 63 Mifsud (B216) 2014; 20 Hu (B138) 2018; 113 Pivovarova (B262) 2004; 24 Du (B86) 1996; 16 Doyle (B84) 2018; 9 Mori (B224) 2004; 45 Murugan (B227) 2011; 59 Noda (B233) 2000; 20 Pregnolato (B264) 2019; 10 Sanganalmath (B287) 2017; 426 Vitarella (B338) 1994; 63 Doyle (B83) 2008; 55 French (B101) 2009; 87 Yuan (B360) 1996; 39 Jha (B147) 2019; 145 Liu (B191) 2018; 9 Rossi (B278) 2000; 403 Crespo (B62) 2007; 21 Guo (B118) 2019; 1720 Butenko (B46) 2012; 7 Honsa (B136) 2012; 7 Trendelenburg (B330) 2002; 22 D’Antoni (B66) 2008; 33 Sun (B318) 2006; 281 Mark (B201) 2001; 22 Li (B185) 2000; 20 Lyons (B196) 1998; 18 Weller (B346) 2008; 155 Zeng (B362) 2012; 5 Ransom (B270) 2009; 65 Girling (B112) 2018; 96 Andreeva (B13) 2014; 6 Jayakumar (B146) 2018; 43 Ahrendsen (B3) 2016; 64 Umebayashi (B332) 2014; 31 Zhang (B363) 2011; 6 Abdullaev (B1) 2006; 572 Baron (B25) 2001; 11 Du (B87) 2018; 303 Arranz (B17) 2010; 37 Sanchez-Olea (B286); 156 Burnstock (B43) 2017; 16 Chen (B54) 2015; 284 Itoh (B144) 2002; 81 Matute (B210) 2006; 53 Zhang (B365) 2003; 40 Noda (B232) 1999; 92 Ryoo (B281) 2016; 25 Chan (B50) 2001; 21 Persson (B253) 2012; 42 Thompson (B325) 2014; 71 Baltan (B21) 2014; 11 Furuta (B106) 1997; 17 Gundersen (B117) 2015; 95 Dzamba (B90) 2013; 11 Wu (B353) 2016; 53 Li (B187) 2019; 513 Pedata (B252) 2016; 104 Zhao (B370) 2017; 1671 Hossmann (B137) 1996; 8 Chisholm (B59) 2016; 85 Yang (B357) 2019; 102 Davidson (B70) 2013; 14 Davis (B71) 2014; 111 Zhang (B364) 2012; 43 Juurlink (B149) 1998; 22 Yao (B359) 2018; 9 Káradóttir (B154) 2007; 145 Katayama (B157) 1991; 558 McDonald (B212) 1998; 4 Tanaka (B323) 2002; 99 Ganel (B108) 2006; 21 Ribeiro (B274) 2010; 9 Seshadri (B295) 2006; 37 Soria (B309) 2014; 124 Drejer (B85) 1982; 47 Kumagai (B173) 2019; 73 Jung (B148) 2017; 147 Morita (B226) 2007; 55 Gagliardi (B107) 2000; 58 Orrenius (B240) 2003; 4 Kugler (B172) 2004; 14 Socodato (B306) 2018; 118 Rakers (B268) 2017; 127 Zhao (B372) 1997; 17 Kalogeris (B151) 2014; 2 Yang (B358) 2018; 16 VanGilder (B336) 2012; 88 Buser (B45) 2010; 30 Pforte (B255) 2005; 136 Schneider (B290) 1992; 70 Niizuma (B231) 2010; 1802 Back (B20) 2002; 22 Hansson (B125) 1994; 269 Li (B184) 2018; 11 Gülke (B116) 2018; 11 Dehnes (B72) 1998; 18 Kim (B162) 2018; 27 Kanai (B152) 2004; 447 Sakoh (B282) 2000; 93 Arbeloa (B16) 2012; 45 Lin (B188) 2008; 589 Pivonkova (B261) 2010; 57 Ketheeswaranathan (B160) 2011; 1418 Grygorowicz (B115) 2010; 57 Shih (B302) 2003; 23 Bezzi (B33) 2001; 132 Tretter (B331) 2002; 83 Atoji (B19) 2019; 98 Hansen (B124) 2014; 289 Ceprian (B49) 2019; 20 Stokum (B313) 2018; 66 Illarionova (B141) 2010; 168 Lipton (B190) 1994; 330 Montero (B222) 2015; 286 Fujimoto (B103) 2004; 50 Bergersen (B31) 2012; 22 Lazarou (B177) 2015; 524 Mongin (B220) 2016; 468 Su (B315); 282 Onténiente (B238) 2003; 66 Nedergaard (B229) 2002; 3 Talos (B322) 2006; 497 Káradóttir (B155) 2005; 438 Kirino (B166) 1984; 62 Somjen (B307) 2001; 81 Chen (B57) 2003; 23 Takano (B319) 2009; 40 Lee (B178) 2003; 278 Wadiche (B342) 1995; 15 Salter (B283) 2005; 438 Krzyżanowska (B170) 2014; 35 Bramlett (B38) 2004; 24 Xin (B355) 2009; 5 Akanuma (B5) 2015; 38 Baltan (B22) 2016; 110 Broughton (B41) 2009; 40 Gottlieb (B114) 1997; 17 Zhang (B369) 2007; 27 Eyo (B93) 2013; 73 Liu (B193) 2013; 29 Desilva (B77) 2007; 501 Chan (B52) 1990; 25 Su (B316); 282 Wu (B352) 2013; 49 Gong (B113) 2012; 37 Luoma (B195) 2011; 76 Fern (B97) 2019; 694 Simões (B304) 2018; 9 Piccolini (B256) 2013; 29 Cuartero (B63) 2016; 22 Fern (B98) 2000; 20 Pajarillo (B245) 2019; 161 Zhang (B366) 2012; 60 Marini (B200) 1999; 30 Connor (B61) 1996; 17 Kimelberg (B164) 2005; 50 Iadecola (B140) 2001; 21 Aizenman (B4) 2000; 295 Sattler (B288) 1999; 284 Chen (B55) 2005; 49 Kang (B153) 2008; 28 Palygin (B246) 2011; 163 Miao (B213) 2005; 280 Osei-Owusu (B241) 2018; 81 Deng (B73) 2003; 24 Woo (B351) 2012; 151 Beschorner (B32) 2007; 50 Lehre (B180) 1998; 18 Liu (B192) 2006; 54 Jabaudon (B145) 2000; 97 Montana (B221) 2004; 24 Heiss (B133) 2004; 35 Gupta (B119) 2013; 543 Hartings (B127) 2017; 37 Pachernegg (B243) 2012; 35 Park (B250) 2008; 178 Savtchouk (B289) 2018; 38 Shashidharan (B297) 1997; 773 Papazian (B249) 2018; 19 Dale (B65) 2009; 7 Yan (B356) 2010; 30 Heurteaux (B134) 2004; 23 Pang (B247) 2010; 166 Hawkins (B130) 2016; 5 Manley (B199) 2000; 6 Chen (B56) 2001; 21 Uzdensky (B334) 2019; 24 Soriano (B310) 2006; 26 Alberdi (B6) 2002; 9 Allen (B7) 2017; 96 Deng (B75) 2004; 101 Min (B218) 2006; 26 Wilson (B348) 2018; 81 Rossi (B277) 2007; 10 Winkler (B350) 2016; 27 Schober (B291) 2017; 595 Gupta (B120) 2003; 22 Stokum (B312) 2015; 40 Bohmbach (B36) 2018; 136 Imura (B142) 2013; 61 Olney (B237) 1971; 30 North (B234) 2002; 82 Kitagawa (B167) 1991; 561 Pocock (B263) 2007; 30 Sivakumar (B305) 2010; 58 Kawahara (B159) 2005; 49 Baltan (B23) 2008; 28 Verma (B337) 2018; 12 Warby (B345) 2008; 17 Nadarajan (B228) 2014; 14 Puig (B266) 2018; 19 Serrano (B294) 2008; 56 Bridges (B40) 2012; 64 Feng (B96) 2019 Li (B183) 2013; 127 Lai (B174) 2014; 115 Fairman (B94) 1995; 375 Wilson-Costello (B349) 2007; 119 Matsumoto (B204) 1990; 21 Sheldon (B298) 2007; 51 Ginsberg (B111) 2003; 34 Inoue (B143) 2007; 27 Krebs (B169) 2003; 23 Li (B186) 1999; 19 Matute (B208) 2002; 447 Torralba (B329) 2016; 4 Chaudhry (B53) 1995; 15 Ma (B197) 2018; 15 Rothman (B279) 1984; 4 Matute (B209) 2012; 4 Feustel (B99) 2004; 35 Matthias (B205) 2003; 23 Gidday (B110) 1999; 19 Harvey (B129) 2011; 6 Amantea (B10) 2018; 12 Berger (B30) 2000; 421 Chen (B58) 2017; 54 Danysz (B67) 2003; 18 Anderova (B11) 2011; 31 Dai (B64) 2020; 40 Durán-Laforet (B89) 2019; 13 Hamilton (B121) 2008; 56 Song (B308) 2019; 9 Bell (B28) 2015; 6 Bezzi (B34) 2004; 7 Domercq (B81) 1999; 11 Lewis (B182) 2012; 33 Amani (B9) 2019; 202 Giaume (B109) 2013; 4 Araque (B15) 2014; 81 Pin (B258) 1995; 34 Romera (B276) 2007; 27 Stellwagen (B311) 2005; 25 Takumi (B321) 1997; 79 Domercq (B82) 2007; 178 Hamilton (B122) 2010; 11 Matute (B211) 2007; 27 Ni (B230) 2009; 57 Duan (B88) 2003; 23 Thushara Vijayakumar (B327) 2016; 53 Karikó (B156) 2004; 24 Matute (B207) 2011; 219 Rebai (B273) 2018; 34 Voss (B341) 2014; 344 Rauen (B272) 1996; 286 Wang (B344) 2012; 46 Schwarz (B292) 2017; 20 Moretto (B223) 2005; 195 Yung (B361) 2012; 43 Fukamachi (B104) 2001; 132 Hansen (B123) 1988; 9 Oliveira-Ferreira (B236) 2019 Orlando (B239) 2014; 34 Lalo (B175) 2016; 6 Zhao (B371) 2017; 38 Matute (B206) 2008; 38 Pinky (B259) 2018; 38 Volpe (B339) 2011; 29 Torp (B328) 1997; 195 Shibata (B301) 1997; 17 Massie (B203) 2008; 511 Page (B244) 1995; 7 Takeuchi (B320) 2006; 281 Pivonkova (B260) 2017; 23 Shelton (B299) 1999; 26 Chan (B51) 1990; 51 Sánchez-Gómez (B284) 2011; 31 Burzomato (B44) 2010; 588 Andrade (B12) 2010; 588 Rowley (B280) 2012; 61 MacAulay (B198) 2001; 530 Hinzman (B135) 2015; 267 Riddle (B275) 2006; 26 Milewski (B217) 2019; 123 Harrigan (B126) 2008; 106 Brickley (B39) 2003; 23 Waller (B343) 2018; 66 Bender (B29) 1998; 52 Adams (B2) 2018; 21 Lee (B179) 2015; 593 Morioka (B225) 2008; 56 Volterra (B340) 1994; 46 Seyama (B296) 2018; 44 Kim (B163) 2018; 1860 Husain (B139) 1995; 698 Fricker (B102) 2018; 98 Panickar (B248) 2015; 18 Kauppinen (B158) 2007; 145 Thrane (B326) 2014; 37 Lalo (B176) 2006; 26 Pasantes-Morales (B251) 2012; 37 Domercq (B80) 2010; 58 Deng (B74) 2006; 281 Mölders (B219) 2018; 66 López-Redondo (B194) 2000; 76 Blackshaw (B35) 2011; 5 Colangelo (B60) 2004; 1016 Simard (B303) 2006; 12 Haynes (B132) 2003; 62 Micu (B215) 2007; 13 Sanchez-Olea (B285); 264 Barres (B26) 2008; 60 Cai (B48) 2016; 12 Eliasof (B91) 1998; 18 Bowens (B37) 2013; 83 Bano (B24) 2005; 120 Rao (B271) 2001; 26 Fiacco (B100) 2018; 38 Petr (B254) 2015; 35 Harukuni (B128) 2006; 24 Wetterling (B347) 2016; 17 Bylicky (B47) 2018; 2018 Furness (B105) 2008; 157 Sugawara (B317) 2002; 22 Kim (B161) 2014; 6 Kitagawa (B168) 1990; 528 Kudin (B171) 2012; 1817 Zhang (B367) 2019; 97 Price (B265) 2005; 49 Hayakawa (B131) 2016; 535 Zhang (B368) 2017; 54 Allen (B8) 2004; 449 Radak (B267) 2017; 15 Ouyang (B242) 2013; 61 |
| References_xml | – volume: 6 start-page: 206 year: 2014 ident: B161 article-title: HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation publication-title: Am. J. Transl. Res. – volume: 17 start-page: 2390 year: 2008 ident: B345 article-title: Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn139 – volume: 9 start-page: 234 year: 2002 ident: B6 article-title: Ca2+ influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.2001.0457 – volume: 9 start-page: 1033 year: 2018 ident: B359 article-title: Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1089-5 – volume: 23 start-page: 8568 year: 2003 ident: B57 article-title: Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-24-08568.2003 – volume: 19 start-page: E2834 year: 2018 ident: B266 article-title: Molecular communication of a dying neuron in stroke publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092834 – volume: 14 start-page: 36 year: 2013 ident: B70 article-title: A key role for connexin hemichannels in spreading ischemic brain injury publication-title: Curr. Drug Targets doi: 10.2174/138945013804806479 – volume: 64 start-page: 1972 year: 2016 ident: B3 article-title: Juvenile striatal white matter is resistant to ischemia-induced damage publication-title: Glia doi: 10.1002/glia.23036 – volume: 57 start-page: 1115 year: 2009 ident: B42 article-title: Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice publication-title: Glia doi: 10.1002/glia.20835 – volume: 449 start-page: 132 year: 2004 ident: B8 article-title: Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy publication-title: Pflugers Arch. doi: 10.1007/s00424-004-1318-x – volume: 83 start-page: 22 year: 2013 ident: B37 article-title: DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells publication-title: Mol. Pharmacol. doi: 10.1124/mol.112.080457 – volume: 23 start-page: 3364 year: 2003 ident: B169 article-title: Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro publication-title: J. Neurosci. doi: 10.1523/jneurosci.23-08-03364.2003 – volume: 24 start-page: 2633 year: 2004 ident: B221 article-title: Vesicular glutamate transporter-dependent glutamate release from astrocytes publication-title: J. Neurosci. doi: 10.1523/jneurosci.3770-03.2004 – volume: 83 start-page: 855 year: 2002 ident: B331 article-title: Glutamate release by an Na+ load and oxidative stress in nerve terminals: relevance to ischemia/reperfusion publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2002.01191.x – volume: 744 start-page: 129 year: 1997 ident: B181 article-title: Localization of the glutamate transporter protein GLAST in rat retina publication-title: Brain Res. doi: 10.1016/s0006-8993(96)01022-0 – volume: 178 start-page: 1163 year: 2008 ident: B250 article-title: Traumatic brain injury: can the consequences be stopped? publication-title: CMAJ doi: 10.1503/cmaj.080282 – volume: 15 start-page: 711 year: 1995 ident: B53 article-title: Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry publication-title: Neuron doi: 10.1016/0896-6273(95)90158-2 – volume: 40 start-page: 971 year: 2003 ident: B365 article-title: ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression publication-title: Neuron doi: 10.1016/s0896-6273(03)00717-7 – volume: 16 start-page: 195 year: 1996 ident: B86 article-title: Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199603000-00003 – volume: 4 start-page: 107 year: 2016 ident: B329 article-title: Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00107 – volume: 195 start-page: 400 year: 2005 ident: B223 article-title: Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.06.005 – volume: 278 start-page: 12029 year: 2003 ident: B178 article-title: Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.m211558200 – volume: 2 start-page: 702 year: 2014 ident: B151 article-title: Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs. preconditioning publication-title: Redox Biol. doi: 10.1016/j.redox.2014.05.006 – volume: 25 start-page: 87 year: 1990 ident: B52 article-title: Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture publication-title: J. Neurosci. Res. doi: 10.1002/jnr.490250111 – volume: 50 start-page: 179 year: 2004 ident: B103 article-title: Mechanisms of oxygen glucose deprivation-induced glutamate release from cerebrocortical slice cultures publication-title: Neurosci. Res. doi: 10.1016/j.neures.2004.06.013 – volume: 18 start-page: S23 year: 2003 ident: B67 article-title: The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.938 – volume: 330 start-page: 613 year: 1994 ident: B190 article-title: Excitatory amino acids as a final common pathway for neurologic disorders publication-title: N. Engl. J. Med. doi: 10.1056/nejm199403033300907 – volume: 71 start-page: 165 year: 2014 ident: B325 article-title: Drug delivery to the ischemic brain publication-title: Adv. Pharmacol. doi: 10.1016/bs.apha.2014.06.013 – volume: 19 start-page: RC16 year: 1999 ident: B186 article-title: Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport publication-title: J. Neurosci. doi: 10.1523/jneurosci.19-14-j0002.1999 – year: 2018 ident: B354 article-title: Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.27519 – volume: 132 start-page: 255 year: 2001 ident: B33 article-title: Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications publication-title: Prog. Brain Res. doi: 10.1016/s0079-6123(01)32081-2 – volume: 24 start-page: 1 year: 2006 ident: B128 article-title: Mechanisms of brain injury after global cerebral ischemia publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2005.10.004 – volume: 44 start-page: 601 year: 2018 ident: B296 article-title: Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes publication-title: J. Obstet. Gynaecol. Res. doi: 10.1111/jog.13568 – volume: 280 start-page: 21693 year: 2005 ident: B213 article-title: Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.m500003200 – volume: 1671 start-page: 67 year: 2017 ident: B370 article-title: The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation publication-title: Brain Res. doi: 10.1016/j.brainres.2017.06.011 – volume: 58 start-page: 730 year: 2010 ident: B80 article-title: P2X7 receptors mediate ischemic damage to oligodendrocytes publication-title: Glia doi: 10.1002/glia.20958 – volume: 8 start-page: 51 year: 1977 ident: B18 article-title: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia publication-title: Stroke doi: 10.1161/01.str.8.1.51 – volume: 66 start-page: 1643 year: 2003 ident: B238 article-title: The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy publication-title: Biochem. Pharmacol. doi: 10.1016/s0006-2952(03)00538-0 – volume: 588 start-page: 1499 year: 2010 ident: B12 article-title: Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.187609 – volume: 85 start-page: 245 year: 2016 ident: B59 article-title: Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.03.028 – volume: 29 start-page: 229 year: 2013 ident: B193 article-title: Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury publication-title: Neurosci. Bull. doi: 10.1007/s12264-013-1311-5 – volume: 97 start-page: 5610 year: 2000 ident: B145 article-title: Acute decrease in net glutamate uptake during energy deprivation publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.97.10.5610 – volume: 24 start-page: 687 year: 2019 ident: B334 article-title: Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins publication-title: Apoptosis doi: 10.1007/s10495-019-01556-6 – volume: 106 start-page: 2449 year: 2008 ident: B126 article-title: Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05553.x – volume: 1720 start-page: 146297 year: 2019 ident: B118 article-title: The temporal and spatial changes of actin cytoskeleton in the hippocampal CA1 neurons following transient global ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2019.06.016 – volume: 21 start-page: 1436 year: 2001 ident: B140 article-title: Increased susceptibility to ischemic brain injury in cyclooxygenase-1-deficient mice publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200112000-00008 – volume: 178 start-page: 6549 year: 2007 ident: B82 article-title: System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.178.10.6549 – volume: 27 start-page: 1352 year: 2007 ident: B369 article-title: The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600441 – year: 2019 ident: B96 article-title: Stimulation of mGluR1/5 improves defective internalization of AMPA receptors in NPC1 mutant mouse publication-title: Cereb. Cortex doi: 10.1093/cercor/bhz179 – volume: 30 start-page: 527 year: 2007 ident: B263 article-title: Neurotransmitter receptors on microglia publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.07.007 – volume: 589 start-page: 85 year: 2008 ident: B188 article-title: Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2008.05.047 – volume: 124 start-page: 3645 year: 2014 ident: B309 article-title: Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage publication-title: J. Clin. Invest. doi: 10.1172/jci71886 – volume: 21 start-page: 6512 year: 2001 ident: B56 article-title: Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-17-06512.2001 – volume: 161 start-page: 107559 year: 2019 ident: B245 article-title: The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.03.002 – volume: 145 start-page: 1426 year: 2007 ident: B154 article-title: Neurotransmitter receptors in the life and death of oligodendrocytes publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.08.070 – volume: 6 start-page: 33609 year: 2016 ident: B175 article-title: ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex publication-title: Sci. Rep. doi: 10.1038/srep33609 – volume: 45 start-page: 954 year: 2012 ident: B16 article-title: P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2011.12.014 – volume: 18 start-page: 8751 year: 1998 ident: B180 article-title: The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain publication-title: J. Neurosci. doi: 10.1523/jneurosci.18-21-08751.1998 – volume: 66 start-page: 108 year: 2018 ident: B313 article-title: SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling publication-title: Glia doi: 10.1002/glia.23231 – volume: 37 start-page: 156 year: 2010 ident: B17 article-title: Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2009.09.019 – volume: 30 start-page: 14213 year: 2010 ident: B356 article-title: Experimental characterization and mathematical modeling of P2X7 receptor channel gating publication-title: J. Neurosci. doi: 10.1523/jneurosci.2390-10.2010 – volume: 426 start-page: 111 year: 2017 ident: B287 article-title: Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-016-2885-9 – volume: 524 start-page: 309 year: 2015 ident: B177 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 – volume: 92 start-page: 1465 year: 1999 ident: B232 article-title: Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide publication-title: Neuroscience doi: 10.1016/s0306-4522(99)00036-6 – volume: 119 start-page: 37 year: 2007 ident: B349 article-title: Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002 publication-title: Pediatrics doi: 10.1542/peds.2006-1416 – volume: 27 start-page: 1445 year: 2007 ident: B143 article-title: Roles of volume-sensitive chloride channel in excitotoxic neuronal injury publication-title: J. Neurosci. doi: 10.1523/jneurosci.4694-06.2007 – volume: 9 start-page: 924 year: 2018 ident: B191 article-title: Mitochondria in ischemic stroke: new insight and implications publication-title: Aging Dis. doi: 10.14336/ad.2017.1126 – volume: 30 start-page: 75 year: 1971 ident: B237 article-title: Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-197101000-00008 – volume: 123 start-page: 154774 year: 2019 ident: B217 article-title: TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes publication-title: Cytokine doi: 10.1016/j.cyto.2019.154774 – volume: 15 start-page: 721 year: 1995 ident: B342 article-title: Ion fluxes associated with excitatory amino acid transport publication-title: Neuron doi: 10.1016/0896-6273(95)90159-0 – volume: 403 start-page: 316 year: 2000 ident: B278 article-title: Glutamate release in severe brain ischaemia is mainly by reversed uptake publication-title: Nature doi: 10.1038/35002090 – volume: 558 start-page: 136 year: 1991 ident: B157 article-title: Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo publication-title: Brain Res. doi: 10.1016/0006-8993(91)90730-j – volume: 202 start-page: 52 year: 2019 ident: B9 article-title: NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2019.01.005 – volume: 47 start-page: 259 year: 1982 ident: B85 article-title: Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions publication-title: Exp. Brain Res. doi: 10.1007/bf00239385 – volume: 344 start-page: 634 year: 2014 ident: B341 article-title: Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC publication-title: Science doi: 10.1126/science.1252826 – volume: 53 start-page: 4010 year: 2016 ident: B353 article-title: CX3CL1/CX3CR1 axis plays a key role in ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9339-3 – volume: 34 start-page: 14752 year: 2014 ident: B239 article-title: Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics publication-title: J. Neurosci. doi: 10.1523/jneurosci.1093-14.2014 – volume: 21 start-page: 556 year: 2006 ident: B108 article-title: Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2005.08.014 – volume: 95 start-page: 695 year: 2015 ident: B117 article-title: Neuroglial transmission publication-title: Physiol. Rev. doi: 10.1152/physrev.00024.2014 – volume: 10 start-page: 1377 year: 2007 ident: B277 article-title: Astrocyte metabolism and signaling during brain ischemia publication-title: Nat. Neurosci. doi: 10.1038/nn2004 – volume: 23 start-page: 4958 year: 2003 ident: B39 article-title: NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-04958.2003 – volume: 43 start-page: 1700 year: 2012 ident: B364 article-title: Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? publication-title: Stroke doi: 10.1161/STROKEAHA.111.632448 – volume: 96 start-page: 391 year: 2018 ident: B112 article-title: Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity publication-title: J. Neurosci. Res. doi: 10.1002/jnr.24153 – volume: 281 start-page: 17420 year: 2006 ident: B318 article-title: Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface publication-title: J. Biol. Chem. doi: 10.1074/jbc.m601567200 – volume: 60 start-page: 430 year: 2008 ident: B26 article-title: The mystery and magic of glia: a perspective on their roles in health and disease publication-title: Neuron doi: 10.1016/j.neuron.2008.10.013 – volume: 46 start-page: 384 year: 2012 ident: B344 article-title: Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-011-9598-z – volume: 163 start-page: 1755 year: 2011 ident: B246 article-title: Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2011.01374.x – volume: 23 start-page: 1320 year: 2003 ident: B88 article-title: P2X7 receptor-mediated release of excitatory amino acids from astrocytes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-04-01320.2003 – volume: 35 start-page: 2671 year: 2004 ident: B133 article-title: Identifying thresholds for penumbra and irreversible tissue damage publication-title: Stroke doi: 10.1161/01.str.0000143329.81997.8a – volume: 284 start-page: 1845 year: 1999 ident: B288 article-title: Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein publication-title: Science doi: 10.1126/science.284.5421.1845 – volume: 49 start-page: 703 year: 2005 ident: B55 article-title: Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2005.05.002 – volume: 55 start-page: 310 year: 2008 ident: B83 article-title: Mechanisms of ischemic brain damage publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2008.01.005 – volume: 195 start-page: 317 year: 1997 ident: B328 article-title: Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis publication-title: Anat. Embryol. doi: 10.1007/s004290050051 – volume: 110 start-page: 626 year: 2016 ident: B22 article-title: Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.09.015 – volume: 54 start-page: 7555 year: 2017 ident: B58 article-title: TRPC3/6/7 knockdown protects the brain from cerebral ischemia injury via astrocyte apoptosis inhibition and effects on NF-κB translocation publication-title: Mol. Neurobiol. doi: 10.1007/s12035-016-0227-2 – volume: 76 start-page: 429 year: 2000 ident: B194 article-title: Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy publication-title: Mol. Brain Res. doi: 10.1016/s0169-328x(00)00022-x – volume: 3 start-page: 748 year: 2002 ident: B229 article-title: Beyond the role of glutamate as a neurotransmitter publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn916 – volume: 26 start-page: 3045 year: 2006 ident: B275 article-title: Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury publication-title: J. Neurosci. doi: 10.1523/jneurosci.5200-05.2006 – volume: 58 start-page: 583 year: 2000 ident: B107 article-title: Neuroprotection, excitotoxicity and NMDA antagonists publication-title: Arq. Neuropsiquiatr. doi: 10.1590/s0004-282x2000000300030 – volume: 21 start-page: 441 year: 2007 ident: B62 article-title: Increased serum sFas and TNFα following isolated severe head injury in males publication-title: Brain Inj. doi: 10.1080/02699050701311125 – volume: 49 start-page: 45 year: 2005 ident: B265 article-title: Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2005.05.009 – volume: 11 start-page: 2 year: 2001 ident: B25 article-title: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications publication-title: Cerebrovasc. Dis. doi: 10.1159/000049119 – volume: 59 start-page: 521 year: 2011 ident: B227 article-title: Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats publication-title: Glia doi: 10.1002/glia.21121 – volume: 73 start-page: e22067 year: 2019 ident: B173 article-title: Monitoring of glutamate-induced excitotoxicity by mitochondrial oxygen consumption publication-title: Synapse doi: 10.1002/syn.22067 – volume: 104 start-page: 105 year: 2016 ident: B252 article-title: Purinergic signalling in brain ischemia publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.11.007 – volume: 4 start-page: e00079 year: 2012 ident: B209 article-title: Roles of white matter in central nervous system pathophysiologies publication-title: ASN Neuro doi: 10.1042/an20110060 – volume: 11 start-page: 250 year: 2013 ident: B90 article-title: NMDA receptors in glial cells: pending questions publication-title: Curr. Neuropharmacol. doi: 10.2174/1570159x11311030002 – volume: 151 start-page: 25 year: 2012 ident: B351 article-title: TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation publication-title: Cell doi: 10.1016/j.cell.2012.09.005 – volume: 96 start-page: 697 year: 2017 ident: B7 article-title: Cell biology of astrocyte-synapse interactions publication-title: Neuron doi: 10.1016/j.neuron.2017.09.056 – volume: 54 start-page: 343 year: 2006 ident: B192 article-title: Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress publication-title: Cryobiology doi: 10.1002/glia.20400 – volume: 9 start-page: 1032 year: 2018 ident: B84 article-title: Vesicular glutamate release from central axons contributes to myelin damage publication-title: Nat. Commun. doi: 10.1038/s41467-018-03427-1 – volume: 62 start-page: 201 year: 1984 ident: B166 article-title: Selective vulnerability in the gerbil hippocampus following transient ischemia publication-title: Acta Neuropathol. doi: 10.1007/bf00691853 – volume: 20 start-page: 1190 year: 2000 ident: B185 article-title: Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter publication-title: J. Neurosci. doi: 10.1523/jneurosci.20-03-01190.2000 – volume: 4 start-page: 88 year: 2013 ident: B109 article-title: Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles publication-title: Front. Pharmacol. doi: 10.3389/fphar.2013.00088 – volume: 53 start-page: 212 year: 2006 ident: B210 article-title: Glutamate-mediated glial injury: mechanisms and clinical importance publication-title: Glia doi: 10.1002/glia.20275 – volume: 40 start-page: 317 year: 2015 ident: B312 article-title: Mechanisms of astrocyte-mediated cerebral edema publication-title: Neurochem. Res. doi: 10.1007/s11064-014-1374-3 – volume: 5 start-page: 15 year: 2009 ident: B355 article-title: Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation publication-title: Mol. Pain doi: 10.1186/1744-8069-5-15 – volume: 30 start-page: 1053 year: 2010 ident: B45 article-title: Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2009.286 – volume: 27 start-page: 473 year: 2016 ident: B350 article-title: Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2016.05.008 – volume: 22 start-page: 5879 year: 2002 ident: B330 article-title: Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia publication-title: J. Neurosci. doi: 10.1523/jneurosci.22-14-05879.2002 – volume: 37 start-page: 527 year: 2012 ident: B113 article-title: Intermittent hypobaric hypoxia preconditioning induced brain ischemic tolerance by up-regulating glial glutamate transporter-1 in rats publication-title: Neurochem. Res. doi: 10.1007/s11064-011-0639-3 – volume: 2018 start-page: 6501031 year: 2018 ident: B47 article-title: Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/6501031 – volume: 166 start-page: 464 year: 2010 ident: B247 article-title: Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.12.040 – volume: 35 start-page: 240 year: 2012 ident: B243 article-title: GluN3 subunit-containing NMDA receptors: not just one-trick ponies publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.11.010 – volume: 15 start-page: 115 year: 2017 ident: B267 article-title: Apoptosis and acute brain ischemia in ischemic stroke publication-title: Curr. Vasc. Pharmacol. doi: 10.2174/1570161115666161104095522 – volume: 52 start-page: 307 year: 1998 ident: B29 article-title: Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx publication-title: J. Neurosci. Res. doi: 10.1002/(sici)1097-4547(19980501)52:3<307::aid-jnr7>3.0.co;2-h – volume: 38 start-page: 3 year: 2018 ident: B100 article-title: Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0016-17.2017 – volume: 439 start-page: 988 year: 2006 ident: B214 article-title: NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia publication-title: Nature doi: 10.1038/nature04474 – volume: 132 start-page: 131 year: 2001 ident: B104 article-title: Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia publication-title: Dev. Brain Res. doi: 10.1016/s0165-3806(01)00303-0 – volume: 38 start-page: 445 year: 2017 ident: B371 article-title: Regulation of microglial activation in stroke publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2016.162 – volume: 19 start-page: E651 year: 2018 ident: B249 article-title: Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface glur1 and is partly mediated by TNF publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19030651 – volume: 35 start-page: 1164 year: 2004 ident: B99 article-title: Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra publication-title: Stroke doi: 10.1161/01.str.0000124127.57946.a1 – volume: 57 start-page: 1296 year: 2009 ident: B230 article-title: Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels publication-title: Glia doi: 10.1002/glia.20849 – volume: 12 start-page: 1415 year: 2016 ident: B48 article-title: Catalpol protects pre-myelinating oligodendrocytes against ischemia-induced oxidative injury through ERK1/2 signaling pathway publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.16823 – volume: 145 start-page: 230 year: 2019 ident: B147 article-title: Pathophysiology and treatment of cerebral edema in traumatic brain injury publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.08.004 – volume: 284 start-page: 824 year: 2015 ident: B54 article-title: PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.10.059 – volume: 66 start-page: 2604 year: 2018 ident: B219 article-title: Heterogeneity of the astrocytic AMPA-receptor transcriptome publication-title: Glia doi: 10.1002/glia.23514 – volume: 14 start-page: 975 year: 2004 ident: B172 article-title: Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus publication-title: Hippocampus doi: 10.1002/hipo.20015 – volume: 37 start-page: 2379 year: 2012 ident: B251 article-title: Transporters and channels in cytotoxic astrocyte swelling publication-title: Neurochem. Res. doi: 10.1007/s11064-012-0777-2 – volume: 28 start-page: 4702 year: 2008 ident: B153 article-title: Connexin 43 hemichannels are permeable to ATP publication-title: J. Neurosci. doi: 10.1523/jneurosci.5048-07.2008 – volume: 15 start-page: 198 year: 2018 ident: B197 article-title: Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia publication-title: J. Neuroinflammation doi: 10.1186/s12974-018-1230-5 – volume: 55 start-page: 508 year: 2007 ident: B226 article-title: Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade publication-title: Glia doi: 10.1002/glia.20471 – volume: 269 start-page: 21955 year: 1994 ident: B125 article-title: Metabotropic glutamate receptor activation induces astroglial swelling publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31741-6 – volume: 8 start-page: 195 year: 1996 ident: B137 article-title: Periinfarct depolarizations publication-title: Cerebrovasc. Brain Metab. Rev. – volume: 267 start-page: 243 year: 2015 ident: B135 article-title: Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2015.03.014 – volume: 24 start-page: 1288 year: 2004 ident: B156 article-title: Inhibition of toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.wcb.0000145666.68576.71 – volume: 50 start-page: 897 year: 2007 ident: B32 article-title: Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia publication-title: Histopathology doi: 10.1111/j.1365-2559.2007.02703.x – volume: 22 start-page: 1813 year: 2001 ident: B201 article-title: Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging publication-title: AJNR Am. J. Neuroradiol. – volume: 17 start-page: 1281 year: 1997 ident: B372 article-title: Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits and pixel-based correlation of histopathology with local blood flow and glucose utilization publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199712000-00003 – volume: 5 start-page: 1357 year: 2012 ident: B362 article-title: P2X7 receptor modulation of the viability of radial glial clone L2.3 cells during hypoxic-ischemic brain injury publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2012.816 – volume: 66 start-page: 2316 year: 2018 ident: B343 article-title: Metallothionein-I/II expression associates with the astrocyte DNA damage response and not Alzheimer-type pathology in the aging brain publication-title: Glia doi: 10.1002/glia.23465 – volume: 26 start-page: 1880 year: 2006 ident: B218 article-title: Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation publication-title: J. Neurosci. doi: 10.1523/jneurosci.3696-05.2006 – volume: 6 start-page: e22135 year: 2011 ident: B129 article-title: Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke publication-title: PLoS One doi: 10.1371/journal.pone.0022135 – volume: 11 start-page: 151 year: 2014 ident: B21 article-title: Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury publication-title: Adv. Neurobiol. doi: 10.1007/978-3-319-08894-5_8 – volume: 27 start-page: 1327 year: 2007 ident: B276 article-title: Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARγ target gene involved in neuroprotection publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600438 – volume: 63 start-page: 520 year: 2008 ident: B293 article-title: Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury publication-title: Ann. Neurol. doi: 10.1002/ana.21359 – volume: 13 start-page: 874 year: 2007 ident: B215 article-title: Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy publication-title: Nat. Med. doi: 10.1038/nm1568 – volume: 13 start-page: 767 year: 2019 ident: B89 article-title: Delayed effects of acute reperfusion on vascular remodeling and late-phase functional recovery after stroke publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00767 – volume: 282 start-page: C1136 ident: B315 article-title: Contribution of Na+-K+-Cl− cotransporter to high-[K+]o- induced swelling and EAA release in astrocytes publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00478.2001 – volume: 79 start-page: 1137 year: 1997 ident: B321 article-title: Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ publication-title: Neuroscience doi: 10.1016/s0306-4522(97)00025-0 – volume: 9 start-page: 195 year: 1988 ident: B123 article-title: Brain ion homeostasis in cerebral ischemia publication-title: Neurochem. Pathol. doi: 10.1007/bf03160362 – volume: 38 start-page: 5351 year: 2018 ident: B259 article-title: Region- and activity-dependent regulation of extracellular glutamate publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3213-17.2018 – volume: 24 start-page: 161 year: 2003 ident: B73 article-title: Oligodendroglia in developmental neurotoxicity publication-title: Neurotoxicology doi: 10.1016/s0161-813x(02)00196-1 – volume: 50 start-page: 389 year: 2005 ident: B164 article-title: Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy publication-title: Glia doi: 10.1002/glia.20174 – volume: 4 start-page: 1884 year: 1984 ident: B279 article-title: Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death publication-title: J. Neurosci. doi: 10.1523/jneurosci.04-07-01884.1984 – volume: 19 start-page: 331 year: 1999 ident: B110 article-title: Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199903000-00011 – volume: 1802 start-page: 92 year: 2010 ident: B231 article-title: Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.09.002 – volume: 33 start-page: 2436 year: 2008 ident: B66 article-title: Metabotropic glutamate receptors in glial cells publication-title: Neurochem. Res. doi: 10.1007/s11064-008-9694-9 – volume: 513 start-page: 875 year: 2019 ident: B187 article-title: MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.04.045 – volume: 10 start-page: 1583 year: 1990 ident: B165 article-title: Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures publication-title: J. Neurosci. doi: 10.1523/jneurosci.10-05-01583.1990 – volume: 82 start-page: 1013 year: 2002 ident: B234 article-title: Molecular physiology of P2X receptors publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2002 – volume: 51 start-page: 333 year: 2007 ident: B298 article-title: The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2007.03.012 – volume: 1817 start-page: 1901 year: 2012 ident: B171 article-title: The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.02.023 – volume: 10 start-page: 417 year: 2019 ident: B264 article-title: Glutamate transport and preterm brain injury publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00417 – volume: 37 start-page: 620 year: 2014 ident: B326 article-title: Drowning stars: reassessing the role of astrocytes in brain edema publication-title: Trends Neurosci. doi: 10.1016/j.tins.2014.08.010 – volume: 530 start-page: 367 year: 2001 ident: B198 article-title: Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2001.0367k.x – volume: 468 start-page: 421 year: 2016 ident: B220 article-title: Volume-regulated anion channel—a frenemy within the brain publication-title: Pflugers Arch. doi: 10.1007/s00424-015-1765-6 – volume: 295 start-page: 572 year: 2000 ident: B4 article-title: Alterations of N-methyl-D-aspartate receptor properties after chemical ischemia publication-title: J. Pharmacol. Exp. Ther. – volume: 21 start-page: 9 year: 2018 ident: B2 article-title: The diversity and disparity of the glial scar publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0033-9 – volume: 27 start-page: 1168 year: 2018 ident: B162 article-title: Improvement by human oligodendrocyte progenitor cells of neurobehavioral disorders in an experimental model of neonatal periventricular leukomalacia publication-title: Cell Transplant doi: 10.1177/0963689718781330 – volume: 155 start-page: 1204 year: 2008 ident: B346 article-title: Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia-ischemia publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.05.059 – volume: 40 start-page: e331 year: 2009 ident: B41 article-title: Apoptotic mechanisms after cerebral ischemia publication-title: Stroke doi: 10.1161/strokeaha.108.531632 – volume: 73 start-page: 311 year: 2013 ident: B93 article-title: P2X7 receptor activation regulates microglial cell death during oxygen-glucose deprivation publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.05.032 – volume: 89 start-page: 73 year: 2004 ident: B78 article-title: Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02316.x – year: 2019 ident: B236 article-title: Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678x19861604 – volume: 11 start-page: 2226 year: 1999 ident: B81 article-title: Expression of glutamate transporters in rat optic nerve oligodendrocytes publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00639.x – volume: 593 start-page: 2793 year: 2015 ident: B179 article-title: Mechanisms underlying presynaptic Ca2+ transient and vesicular glutamate release at a CNS nerve terminal during in vitro ischaemia publication-title: J. Physiol. doi: 10.1113/jp270060 – volume: 1418 start-page: 93 year: 2011 ident: B160 article-title: Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2011.08.029 – volume: 24 start-page: 6920 year: 2004 ident: B14 article-title: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0473-04.2004 – volume: 20 start-page: E2450 year: 2019 ident: B49 article-title: Glial cell AMPA receptors in nervous system health, injury and disease publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102450 – volume: 438 start-page: 1162 year: 2005 ident: B155 article-title: NMDA receptors are expressed in oligodendrocytes and activated in ischaemia publication-title: Nature doi: 10.1038/nature04302 – volume: 28 start-page: 1479 year: 2008 ident: B23 article-title: White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5137-07.2008 – volume: 17 start-page: 290 year: 1997 ident: B114 article-title: Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199703000-00006 – volume: 136 start-page: 1133 year: 2005 ident: B255 article-title: Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.08.043 – volume: 16 start-page: 263 year: 2018 ident: B358 article-title: Diverse roles of mitochondria in ischemic stroke publication-title: Redox Biol. doi: 10.1016/j.redox.2018.03.002 – volume: 56 start-page: 528 year: 2008 ident: B225 article-title: P2X(7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport publication-title: Glia doi: 10.1002/glia.20634 – volume: 17 start-page: 82 year: 2016 ident: B347 article-title: Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging publication-title: BMC Neurosci. doi: 10.1186/s12868-016-0316-1 – volume: 6 start-page: 43 year: 2014 ident: B13 article-title: Time-dependent gene profiling indicates the presence of different phases for ischemia/reperfusion injury in retina publication-title: Ophthalmol. Eye Dis. doi: 10.4137/oed.s17671 – volume: 62 start-page: 441 year: 2003 ident: B132 article-title: Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/62.5.441 – volume: 511 start-page: 155 year: 2008 ident: B203 article-title: High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain publication-title: J. Comp. Neurol. doi: 10.1002/cne.21823 – volume: 99 start-page: 2362 year: 2002 ident: B323 article-title: Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1 publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.261713299 – volume: 37 start-page: 345 year: 2006 ident: B295 article-title: The lifetime risk of stroke: estimates from the Framingham Study publication-title: Stroke doi: 10.1161/01.str.0000199613.38911.b2 – volume: 81 start-page: 1065 year: 2001 ident: B307 article-title: Mechanisms of spreading depression and hypoxic spreading depression-like depolarization publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.3.1065 – volume: 104 start-page: 14825 year: 2007 ident: B335 article-title: Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0705046104 – volume: 7 start-page: 160 year: 2009 ident: B65 article-title: Release of adenosine and ATP during ischemia and epilepsy publication-title: Curr. Neuropharmacol. doi: 10.2174/157015909789152146 – volume: 38 start-page: 3000 year: 2007 ident: B150 article-title: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke publication-title: Stroke doi: 10.1161/strokeaha.107.489765 – volume: 219 start-page: 53 year: 2011 ident: B207 article-title: Glutamate and ATP signalling in white matter pathology publication-title: J. Anat. doi: 10.1111/j.1469-7580.2010.01339.x – volume: 20 start-page: 1529 year: 2017 ident: B292 article-title: Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways publication-title: Nat. Neurosci. doi: 10.1038/nn.4647 – volume: 25 start-page: 3219 year: 2005 ident: B311 article-title: Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α publication-title: J. Neurosci. doi: 10.1523/jneurosci.4486-04.2005 – volume: 438 start-page: 1167 year: 2005 ident: B283 article-title: NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury publication-title: Nature doi: 10.1038/nature04301 – volume: 63 start-page: 1143 year: 1994 ident: B338 article-title: Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1994.63031143.x – volume: 26 start-page: 1 year: 1999 ident: B299 article-title: Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ publication-title: Glia doi: 10.1002/(sici)1098-1136(199903)26:1<1::aid-glia1>3.0.co;2-z – volume: 27 start-page: 9525 year: 2007 ident: B211 article-title: P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis publication-title: J. Neurosci. doi: 10.1523/jneurosci.0579-07.2007 – volume: 81 start-page: 728 year: 2014 ident: B15 article-title: Gliotransmitters travel in time and space publication-title: Neuron doi: 10.1016/j.neuron.2014.02.007 – volume: 127 start-page: 511 year: 2017 ident: B268 article-title: Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model publication-title: J. Clin. Invest. doi: 10.1172/jci89354 – volume: 7 start-page: e36816 year: 2012 ident: B136 article-title: Polydendrocytes display large lineage plasticity following focal cerebral ischemia publication-title: PLoS One doi: 10.1371/journal.pone.0036816 – volume: 29 start-page: 339 year: 2013 ident: B256 article-title: Platinum drugs and neurotoxicity: effects on intracellular calcium homeostasis publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-013-9252-3 – volume: 60 start-page: 1888 year: 2012 ident: B366 article-title: miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia publication-title: Glia doi: 10.1002/glia.22404 – volume: 588 start-page: 3403 year: 2010 ident: B44 article-title: The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.195503 – volume: 20 start-page: 34 year: 2000 ident: B98 article-title: Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-01-00034.2000 – volume: 115 start-page: 157 year: 2014 ident: B174 article-title: Excitotoxicity and stroke: identifying novel targets for neuroprotection publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.11.006 – volume: 35 start-page: 182 year: 2013 ident: B95 article-title: Ischemia-induced neuroinflammation is associated with disrupted development of oligodendrocyte progenitors in a model of periventricular leukomalacia publication-title: Dev. Neurosci. doi: 10.1159/000346682 – volume: 6 start-page: e16803 year: 2011 ident: B363 article-title: Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death publication-title: PLoS One doi: 10.1371/journal.pone.0016803 – volume: 18 start-page: 3606 year: 1998 ident: B72 article-title: The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-10-03606.1998 – volume: 535 start-page: 551 year: 2016 ident: B131 article-title: Transfer of mitochondria from astrocytes to neurons after stroke publication-title: Nature doi: 10.1038/nature18928 – volume: 33 start-page: 1123.e1 year: 2012 ident: B182 article-title: Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.11.007 – volume: 23 start-page: 2684 year: 2004 ident: B134 article-title: TREK-1, a K+ channel involved in neuroprotection and general anesthesia publication-title: EMBO J. doi: 10.1038/sj.emboj.7600234 – volume: 6 start-page: 159 year: 2000 ident: B199 article-title: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke publication-title: Nat. Med. doi: 10.1038/72256 – volume: 773 start-page: 139 year: 1997 ident: B297 article-title: Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody publication-title: Brain Res. doi: 10.1016/s0006-8993(97)00921-9 – volume: 46 start-page: 986 year: 1994 ident: B340 article-title: Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms publication-title: Mol. Pharmacol. – volume: 5 start-page: 40 year: 2011 ident: B35 article-title: Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00040 – volume: 27 start-page: 1317 year: 2016 ident: B79 article-title: Enzyme activities involved in the glutamate-glutamine cycle are altered to reduce glutamate after spinal cord injury in rats publication-title: Neuroreport doi: 10.1097/wnr.0000000000000700 – start-page: 17 volume-title: Ischemic Stroke—Updates year: 2016 ident: B269 article-title: Excitotoxicity and oxidative stress in acute stroke doi: 10.5772/64991 – volume: 106 start-page: 643 year: 2000 ident: B300 article-title: Caspases determine the vulnerability of oligodendrocytes in the ischemic brain publication-title: J. Clin. Invest. doi: 10.1172/jci10203 – volume: 40 start-page: 639 year: 2020 ident: B64 article-title: TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X19830791 – volume: 98 start-page: 813 year: 2018 ident: B102 article-title: Neuronal cell death publication-title: Physiol. Rev. doi: 10.1152/physrev.00011.2017 – volume: 5 start-page: E37 year: 2016 ident: B130 article-title: How glutamate is managed by the blood-brain barrier publication-title: Biology doi: 10.3390/biology5040037 – volume: 23 start-page: 1750 year: 2003 ident: B205 article-title: Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus publication-title: J. Neurosci. doi: 10.1523/jneurosci.23-05-01750.2003 – volume: 286 start-page: 45 year: 2015 ident: B222 article-title: Hemichannels: new pathways for gliotransmitter release publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.11.048 – volume: 58 start-page: 507 year: 2010 ident: B305 article-title: Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury publication-title: Glia doi: 10.1002/glia.20940 – volume: 16 start-page: 257 year: 2017 ident: B43 article-title: Purinergic signalling and neurological diseases: an update publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527315666160922104848 – volume: 497 start-page: 42 year: 2006 ident: B322 article-title: Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury: I. Rodent cerebral white matter and cortex publication-title: J. Comp. Neurol. doi: 10.1002/cne.20972 – volume: 7 start-page: 1022 year: 1995 ident: B244 article-title: The distribution of neurons coexpressing immunoreactivity to AMPA-sensitive glutamate receptor subtypes (GluR1–4) and nerve growth factor receptor in the rat basal forebrain publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1995.tb01090.x – volume: 447 start-page: 239 year: 2002 ident: B208 article-title: Excitotoxicity in glial cells publication-title: Eur. J. Pharmacol. doi: 10.1016/s0014-2999(02)01847-2 – volume: 18 start-page: 297 year: 2015 ident: B248 article-title: Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract and resveratrol in vitro publication-title: Nutr. Neurosci. doi: 10.1179/1476830514y.0000000127 – volume: 286 start-page: 325 year: 1996 ident: B272 article-title: Differential expression of three glutamate transporter subtypes in the rat retina publication-title: Cell Tissue Res. doi: 10.1007/s004410050702 – volume: 6 start-page: 7066 year: 2015 ident: B28 article-title: Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2 publication-title: Nat. Commun. doi: 10.1038/ncomms8066 – volume: 264 start-page: C836 ident: B285 article-title: Volume-activated Rb+ transport in astrocytes in culture publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1993.264.4.c836 – volume: 501 start-page: 879 year: 2007 ident: B77 article-title: The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter publication-title: J. Comp. Neurol. doi: 10.1002/cne.21289 – volume: 57 start-page: 823 year: 2010 ident: B115 article-title: Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2010.08.021 – volume: 40 start-page: S8 year: 2009 ident: B319 article-title: Astrocytes and ischemic injury publication-title: Stroke doi: 10.1161/STROKEAHA.108.533166 – volume: 22 start-page: 1060 year: 2016 ident: B63 article-title: The kynurenine pathway in the acute and chronic phases of cerebral ischemia publication-title: Curr. Pharm. Des. doi: 10.2174/1381612822666151214125950 – volume: 97 start-page: 281 year: 2019 ident: B367 article-title: Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? publication-title: J. Mol. Med. doi: 10.1007/s00109-019-01745-5 – volume: 21 start-page: 1470 year: 1990 ident: B204 article-title: Cerebral blood flow and neuronal damage during progressive cerebral ischemia in gerbils publication-title: Stroke doi: 10.1161/01.str.21.10.1470 – volume: 34 start-page: 559 year: 2018 ident: B273 article-title: Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways publication-title: Neurotox. Res. doi: 10.1007/s12640-018-9911-5 – volume: 17 start-page: 1266 year: 1997 ident: B27 article-title: Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199712000-00002 – volume: 38 start-page: 14 year: 2018 ident: B289 article-title: Gliotransmission: beyond black-and-white publication-title: J. Neurosci. doi: 10.1523/jneurosci.0017-17.2017 – volume: 12 start-page: 433 year: 2006 ident: B303 article-title: Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke publication-title: Nat. Med. doi: 10.1038/nm1390 – volume: 281 start-page: 36004 year: 2006 ident: B74 article-title: α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit composition and cAMP-response element-binding protein regulate oligodendrocyte excitotoxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606459200 – volume: 82 start-page: 665 year: 2005 ident: B69 article-title: Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20674 – volume: 20 start-page: 603 year: 2014 ident: B216 article-title: Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12263 – volume: 101 start-page: 7751 year: 2004 ident: B75 article-title: Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0307850101 – volume: 528 start-page: 21 year: 1990 ident: B168 article-title: ‘Ischemic tolerance’ phenomenon found in the brain publication-title: Brain Res. doi: 10.1016/0006-8993(90)90189-i – volume: 38 start-page: 123 year: 2008 ident: B206 article-title: P2X7 receptors in oligodendrocytes: a novel target for neuroprotection publication-title: Mol. Neurobiol. doi: 10.1007/s12035-008-8028-x – volume: 11 start-page: 227 year: 2010 ident: B122 article-title: Do astrocytes really exocytose neurotransmitters? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2803 – volume: 35 start-page: 2189 year: 2004 ident: B333 article-title: Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia publication-title: Stroke doi: 10.1161/01.str.0000136149.81831.c5 – volume: 20 start-page: 251 year: 2000 ident: B233 article-title: AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia publication-title: J. Neurosci. doi: 10.1523/jneurosci.20-01-00251.2000 – volume: 113 start-page: 1 year: 2018 ident: B138 article-title: Lanthanum chloride impairs memory in rats by disturbing the glutamate-glutamine cycle and over-activating NMDA receptors publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.01.023 – volume: 7 start-page: e39959 year: 2012 ident: B46 article-title: The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia publication-title: PLoS One doi: 10.1371/journal.pone.0039959 – volume: 24 start-page: 133 year: 2004 ident: B38 article-title: Pathophysiology of cerebral ischemia and brain trauma: similarities and differences publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.wcb.0000111614.19196.04 – volume: 1 start-page: 11 year: 2004 ident: B324 article-title: The identification and characterization of excitotoxic nerve-endings in Alzheimer disease publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205043480591 – volume: 64 start-page: 780 year: 2012 ident: B40 article-title: Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc−) to normal and pathological glutamatergic signaling publication-title: Pharmacol. Rev. doi: 10.1124/pr.110.003889 – volume: 53 start-page: 2579 year: 2016 ident: B327 article-title: Cerebral ischemic preconditioning: the road so far publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9278-z – volume: 24 start-page: 5611 year: 2004 ident: B262 article-title: Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons publication-title: J. Neurosci. doi: 10.1523/jneurosci.0531-04.2004 – volume: 81 start-page: 390 year: 2002 ident: B144 article-title: AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2002.00866.x – volume: 1860 start-page: 224 year: 2018 ident: B163 article-title: Connexins and pannexins in cerebral ischemia publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2017.03.018 – volume: 26 start-page: 2673 year: 2006 ident: B176 article-title: NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes publication-title: J. Neurosci. doi: 10.1523/jneurosci.4689-05.2006 – volume: 30 start-page: 2320 year: 1999 ident: B200 article-title: Long-term prognosis of cerebral ischemia in young adults. National Research Council Study Group on Stroke in the Young publication-title: Stroke doi: 10.1161/01.str.30.11.2320 – volume: 4 start-page: 552 year: 2003 ident: B240 article-title: Regulation of cell death: the calcium-apoptosis link publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1150 – volume: 11 start-page: 344 year: 2018 ident: B184 article-title: Hypoxic preconditioning maintains GLT-1 against transient global cerebral ischemia through upregulating Cx43 and inhibiting c-src publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00344 – volume: 42 start-page: 207 year: 2012 ident: B253 article-title: Microglial self-defence mediated through GLT-1 and glutathione publication-title: Amino Acids doi: 10.1007/s00726-011-0865-7 – volume: 49 start-page: 349 year: 2005 ident: B159 article-title: Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures publication-title: Glia doi: 10.1002/glia.20114 – volume: 23 start-page: 3394 year: 2003 ident: B302 article-title: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress publication-title: J. Neurosci. doi: 10.1523/jneurosci.23-08-03394.2003 – volume: 26 start-page: 4509 year: 2006 ident: B310 article-title: Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0455-06.2006 – volume: 34 start-page: 214 year: 2003 ident: B111 article-title: Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture publication-title: Stroke doi: 10.1161/01.str.0000048846.09677.62 – volume: 61 start-page: 1320 year: 2013 ident: B142 article-title: Microglia release ATP by exocytosis publication-title: Glia doi: 10.1002/glia.22517 – volume: 43 start-page: 199 year: 2012 ident: B361 article-title: Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury publication-title: Stroke doi: 10.1161/strokeaha.111.626911 – volume: 51 start-page: 7 year: 1990 ident: B51 article-title: Mechanisms underlying glutamate-induced swelling of astrocytes in primary culture publication-title: Acta Neurochir. Suppl. doi: 10.1007/978-3-7091-9115-6_3 – volume: 9 start-page: 297 year: 2018 ident: B304 article-title: Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0351-1 – volume: 57 start-page: 783 year: 2010 ident: B261 article-title: Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2010.08.016 – volume: 120 start-page: 275 year: 2005 ident: B24 article-title: Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity publication-title: Cell doi: 10.1016/j.cell.2004.11.049 – volume: 11 start-page: 1756286418774254 year: 2018 ident: B116 article-title: Danger signals in stroke and their role on microglia activation after ischemia publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756286418774254 – volume: 26 start-page: 497 year: 2001 ident: B271 article-title: Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain publication-title: Neurochem. Res. doi: 10.1023/a:1010956711295 – volume: 93 start-page: 647 year: 2000 ident: B282 article-title: Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs publication-title: J. Neurosurg. doi: 10.3171/jns.2000.93.4.0647 – volume: 35 start-page: 444 year: 2014 ident: B170 article-title: Glutamate transporters in brain ischemia: to modulate or not? publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2014.1 – volume: 25 start-page: 222 year: 2016 ident: B281 article-title: Two-pore domain potassium channels in astrocytes publication-title: Exp. Neurobiol. doi: 10.5607/en.2016.25.5.222 – volume: 9 start-page: e87420 year: 2014 ident: B76 article-title: Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain publication-title: PLoS One doi: 10.1371/journal.pone.0087420 – volume: 61 start-page: 546 year: 2012 ident: B280 article-title: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2012.02.013 – volume: 12 start-page: 241 year: 2018 ident: B10 article-title: Paradigm shift to neuroimmunomodulation for translational neuroprotection in stroke publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00241 – volume: 1016 start-page: 195 year: 2004 ident: B60 article-title: Downregulation of COX-2 and JNK expression after induction of ischemic tolerance in the gerbil brain publication-title: Brain Res. doi: 10.1016/j.brainres.2004.05.017 – volume: 22 start-page: 371 year: 1998 ident: B149 article-title: Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress publication-title: Glia doi: 10.1002/(sici)1098-1136(199804)22:4<371::aid-glia6>3.0.co;2-6 – volume: 23 start-page: 5056 year: 2017 ident: B260 article-title: Altered homeostatic functions in reactive astrocytes and their potential as a therapeutic target after brain ischemic injury publication-title: Curr. Pharm. Des. doi: 10.2174/1381612823666170710161858 – volume: 56 start-page: 734 year: 2008 ident: B121 article-title: Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes publication-title: Glia doi: 10.1002/glia.20649 – volume: 303 start-page: 1 year: 2018 ident: B87 article-title: Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2018.01.019 – volume: 694 start-page: 86 year: 2019 ident: B97 article-title: Glutamate receptors and white matter stroke publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2018.11.031 – volume: 128 start-page: 263 year: 2001 ident: B92 article-title: Tissue oxygen tension and brain sensitivity to hypoxia publication-title: Respir. Physiol. doi: 10.1016/s0034-5687(01)00306-1 – volume: 65 start-page: 120 year: 2009 ident: B270 article-title: Axons get excited to death publication-title: Ann. Neurol. doi: 10.1002/ana.21659 – volume: 595 start-page: 6939 year: 2017 ident: B291 article-title: Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes publication-title: J. Physiol. doi: 10.1113/jp275053 – volume: 88 start-page: 313 year: 2012 ident: B336 article-title: The transcriptome of cerebral ischemia publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2012.02.002 – volume: 31 start-page: 2996 year: 2011 ident: B284 article-title: Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors publication-title: J. Neurosci. doi: 10.1523/jneurosci.5578-10.2011 – volume: 31 start-page: 894 year: 2011 ident: B11 article-title: Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.168 – volume: 17 start-page: 9212 year: 1997 ident: B301 article-title: Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord publication-title: J. Neurosci. doi: 10.1523/jneurosci.17-23-09212.1997 – volume: 281 start-page: 21362 year: 2006 ident: B320 article-title: Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner publication-title: J. Biol. Chem. doi: 10.1074/jbc.m600504200 – volume: 7 start-page: 613 year: 2004 ident: B34 article-title: Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate publication-title: Nat. Neurosci. doi: 10.1038/nn1246 – volume: 98 start-page: 71 year: 2019 ident: B19 article-title: Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum publication-title: J. Chem. Neuroanat. doi: 10.1016/j.jchemneu.2019.04.004 – volume: 56 start-page: 1648 year: 2008 ident: B294 article-title: Differential NMDA-dependent activation of glial cells in mouse hippocampus publication-title: Glia doi: 10.1002/glia.20717 – volume: 375 start-page: 599 year: 1995 ident: B94 article-title: An excitatory amino-acid transporter with properties of a ligand-gated chloride channel publication-title: Nature doi: 10.1038/375599a0 – volume: 49 start-page: 499 year: 2013 ident: B352 article-title: Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-012-9875-5 – volume: 34 start-page: 1 year: 1995 ident: B258 article-title: The metabotropic glutamate receptors: structure and functions publication-title: Neuropharmacology doi: 10.1016/0028-3908(94)00129-g – volume: 54 start-page: 58 year: 2017 ident: B368 article-title: p38 MAPK participates in the mediation of GLT-1 up-regulation during the induction of brain ischemic tolerance by cerebral ischemic preconditioning publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9652-x – volume: 29 start-page: 423 year: 2011 ident: B339 article-title: The developing oligodendrocyte: key cellular target in brain injury in the premature infant publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2011.02.012 – volume: 43 start-page: 397 year: 2018 ident: B146 article-title: Differential response of neural cells to trauma-induced swelling in vitro publication-title: Neurochem. Res. doi: 10.1007/s11064-017-2434-2 – volume: 145 start-page: 1267 year: 2007 ident: B158 article-title: The role of poly(ADP-ribose) polymerase-1 in CNS disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2006.09.034 – volume: 18 start-page: 521 year: 1998 ident: B196 article-title: Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199805000-00007 – volume: 289 start-page: 26058 year: 2014 ident: B124 article-title: Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.582155 – volume: 18 start-page: 698 year: 1998 ident: B91 article-title: Excitatory amino acid transporters of the salamander retina: identification, localization and function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-02-00698.1998 – volume: 447 start-page: 469 year: 2004 ident: B152 article-title: The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects publication-title: Pflugers Arch. doi: 10.1007/s00424-003-1146-4 – volume: 14 start-page: 23 year: 2014 ident: B228 article-title: Transient ischaemic attacks: mimics and chameleons publication-title: Pract. Neurol. doi: 10.1136/practneurol-2013-000782 – volume: 9 start-page: 2910 year: 2019 ident: B308 article-title: M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 publication-title: Theranostics doi: 10.7150/thno.30879 – volume: 157 start-page: 80 year: 2008 ident: B105 article-title: A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2) publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.08.043 – volume: 136 start-page: 65 year: 2018 ident: B36 article-title: The structural and functional evidence for vesicular release from astrocytes in situ publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.01.015 – volume: 698 start-page: 86 year: 1995 ident: B139 article-title: Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species publication-title: Brain Res. doi: 10.1016/0006-8993(95)00832-b – volume: 61 start-page: 1784 year: 2013 ident: B242 article-title: Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia publication-title: Glia doi: 10.1002/glia.22556 – volume: 168 start-page: 915 year: 2010 ident: B141 article-title: Functional and molecular interactions between aquaporins and Na,K-ATPase publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.11.062 – volume: 21 start-page: 2 year: 2001 ident: B50 article-title: Reactive oxygen radicals in signaling and damage in the ischemic brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200101000-00002 – volume: 19 start-page: 1269 year: 2012 ident: B202 article-title: The glutamatergic neurotransmission in the central nervous system publication-title: Curr. Med. Chem. doi: 10.2174/092986712799462711 – volume: 81 start-page: 177 year: 2018 ident: B241 article-title: Molecular biology and physiology of volume-regulated anion channel (VRAC) publication-title: Curr. Top. Membr. doi: 10.1016/bs.ctm.2018.07.005 – volume: 282 start-page: C1147 ident: B316 article-title: Astrocytes from Na+-K+-Cl− cotransporter-null mice exhibit absence of swelling and decrease in EAA release publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00538.2001 – volume: 81 start-page: 385 year: 2018 ident: B348 article-title: Cell volume control in healthy brain and neuropathologies publication-title: Curr. Top. Membr. doi: 10.1016/bs.ctm.2018.07.006 – volume: 45 start-page: 381 year: 2004 ident: B224 article-title: Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506 publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2003.06.001 – volume: 22 start-page: 209 year: 2002 ident: B317 article-title: Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation publication-title: J. Neurosci. doi: 10.1523/jneurosci.22-01-00209.2002 – volume: 12 start-page: 523 year: 2018 ident: B337 article-title: Excitatory dendritic mitochondrial calcium toxicity: implications for Parkinson’s and other neurodegenerative diseases publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00523 – volume: 118 start-page: 137 year: 2018 ident: B306 article-title: Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.02.036 – volume: 17 start-page: 8363 year: 1997 ident: B106 article-title: Glutamate transporter protein subtypes are expressed differentially during rat CNS development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-21-08363.1997 – volume: 274 start-page: 31891 year: 1999 ident: B235 article-title: Na+-dependent glutamate transporters (EAAT1, EAAT2 and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.45.31891 – volume: 111 start-page: 9633 year: 2014 ident: B71 article-title: Transcellular degradation of axonal mitochondria publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1404651111 – volume: 50 start-page: 357 year: 2014 ident: B189 article-title: Neuroprotective effects of neuregulin-1 β on oligodendrocyte type 2 astrocyte progenitors following oxygen and glucose deprivation publication-title: Pediatr. Neurol. doi: 10.1016/j.pediatrneurol.2013.12.007 – volume: 421 start-page: 385 year: 2000 ident: B30 article-title: Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia publication-title: J. Comp. Neurol. doi: 10.1002/(sici)1096-9861(20000605)421:3<385::aid-cne7>3.0.co;2-s – volume: 38 start-page: 901 year: 2015 ident: B5 article-title: In vitro study of L-glutamate and l-glutamine transport in retinal pericytes: involvement of excitatory amino acid transporter 1 and alanine-serine-cysteine transporter 2 publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b15-00133 – volume: 22 start-page: 15 year: 2003 ident: B120 article-title: Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review) publication-title: Int. J. Oncol. doi: 10.3892/ijo.22.1.15 – volume: 39 start-page: 517 year: 1996 ident: B360 article-title: Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor publication-title: Sci. China C Life Sci. – volume: 37 start-page: 1571 year: 2017 ident: B127 article-title: The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X16654495 – volume: 70 start-page: S334 year: 1992 ident: B290 article-title: Mechanisms of glial swelling induced by glutamate publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y92-280 – volume: 543 start-page: 95 year: 2013 ident: B119 article-title: NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.03.010 – volume: 22 start-page: 1690 year: 2012 ident: B31 article-title: Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr254 – volume: 17 start-page: 83 year: 1996 ident: B61 article-title: Relationship of iron to oligodendrocytes and myelination publication-title: Glia doi: 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 – volume: 31 start-page: 1967 year: 2014 ident: B332 article-title: Blockade of gap junction hemichannel protects secondary spinal cord injury from activated microglia-mediated glutamate exitoneurotoxicity publication-title: J. Neurotrauma doi: 10.1089/neu.2013.3223 – volume: 35 start-page: 5187 year: 2015 ident: B254 article-title: Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes publication-title: J. Neurosci. doi: 10.1523/jneurosci.4255-14.2015 – volume: 127 start-page: 426 year: 2013 ident: B183 article-title: BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia publication-title: J. Neurochem. doi: 10.1111/jnc.12314 – volume: 76 start-page: 845 year: 2011 ident: B195 article-title: Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity publication-title: Steroids doi: 10.1016/j.steroids.2011.02.013 – volume: 561 start-page: 203 year: 1991 ident: B167 article-title: ‘Ischemic tolerance’ phenomenon detected in various brain regions publication-title: Brain Res. doi: 10.1016/0006-8993(91)91596-s – volume: 35 start-page: 2566 year: 2004 ident: B257 article-title: Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia publication-title: Stroke doi: 10.1161/01.str.0000143730.29964.93 – volume: 9 start-page: 574 year: 2010 ident: B274 article-title: Group I metabotropic glutamate receptor signalling and its implication in neurological disease publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/187152710793361612 – volume: 102 start-page: 813.e6 year: 2019 ident: B357 article-title: Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke publication-title: Neuron doi: 10.1016/j.neuron.2019.03.029 – volume: 130 start-page: 995 year: 2007 ident: B314 article-title: Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex publication-title: Brain doi: 10.1093/brain/awl392 – volume: 22 start-page: 455 year: 2002 ident: B20 article-title: Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-02-00455.2002 – volume: 8 start-page: 752 year: 2005 ident: B68 article-title: ATP mediates rapid microglial response to local brain injury in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn1472 – volume: 87 start-page: 3076 year: 2009 ident: B101 article-title: Oxidative stress disrupts oligodendrocyte maturation publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22139 – volume: 147 start-page: w14538 year: 2017 ident: B148 article-title: Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace publication-title: Swiss Med. Wkly. doi: 10.4414/smw.2017.14538 – volume: 156 start-page: 141 ident: B286 article-title: Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astrocytes publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(93)90458-w – volume: 4 start-page: 291 year: 1998 ident: B212 article-title: Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity publication-title: Nat. Med. doi: 10.1038/nm0398-291 – volume: 572 start-page: 677 year: 2006 ident: B1 article-title: Pharmacological comparison of swelling-activated excitatory amino acid release and Cl− currents in cultured rat astrocytes publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.103820 |
| SSID | ssj0062648 |
| Score | 2.642202 |
| SecondaryResourceType | review_article |
| Snippet | A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause... A plethora of neurological disorders share a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent leading... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 51 |
| SubjectTerms | Amino acids Apoptosis Astrocytes Calcium (extracellular) Calcium (intracellular) Cell death Cell membranes Cellular Neuroscience Central nervous system Cerebral blood flow Depolarization Edema Excitotoxicity Free radicals Gene expression Glial cells glutamate excitotoxicity glutamate uptake/release Glutamic acid receptors Ischemia ischemic pathway Membrane potential Metabolism Metabolites Microglia Mortality Neurological diseases Neuronal-glial interactions Oligodendrocytes Oxidative phosphorylation Parenchyma Phosphorylation Physiology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkJcEG9CW2QkLhyi9Svx-ghVtyBB6aGg3iLbGcNK2wTtpqj994yT7LaLEFy4xrY0-Tzj-UYezwC8Dg5rH3Sk2CTUuVaRTEopzF3QpUQRjO2bwXz9aE5Opufn9vRWq6-UEzaUBx6Am6Tj1EtFjl5FbafKF4ajc1bZadSo-6d73Nh1MDWcwWXK2xouJSkEs5NIAKZ7BpnyuHghtpxQX6v_TwTz9zzJW45n9gDuj4yRvR0kfQh3sHkEdz-Nd-KP4fMHClDxYu7yM4q0v6Xem-yY9MkRF0V2dBXIZrv2imZ312y2bC8YcT52evPIkrWRFpAeskNcLFZP4Mvs6OzwfT62SciDtrzLo0fuHMo49aH0RqBTPjhe8qCNDqHmSLTGF-R3iOoRwSDKVkb0NQpfBGmMego7Tdvgc2BWYRS25t4LAruI3lJ0oqWuraQPQWQwWeNWhbGGeGplsagolkhIVz3SVUK66pHO4M1mxY-hfsZf5r5LW7GZlypf9x9IH6pRH6p_6UMG--uNrEZzXFVSkc6VFKvJDF5thsmQ0u2Ia7C9THPIMRB5EkUGz4Z930hCp16ZmG8GZksjtkTdHmnm3_ti3YaTkLJ88T_-bQ_uJbRSCpyw-7DTLS_xAHbDz26-Wr7sLeAX2OILPw priority: 102 providerName: Directory of Open Access Journals |
| Title | Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32265656 https://www.proquest.com/docview/2379266062 https://www.proquest.com/docview/2387691015 https://pubmed.ncbi.nlm.nih.gov/PMC7098326 https://doaj.org/article/0067b235453f4983b570eaa9398f4e49 |
| Volume | 14 |
| WOSCitedRecordID | wos000525584500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M7P dateStart: 20071230 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: BENPR dateStart: 20071230 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: PIMPY dateStart: 20071230 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M2P dateStart: 20071230 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFiEuvKGGEhmJCwcr3oe93hOiVQKVSLBQQeFk7a53S6TUbpMUlQu_ndmNkxKEeuHiwz6k0c7Mzjc74xmA10bZWhvu0DcxdcKZQ5VizCbK8JxaYoQMzWC-fhTjcTGZyLJ7cFt0aZXrOzFc1HVr_Bt5nzLcliPcpm_PLxLfNcpHV7sWGjuwh8iG-JSuES3XN3Hus7dWoUl0xGTf4TH6aAP12VxpRrZMUajY_y-Y-Xe25B_mZ3j_fwl_APc64Bm_W0nKQ7hlm0dwZ9SF1h_Dp2P0c-3ZVCUnuPnUt_CM36NYKoS0Nh5cGVT9ZXuFq5c_4-G8PYsROsbl9b-acetwA4pzfGRns8UT-DIcnBx9SLpuC4nhMl0mTttUKUtdoU2uBbGKaaPSPDVccGPq1CI60hmaL0SMiFMQ-eXO6toSnRkqBHsKu03b2H2IJbOOyDrVmjh0wJyW6ORwymtJccCQCPrrg69MV4rcd8SYVeiSeFZVgVWVZ1UVWBXBm82O81UZjhvWHnpebtb5AtphoJ2fVp0-Vt5Ka8oQPzIksWA6E6lVSjJZOG65jOBgzc2q0-pFdc3KCF5tplEffZBFNba99GvQviAGI1kEz1aCs6EEL8_cA-gIxJZIbZG6PdNMv4ea3yJFImn-_GayXsBdfw4-R47IA9hdzi_tS7htfiyni3kPdsSk6MHe4WBcfu6F14deUBj_FeH7a4Dz5fGo_PYbRLMh5g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4phQEuvB-GAmYGDhw8kSXZjg5MB0pDM01DDoHpTZVkqWQmtUuSQvun-I1d-ZEShumtB66W5FlL3-5-a620AG-Msrk23GFsYvKIM4cqxZiNlOEptbHJRFUM5tsgGw67-_titAa_27MwPq2ytYmVoc5L4_-RdyjDYSnSbbp5_CPyVaP87mpbQqOGxa49-4Uh2_x9_xOu71tKe9vjrZ2oqSoQGS7IInLaEqUsdV1tUp3FVjFtFEmJ4Rk3JicWWYBO0EwjM0J_jAwndVbnNtaJoVnG8L3X4DrSCEqqVMFRa_lTny1Wb4Vi4Cc6DpfN725Qnz1GknjF9VUVAv5Fa__OzvzD3fXu_m8TdQ_uNMQ6_FBrwn1Ys8UDuLnXpA48hC99jOPt0URFYxT20JcoDT-j2imk7DbcPjVo2hblKfZenIW9WXkUIjUORxdnUcPS4QBU13DLTqfzR_D1Sj7nMawXZWGfQiiYdbHIidaxwwDTaYFBHKc8FxQfmDiATrvQ0jRXrfuKH1OJIZeHhqygIT00ZAWNAN4tRxzX14xc0vejx86yn78gvHpQzg5lY2-kZyGaMuTHDEXsMp1kxColmOg6brkIYKNFj2ys1lxeQCeA18tmtDd-E0kVtjzxfdB_IseMkwCe1EBdSoLOIfUBQgDZCoRXRF1tKSbfqzvNM4JC0vTZ5WK9gls7472BHPSHu8_htp8Tnw8Yiw1YX8xO7Au4YX4uJvPZy0oxQzi4aoCfA1ROeV0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkGCA4doE9sbrw8IQduFVcuyh4J6C7Zjl5W2SdlNof1r_Dpm8tiyCPXWA9fEjib2NzPfxJMZgBdWu9xY4TE2sXkkuEeV4txF2oqUucRKVTeD-bInx-PBwYGarMGv7l8YSqvsbGJtqPPS0jfyHuM4LUW6zXq-TYuYbA_fHH-PqIMUnbR27TQaiOy6s58Yvi1ej7Zxr18yNtzZ3_oQtR0GIitUXEXeuFhrx_zA2NTIxGlurI7T2AoprM1jh4zA9NFkI0tC34xsJ_XO5C4xfcuk5PjcK3BVUlUsShtkk84LpJQ51hyLYhCoeh63kE46GGWSxf1kxQ3W3QL-RXH_ztT8w_UNb_7Pi3YLbrSEO3zbaMhtWHPFHdj42KYU3IVPI4zv3dFUR_so7CG1Lg3fozpqpPIu3Dm1aPKq8hRHV2fhcF4ehUiZw8n5P6ph6XECqnG45WazxT34fCmvcx_Wi7JwDyFU3PlE5bExicfA0xuFwZ1gIlcML9gkgF636ZltS7BTJ5BZhqEYwSSrYZIRTLIaJgG8Ws44bsqPXDD2HeFoOY4Kh9cXyvlh1tqhjNiJYRx5M0cRB9z0Zey0VlwNvHBCBbDZISlrrdkiO4dRAM-Xt9EO0eGSLlx5QmPQryL3TPoBPGhAu5QEnUZKgUMAcgXOK6Ku3imm3-pa5zJGIVn66GKxnsEG4jrbG413H8N1WhJKE0zUJqxX8xP3BK7ZH9V0MX9a62gIXy8b378BHYmCIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ischemia-Triggered+Glutamate+Excitotoxicity+From+the+Perspective+of+Glial+Cells&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Belov+Kirdajova%2C+Denisa&rft.au=Kriska%2C+Jan&rft.au=Tureckova%2C+Jana&rft.au=Anderova%2C+Miroslava&rft.date=2020-03-19&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5102&rft_id=info:doi/10.3389%2Ffncel.2020.00051&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon |