Phylogenetic mixtures and linear invariants for equal input models

The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology Vol. 74; no. 5; pp. 1107 - 1138
Main Authors: Casanellas, Marta, Steel, Mike
Format: Journal Article Publication
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2017
Springer Nature B.V
Subjects:
ISSN:0303-6812, 1432-1416, 1432-1416
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the ‘equal input model’. This model generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a ‘random cluster’ process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees—the so called ‘model invariants’), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of n = 4 leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167–191, 1987 ).
AbstractList The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees--the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of ... leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987 ).
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of n = 4 leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the ‘equal input model’. This model generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a ‘random cluster’ process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees—the so called ‘model invariants’), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of n = 4 leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167–191, 1987 ).
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the ‘equal input model’. This model generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a ‘random cluster’ process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees—the so called ‘model invariants’), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of n=4 leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167–191, 1987). Peer Reviewed
Author Steel, Mike
Casanellas, Marta
Author_xml – sequence: 1
  givenname: Marta
  surname: Casanellas
  fullname: Casanellas, Marta
  organization: Department of Mathematics, Universitat Politècnica de Catalunya
– sequence: 2
  givenname: Mike
  surname: Steel
  fullname: Steel, Mike
  email: mike.steel@canterbury.ac.nz
  organization: Biomathematics Research Centre, University of Canterbury
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27604275$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaTZpf0AvxdBLL25HkvXhYxv6EQgkh_QsZHmcKtjSRpJD8-9js7s0FFpyEELieYaZeU_IUYgBCXlL4SMFUJ8yANOiBiprCkLU-gXZ0IazmjZUHpENcOC11JQdk5OcbwGoEi19RY6ZktAwJTbky9WvhzHeYMDiXTX532VOmCsb-mr0AW2qfLi3ydtQcjXEVOHdbMflczuXaoo9jvk1eTnYMeOb_X1Kfn77en32o764_H5-9vmidk0LpUYHTGiJGnvshsEt3XCJwuqmQ0TZqNZxybsBnIJBKyYdMgmS9j0VHbacnxK6q-vy7ExCh8nZYqL1fx7rYaCYYS3jYnU-7Jxtincz5mImnx2Oow0Y52yobhXXrZDqGahYWNCcLej7v9DbOKewDL9QWgotmFipd3tq7ibszTb5yaYHc1j-Aqj9QCnmnHAwzhdbfAwlWT8aCmaN2exiNkvMZo3Z6CerOJiH4v9z2M7JCxtuMD1p-p_SIzEkt7w
CitedBy_id crossref_primary_10_1093_sysbio_syz054
crossref_primary_10_1089_cmb_2020_0315
crossref_primary_10_1137_23M1605302
Cites_doi 10.1089/cmb.1995.2.39
10.1016/j.mbs.2003.10.004
10.1089/cmb.1994.1.153
10.1093/sysbio/syv086
10.1007/s11538-007-9293-y
10.1016/0025-5564(91)90083-U
10.1093/molbev/msr259
10.1186/1748-7188-7-33
10.1089/cmb.2005.12.204
10.1006/jtbi.1995.0067
10.1016/S0025-5564(96)00075-2
10.1093/sysbio/syq069
10.1016/j.matpur.2010.11.002
10.1089/cmb.2006.0126
10.1093/sysbio/sys064
10.1093/oso/9780198509424.001.0001
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Copyright Springer-Verlag Berlin Heidelberg 2016
Journal of Mathematical Biology is a copyright of Springer, 2017.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Journal of Mathematical Biology is a copyright of Springer, 2017.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
M7Z
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
RC3
XX2
DOI 10.1007/s00285-016-1055-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biochemistry Abstracts 1
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Genetics Abstracts
Recercat
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Genetics Abstracts
DatabaseTitleList MEDLINE - Academic
Computer Science Database
Genetics Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1432-1416
EndPage 1138
ExternalDocumentID oai_recercat_cat_2072_292353
4321630437
27604275
10_1007_s00285_016_1055_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
JQ2
K9.
M7N
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
RC3
XX2
ID FETCH-LOGICAL-c490t-ec02586e8edebffc00136e5a84beee6479c363bf0c70f8726ce26061dd15be933
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399219000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0303-6812
1432-1416
IngestDate Fri Nov 07 13:40:14 EST 2025
Sun Nov 09 10:26:50 EST 2025
Thu Oct 02 06:41:45 EDT 2025
Tue Nov 04 22:10:14 EST 2025
Wed Feb 19 02:43:30 EST 2025
Sat Nov 29 03:20:17 EST 2025
Tue Nov 18 20:12:33 EST 2025
Fri Feb 21 02:36:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Markov processes
60J28
Linear invariants
92D15
Phylogenetic tree
05C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-ec02586e8edebffc00136e5a84beee6479c363bf0c70f8726ce26061dd15be933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/292353
PMID 27604275
PQID 1886585252
PQPubID 54026
PageCount 32
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_292353
proquest_miscellaneous_1897389567
proquest_miscellaneous_1859730832
proquest_journals_1886585252
pubmed_primary_27604275
crossref_citationtrail_10_1007_s00285_016_1055_8
crossref_primary_10_1007_s00285_016_1055_8
springer_journals_10_1007_s00285_016_1055_8
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of mathematical biology
PublicationTitleAbbrev J. Math. Biol
PublicationTitleAlternate J Math Biol
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fernández-Sánchez, Casanellas (CR6) 2016; 65
Allman, Rhodes, Sullivant (CR1) 2012; 61
Sturmfels, Sullivant (CR19) 2005; 12
Steel, Fu (CR17) 1995; 2
Lake (CR11) 1987; 4
Semple, Steel (CR14) 2003
Fu, Li (CR8) 1991; 105
Štefakovič, Vigoda (CR18) 2007; 14
Chang (CR4) 1996; 137
Casanellas, Fernández-Sánchez, Kedzierska (CR2) 2012; 7
Matsen, Mossel, Steel (CR12) 2008; 70
Casanellas, Fernández-Sánchez (CR3) 2011; 96
Steel, Székely, Hendy (CR15) 1994; 1
Mossel, Steel (CR13) 2004; 187
Kemeny, Snell (CR10) 1976
Fu (CR7) 1995; 173
Kedzierska, Drton, Guigó, Casanellas (CR9) 2012; 29
Felsenstein (CR5) 2004
Steel (CR16) 2011; 60
J Lake (1055_CR11) 1987; 4
FA Matsen (1055_CR12) 2008; 70
M Casanellas (1055_CR3) 2011; 96
JT Chang (1055_CR4) 1996; 137
YX Fu (1055_CR7) 1995; 173
B Sturmfels (1055_CR19) 2005; 12
C Semple (1055_CR14) 2003
M Casanellas (1055_CR2) 2012; 7
J Felsenstein (1055_CR5) 2004
M Steel (1055_CR16) 2011; 60
ES Allman (1055_CR1) 2012; 61
A Kedzierska (1055_CR9) 2012; 29
E Mossel (1055_CR13) 2004; 187
D Štefakovič (1055_CR18) 2007; 14
YX Fu (1055_CR8) 1991; 105
JG Kemeny (1055_CR10) 1976
MA Steel (1055_CR17) 1995; 2
MA Steel (1055_CR15) 1994; 1
J Fernández-Sánchez (1055_CR6) 2016; 65
1806100 - Math Biosci. 1991 Jul;105(2):229-38
17456014 - J Comput Biol. 2007 Mar;14(2):156-89
21084501 - Syst Biol. 2011 Jan;60(1):96-109
26559009 - Syst Biol. 2016 Mar;65(2):280-91
7497119 - J Comput Biol. 1995 Spring;2(1):39-47
7783448 - J Theor Biol. 1995 Apr 21;173(4):339-52
23190710 - Algorithms Mol Biol. 2012 Nov 28;7(1):33
14739084 - Math Biosci. 2004 Feb;187(2):189-203
18175189 - Bull Math Biol. 2008 May;70(4):1115-39
8854662 - Math Biosci. 1996 Oct 1;137(1):51-73
3447007 - Mol Biol Evol. 1987 Mar;4(2):167-91
8790461 - J Comput Biol. 1994 Summer;1(2):153-63
15767777 - J Comput Biol. 2005 Mar;12(2):204-28
22798332 - Syst Biol. 2012 Dec 1;61(6):1049-59
22009060 - Mol Biol Evol. 2012 Mar;29(3):929-37
References_xml – volume: 2
  start-page: 39
  year: 1995
  end-page: 47
  ident: CR17
  article-title: Classifying and counting linear phylogenetic invariants for the Jukes–Cantor model
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1995.2.39
– volume: 4
  start-page: 167
  year: 1987
  end-page: 191
  ident: CR11
  article-title: A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony
  publication-title: Mol Biol Evol
– volume: 187
  start-page: 189
  year: 2004
  end-page: 203
  ident: CR13
  article-title: A phase transition for a random cluster model on phylogenetic trees
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2003.10.004
– volume: 1
  start-page: 153
  year: 1994
  end-page: 163
  ident: CR15
  article-title: Reconstructing trees when sequence sites evolve at variable rates
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1994.1.153
– volume: 65
  start-page: 280
  year: 2016
  end-page: 291
  ident: CR6
  article-title: Invariant versus classical quartet inference when evolution is heterogeneous across sites and lineages
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv086
– volume: 70
  start-page: 1115
  year: 2008
  end-page: 1139
  ident: CR12
  article-title: Mixed-up trees: the structure of phylogenetic mixtures
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9293-y
– year: 2004
  ident: CR5
  publication-title: Inferring Phylogenies
– volume: 105
  start-page: 229
  year: 1991
  end-page: 238
  ident: CR8
  article-title: Necessary and sufficient conditions for the existence of certain quadratic invariants under a phylogenetic tree
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(91)90083-U
– volume: 29
  start-page: 929
  year: 2012
  end-page: 937
  ident: CR9
  article-title: SPIn: model selection for phylogenetic mixtures via linear invariants
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr259
– volume: 7
  start-page: 33
  year: 2012
  ident: CR2
  article-title: The space of phylogenetic mixtures for equivariant models
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-7-33
– volume: 12
  start-page: 204
  year: 2005
  end-page: 228
  ident: CR19
  article-title: Toric ideals of phylogenetic invariants
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2005.12.204
– volume: 173
  start-page: 339
  year: 1995
  end-page: 352
  ident: CR7
  article-title: Linear invariants under Jukes’ and Cantor’s one-parameter model
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1995.0067
– volume: 137
  start-page: 51
  year: 1996
  end-page: 73
  ident: CR4
  article-title: Full reconstruction of Markov models on evolutionary trees: identifiability and consistency
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(96)00075-2
– volume: 60
  start-page: 96
  year: 2011
  end-page: 109
  ident: CR16
  article-title: Can we avoid ‘SIN’ in the house of ‘no common mechanism’?
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq069
– year: 2003
  ident: CR14
  publication-title: Phylogenetics
– volume: 96
  start-page: 207
  year: 2011
  end-page: 229
  ident: CR3
  article-title: Relevant phylogenetic invariants of evolutionary models
  publication-title: J Math Pures Appl
  doi: 10.1016/j.matpur.2010.11.002
– year: 1976
  ident: CR10
  publication-title: Finite Markov chains
– volume: 14
  start-page: 156
  year: 2007
  end-page: 189
  ident: CR18
  article-title: Phylogeny of mixture models: robustness of maximum likelihood and non-identifiable distributions
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2006.0126
– volume: 61
  start-page: 1049
  year: 2012
  end-page: 1059
  ident: CR1
  article-title: When do phylogenetic mixture models mimic other phylogenetic models?
  publication-title: Syst Biol
  doi: 10.1093/sysbio/sys064
– volume: 1
  start-page: 153
  year: 1994
  ident: 1055_CR15
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1994.1.153
– volume: 60
  start-page: 96
  year: 2011
  ident: 1055_CR16
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq069
– volume: 173
  start-page: 339
  year: 1995
  ident: 1055_CR7
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.1995.0067
– volume-title: Phylogenetics
  year: 2003
  ident: 1055_CR14
  doi: 10.1093/oso/9780198509424.001.0001
– volume: 137
  start-page: 51
  year: 1996
  ident: 1055_CR4
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(96)00075-2
– volume: 105
  start-page: 229
  year: 1991
  ident: 1055_CR8
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(91)90083-U
– volume: 2
  start-page: 39
  year: 1995
  ident: 1055_CR17
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1995.2.39
– volume-title: Finite Markov chains
  year: 1976
  ident: 1055_CR10
– volume: 14
  start-page: 156
  year: 2007
  ident: 1055_CR18
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2006.0126
– volume: 65
  start-page: 280
  year: 2016
  ident: 1055_CR6
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv086
– volume: 12
  start-page: 204
  year: 2005
  ident: 1055_CR19
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2005.12.204
– volume: 4
  start-page: 167
  year: 1987
  ident: 1055_CR11
  publication-title: Mol Biol Evol
– volume-title: Inferring Phylogenies
  year: 2004
  ident: 1055_CR5
– volume: 61
  start-page: 1049
  year: 2012
  ident: 1055_CR1
  publication-title: Syst Biol
  doi: 10.1093/sysbio/sys064
– volume: 7
  start-page: 33
  year: 2012
  ident: 1055_CR2
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-7-33
– volume: 187
  start-page: 189
  year: 2004
  ident: 1055_CR13
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2003.10.004
– volume: 96
  start-page: 207
  year: 2011
  ident: 1055_CR3
  publication-title: J Math Pures Appl
  doi: 10.1016/j.matpur.2010.11.002
– volume: 29
  start-page: 929
  year: 2012
  ident: 1055_CR9
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr259
– volume: 70
  start-page: 1115
  year: 2008
  ident: 1055_CR12
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9293-y
– reference: 3447007 - Mol Biol Evol. 1987 Mar;4(2):167-91
– reference: 8854662 - Math Biosci. 1996 Oct 1;137(1):51-73
– reference: 1806100 - Math Biosci. 1991 Jul;105(2):229-38
– reference: 18175189 - Bull Math Biol. 2008 May;70(4):1115-39
– reference: 23190710 - Algorithms Mol Biol. 2012 Nov 28;7(1):33
– reference: 7497119 - J Comput Biol. 1995 Spring;2(1):39-47
– reference: 22798332 - Syst Biol. 2012 Dec 1;61(6):1049-59
– reference: 8790461 - J Comput Biol. 1994 Summer;1(2):153-63
– reference: 17456014 - J Comput Biol. 2007 Mar;14(2):156-89
– reference: 21084501 - Syst Biol. 2011 Jan;60(1):96-109
– reference: 7783448 - J Theor Biol. 1995 Apr 21;173(4):339-52
– reference: 22009060 - Mol Biol Evol. 2012 Mar;29(3):929-37
– reference: 14739084 - Math Biosci. 2004 Feb;187(2):189-203
– reference: 15767777 - J Comput Biol. 2005 Mar;12(2):204-28
– reference: 26559009 - Syst Biol. 2016 Mar;65(2):280-91
SSID ssj0017591
Score 2.1799247
Snippet The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) The reconstruction of phylogenetic trees from molecular sequence data relies on...
SourceID csuc
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1107
SubjectTerms 05 Combinatorics
05C Graph theory
60 Probability theory and stochastic processes
60J Markov processes
92 Biology and other natural sciences
92D Genetics and population dynamics
Applications of Mathematics
Biomatemàtica
Biomathematics
Classificació AMS
linear invariants
Markov Chains
Markov processes
Markov, Processos de
Matemàtiques i estadística
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Models, Biological
Molecular Sequence Data
Phylogenetic tree
Phylogeny
Àrees temàtiques de la UPC
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BAlJ74FGghBZkJE6gSFk7ju1jQa24UFW81JuVOGN1JUirTbaCf89MXgJRKsFhD9lMIscee77RPD6Al4XBYMg0pDG6yGFGlVYqYKqjDHXpZIZZ7MkmzPGxPT11J2Mddztlu08hyf6knovd2D3gRLMiZVLH1N6EW2TtLPM1fPj4ZQ4dGD3Q5NHZnHJzrSmUedUrfjNGi9BuwlVA848gaW97ju7916jvw90RaoqDQTcewA1sduDOQD75Ywe2388dW9uH8ObkjFx30iYuahTfVt85stCKsqkFA9FyLVbNJfnVnDYjCOgK5HJM-vNi04meTqd9BJ-PDj-9fZeO_AppyF3WpRgI8NgCLdZYxRj6_m2oS5tXiFjkxgVVqCpmwWTRGsnkYeTvLOt6qSt0Sj2GRXPe4BMQyuZ1rpXD6CwdCdJV1ZIWOycAUFYEEhPIpon2YWw-zhwYX_3cNrmfKM8JZzxR3ibwan7kYui8cb0wrZ4nK4HrUHaeu2bPF_yTmZFeEpzVKoH9aY39uGNbv7SWwJiWWibwYr5Ne40DKGWD5xuWIfdLEWi9VoZELHmdJoHdQX_m4UtTMLWJTuD1pCy_DOBv3_b0n6T3YEsy8uiTi_Zh0a03-Axuh8tu1a6f91vlJ0_fC0E
  priority: 102
  providerName: Springer Nature
Title Phylogenetic mixtures and linear invariants for equal input models
URI https://link.springer.com/article/10.1007/s00285-016-1055-8
https://www.ncbi.nlm.nih.gov/pubmed/27604275
https://www.proquest.com/docview/1886585252
https://www.proquest.com/docview/1859730832
https://www.proquest.com/docview/1897389567
https://recercat.cat/handle/2072/292353
Volume 74
WOSCitedRecordID wos000399219000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: P5Z
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: M7P
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: K7-
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: M7S
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: 7X7
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: BENPR
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017591
  issn: 0303-6812
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8PQVf7vy23rlU8EkJdpOmSZ_EkzsEYSl3KosvpU0TbkG767Z7eP-9M-mHirovPjTQNoWkk2R-k5nMD-B5oqxRqBqYc6kjN6NgpTCWScdNVaQ8spHzZBNqPteLRZr1G25NH1Y5rIl-oa5WhvbIX820RmUpueSv198YsUaRd7Wn0NiDfcqSwH3oXjZ6EZTsGPNwmWaUZ2vwakY-iSjXFLaWMKKIZPo3vTQxzdb8DXP-4S_1aujs8H87cAcOegAavulGzF24Yet7cKujpLy-DyfZJZrwOKrocGP4dfmdPAxNWNRVSIC02ITL-grtawqfCRHwhpaOZeLD9bYNPa1O8wA-np1-ePuO9TwLzMRp1DJrEPjoxGpb2dI54_O4WVnouLTWJrFKjUhE6SKjIqcVJxIxtHtmVTWTpU2FeAiTelXbxxAKHVexFKl1qcalgadlOUOhxwgEihLBYgDR8Jdz0ychJy6ML_mYPtkLJqfAMxJMrgN4MX6y7jJw7K6MostRW9iNKdqcsmePN3TxSPGcI6yVIoDjQVJ5P3Ob_KeYAng2vsY5R46UorarLdVBM0wgeN1ZB6totD5VAI-6wTM2n6uEKE5kAC-H0fRLA_7Vtye7m3sEtzlBDh9VdAyTdrO1T-GmuWqXzWYKe2qhfKmnsH9yOs_O8e69YlM_ZXx5gWUmP2N5fvHpB5FVGLk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3o9AASPBBWQ16zzsHBDiVbXasuqhSL2ZxBmLlSC7bLKF_VP8RmaSTQABe-uBQ6Q8HMmJP8989tjzATxONTpNrkF6n3kOM0ayiBzKxCtX5pkKMfSt2ISeTMzJSXa0Bd_7vTC8rLK3ia2hLmeO58h3R8aQs0xUol7Mv0hWjeLoai-h0cFijKuvNGSrnx-8ofZ9otTe2-PX-3KtKiBdnIWNREdu3qRosMTCe9dmLcMkN3GBiGmsMxelUeFDp0NvtGLJLGL5o7IcJQVmPAFKJv9cHBnN_Wqs5RC10Emn0EduQXJerz6KGrZJS5XhZXKpZElKaX7zg9uuXrq_cdw_4rOt29u78r_9sKtweU2wxcuuR1yDLayuw4VOcnN1A14dfVzRGVl4ei4-T79xBKUWeVUKJtz5Qkyr05x6ZdXUggi9QN52Sjfny0a0skH1TXh_Jh9wC7arWYV3QEQmLuMkytBnhkyfyopiRKCOiejkBZHhAMK-Va1bJ1lnrY9PdkgP3QLB8sI6BoI1ATwdXpl3GUY2FyaoWPKGuHB5Yzk7-HDBhwq1sopoexIFsNMjw64tU21_wiKAR8NjsikcKMornC25DA0zIyLnG8tQEUOjax3A7Q6sQ_WVTlnCJQngWY_eXyrwr2-7u7m6D-Hi_vG7Q3t4MBnfg0uK6VW7gmoHtpvFEu_DeXfaTOvFg7ZTCvhw1qD-Acsub44
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tykNceD8CCxgJLiBrUyeOnQNCwFKxWlT1ANKKi0kcW1TaTUuTLvSv8euYyQsQ0NseOETKw5Gc5PPMZ89kPoDHiXJWoWvg3qeewowRzyPruPTCFlkqQhf6RmxCTaf66Cid7cD3_l8YSqvsbWJjqIuFpTXyvbHW6CylkGLPd2kRs_3Ji-UXTgpSFGnt5TRaiBy6zVecvlXPD_bxWz8RYvLm_eu3vFMY4DZOw5o7iy5fJ067wuXe26aCmZOZjnPnXBKr1EZJlPvQqtBrJUg-Cxn_uCjGMncpLYai-T-ncI5J6YQz-XGIYCjZqvWhi-BU46uPqIZNAVOhKWUu4SRPyfVvPnFkq7X9G9_9I1bbuMDJlf_55V2Fyx3xZi_bkXINdlx5HS60UpybG_Bq9nmDe2j58To7mX-jyErFsrJgRMSzFZuXpxmO1rKuGBJ95uh3VDy5XNeskROqbsKHM3mAWzAqF6W7AyzScRHLKHU-1WgSRZrnYwR7jAQoy5EkBxD2X9jYrvg6aYAcm6FsdAMKQwl3BAqjA3g63LJsK49sb4ywMegl3cpmtaGq4cMBbSJUwgik8zIKYLdHieksVmV-QiSAR8NltDUUQMpKt1hTG5x-Rkjat7bBJhpn3SqA2y1wh-4LlZC0iwzgWY_kXzrwr2e7u727D-EiYtm8O5ge3oNLglhXk1i1C6N6tXb34bw9refV6kEzPhl8OmtM_wAIZHiy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenetic+mixtures+and+linear+invariants+for+equal+input+models&rft.jtitle=Journal+of+mathematical+biology&rft.au=Casanellas%2C+Marta&rft.au=Steel%2C+Mike&rft.date=2017-04-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=74&rft.issue=5&rft.spage=1107&rft.epage=1138&rft_id=info:doi/10.1007%2Fs00285-016-1055-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00285_016_1055_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon