A review of dark fermentative hydrogen production from biodegradable municipal waste fractions
► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed lit...
Saved in:
| Published in: | Waste management (Elmsford) Vol. 33; no. 6; pp. 1345 - 1361 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.06.2013
Elsevier |
| Subjects: | |
| ISSN: | 0956-053X, 1879-2456, 1879-2456 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended.
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. |
|---|---|
| AbstractList | ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended.
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. |
| Author | Muntoni, A. Polettini, A. Pomi, R. De Gioannis, G. |
| Author_xml | – sequence: 1 givenname: G. surname: De Gioannis fullname: De Gioannis, G. email: degioan@unica.it organization: DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy – sequence: 2 givenname: A. surname: Muntoni fullname: Muntoni, A. organization: DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy – sequence: 3 givenname: A. surname: Polettini fullname: Polettini, A. organization: Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza”, Italy – sequence: 4 givenname: R. surname: Pomi fullname: Pomi, R. organization: Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza”, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27469004$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23558084$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22300359$$D View this record in Osti.gov |
| BookMark | eNqFkkuLFDEUhYOMOA_9ByIFIrjp9uZZKRfCMPiCATcKrgyp5NZM2qqkTapnmH9vyu5BcOGs7uY7h3vPuafkKKaIhDynsKZA1ZvN-taWycY1A8rXwNZAu0fkhOq2WzEh1RE5gU6qFUj-_ZiclrIBoEJTeEKOGZdSgxYn5Md5k_Em4G2Thsbb_LMZME8YZzuHG2yu73xOVxibbU5-5-aQYjPkNDV9SB6vsvW2H7GZdjG4sLVjU3easSL2D1uekseDHQs-O8wz8u3D-68Xn1aXXz5-vji_XDnRwbzySnLpWT9oDYPuqGbCtmroERzvpe7BIkUEpYFrhRqdkL1mHdMdDq0Qnp-Rl3vfVOZgigszumuXYkQ3G8Y4AJddpV7vqXrNrx2W2UyhOBxHGzHtiqEtBcYp69TDKFcd40q0sqIvDuiun9CbbQ6TzXfmPuQKvDoAtjg71nCiC-Uv1wrVASzc2z3nciol42DqHXbJcc42jIaCWZo3G7Nv3izNG2CmNl_F4h_xvf8Dsnd7GdZ26h_kJTyMDn3IS3Y-hf8b_AbR0skr |
| CitedBy_id | crossref_primary_10_1007_s13399_021_02056_x crossref_primary_10_1016_j_radphyschem_2020_109246 crossref_primary_10_3390_molecules23113029 crossref_primary_10_1016_j_wasman_2019_02_011 crossref_primary_10_1016_j_biortech_2016_09_055 crossref_primary_10_1016_j_ijhydene_2018_04_170 crossref_primary_10_1016_j_biortech_2015_07_048 crossref_primary_10_1016_j_renene_2019_05_122 crossref_primary_10_1007_s40093_018_0196_8 crossref_primary_10_1016_j_ijhydene_2019_09_036 crossref_primary_10_1007_s00449_014_1217_2 crossref_primary_10_1016_j_biortech_2016_12_079 crossref_primary_10_1016_j_ijhydene_2022_04_229 crossref_primary_10_3390_su10124506 crossref_primary_10_1016_j_ijhydene_2015_01_120 crossref_primary_10_1016_j_ijhydene_2018_10_208 crossref_primary_10_1186_s12934_023_02193_0 crossref_primary_10_1016_j_biortech_2023_128839 crossref_primary_10_1016_j_wasman_2018_08_042 crossref_primary_10_1016_j_biortech_2014_03_020 crossref_primary_10_1016_j_biortech_2020_124241 crossref_primary_10_1080_10643389_2017_1348107 crossref_primary_10_1007_s10098_018_1536_0 crossref_primary_10_1016_j_ijhydene_2017_10_167 crossref_primary_10_1016_j_ijhydene_2017_06_221 crossref_primary_10_1016_j_ijhydene_2019_08_077 crossref_primary_10_1016_j_ijhydene_2024_03_315 crossref_primary_10_1016_j_biortech_2015_04_120 crossref_primary_10_1016_j_ijhydene_2020_03_010 crossref_primary_10_1016_j_watres_2015_01_017 crossref_primary_10_3390_en16031233 crossref_primary_10_1007_s11356_024_34252_3 crossref_primary_10_1007_s11356_015_5652_7 crossref_primary_10_1016_j_biortech_2019_01_012 crossref_primary_10_1016_j_biortech_2017_07_158 crossref_primary_10_1016_j_procbio_2017_04_013 crossref_primary_10_1016_j_scitotenv_2023_163801 crossref_primary_10_1016_j_wasman_2023_04_023 crossref_primary_10_1016_j_ijhydene_2016_09_047 crossref_primary_10_1016_j_bej_2022_108656 crossref_primary_10_1016_j_ijhydene_2018_01_114 crossref_primary_10_1016_j_biortech_2015_01_139 crossref_primary_10_1016_j_wasman_2024_09_022 crossref_primary_10_1016_j_biortech_2018_05_021 crossref_primary_10_1016_j_fuel_2022_123434 crossref_primary_10_1016_j_ijhydene_2014_04_104 crossref_primary_10_1016_j_wasman_2016_10_028 crossref_primary_10_1007_s12649_019_00687_w crossref_primary_10_1007_s12010_017_2459_7 crossref_primary_10_1016_j_ijhydene_2014_08_004 crossref_primary_10_1016_j_wasman_2016_01_044 crossref_primary_10_1177_0734242X19826371 crossref_primary_10_3390_catal9100858 crossref_primary_10_1016_j_renene_2021_07_049 crossref_primary_10_1016_j_cnsns_2019_03_024 crossref_primary_10_1038_srep28336 crossref_primary_10_1016_j_ijhydene_2018_10_022 crossref_primary_10_1016_j_biortech_2019_01_085 crossref_primary_10_1016_j_renene_2016_03_094 crossref_primary_10_1016_j_biortech_2014_10_128 crossref_primary_10_1016_j_uncres_2025_100241 crossref_primary_10_1016_j_renene_2019_03_012 crossref_primary_10_1007_s10973_016_5932_6 crossref_primary_10_1016_j_wasman_2017_10_039 crossref_primary_10_3390_fermentation2030015 crossref_primary_10_1016_j_renene_2018_09_030 crossref_primary_10_1016_j_wasman_2017_06_013 crossref_primary_10_1016_j_biortech_2016_09_072 crossref_primary_10_1016_j_egypro_2018_08_059 crossref_primary_10_1002_er_4188 crossref_primary_10_1007_s10532_017_9812_y crossref_primary_10_1016_j_jclepro_2015_11_085 crossref_primary_10_1016_j_wasman_2020_09_039 crossref_primary_10_1016_j_wasman_2016_09_019 crossref_primary_10_1016_j_biortech_2015_12_084 crossref_primary_10_1016_j_jenvman_2014_12_049 crossref_primary_10_1016_j_chemosphere_2021_131428 crossref_primary_10_3390_en12183552 crossref_primary_10_1016_j_jclepro_2014_01_006 crossref_primary_10_1016_j_psep_2024_06_006 crossref_primary_10_1016_j_ijhydene_2016_03_057 crossref_primary_10_1016_j_jenvman_2015_04_006 crossref_primary_10_1016_j_chemosphere_2020_129460 crossref_primary_10_1016_j_energy_2024_132327 crossref_primary_10_1016_j_energy_2014_11_028 crossref_primary_10_1016_j_apenergy_2015_01_045 crossref_primary_10_1016_j_ijhydene_2014_06_152 crossref_primary_10_1016_j_ijhydene_2015_09_117 crossref_primary_10_1016_j_cej_2022_139458 crossref_primary_10_1016_j_jclepro_2017_10_112 crossref_primary_10_1016_j_egypro_2015_07_828 crossref_primary_10_1080_07388551_2017_1312274 crossref_primary_10_3390_en16073063 crossref_primary_10_1515_psr_2016_0050 crossref_primary_10_1007_s11696_019_01010_6 crossref_primary_10_1016_j_jhazmat_2021_126037 crossref_primary_10_1016_j_wasman_2017_05_024 crossref_primary_10_1007_s12649_019_00732_8 crossref_primary_10_1016_j_biombioe_2024_107345 crossref_primary_10_3390_en14071831 crossref_primary_10_1016_j_wasman_2017_09_042 crossref_primary_10_1016_j_biortech_2017_07_006 crossref_primary_10_1016_j_envres_2024_118399 crossref_primary_10_1007_s10163_024_02114_2 crossref_primary_10_1016_j_biortech_2017_07_087 crossref_primary_10_1016_j_biortech_2018_05_076 crossref_primary_10_1016_j_biortech_2020_124166 crossref_primary_10_1016_j_ijhydene_2018_12_099 crossref_primary_10_1016_j_renene_2017_07_042 crossref_primary_10_1016_j_biteb_2019_100278 crossref_primary_10_1080_17597269_2018_1432275 crossref_primary_10_1016_j_watres_2016_07_002 crossref_primary_10_1016_j_ijhydene_2019_07_236 crossref_primary_10_1016_j_ijhydene_2024_11_236 crossref_primary_10_3390_su11072139 crossref_primary_10_1080_10934529_2015_1012001 crossref_primary_10_1016_j_biortech_2016_06_053 crossref_primary_10_1016_j_envres_2023_116943 crossref_primary_10_1016_j_biortech_2016_12_048 crossref_primary_10_1016_j_ijhydene_2021_04_017 crossref_primary_10_1007_s12649_018_0504_6 crossref_primary_10_1016_j_renene_2020_01_151 crossref_primary_10_1016_j_chemosphere_2021_129981 crossref_primary_10_1016_j_rser_2017_03_091 crossref_primary_10_1007_s12649_017_0161_1 crossref_primary_10_1016_j_wasman_2014_11_019 crossref_primary_10_3389_fenrg_2021_580808 crossref_primary_10_1016_j_resconrec_2021_105900 crossref_primary_10_3390_en18051092 crossref_primary_10_1016_j_rser_2020_110283 crossref_primary_10_1002_er_3466 crossref_primary_10_1016_j_jes_2023_04_031 crossref_primary_10_1016_j_rser_2018_04_033 crossref_primary_10_1177_0734242X221103940 crossref_primary_10_15446_dyna_v82n189_42461 crossref_primary_10_1016_j_ijhydene_2021_06_174 crossref_primary_10_1016_j_cej_2023_145684 crossref_primary_10_1080_21622515_2022_2139641 crossref_primary_10_1016_j_ijhydene_2019_02_028 crossref_primary_10_1016_j_ijhydene_2019_08_091 crossref_primary_10_1016_j_biortech_2017_06_145 crossref_primary_10_1016_j_renene_2017_12_017 crossref_primary_10_1016_j_ijhydene_2019_11_224 crossref_primary_10_1016_j_ijhydene_2017_07_007 crossref_primary_10_1016_j_jece_2025_115829 crossref_primary_10_1016_j_wasman_2015_06_001 crossref_primary_10_1016_j_ijhydene_2022_06_138 crossref_primary_10_1016_j_jclepro_2021_128776 crossref_primary_10_1007_s13399_025_06570_0 crossref_primary_10_1016_j_wasman_2015_06_008 crossref_primary_10_1016_j_biortech_2014_03_088 crossref_primary_10_1016_j_biortech_2017_07_062 crossref_primary_10_1016_j_ijhydene_2019_08_256 crossref_primary_10_1016_j_wasman_2015_07_049 crossref_primary_10_1016_j_fuel_2022_123449 crossref_primary_10_1016_j_ijhydene_2023_08_274 crossref_primary_10_1080_15567036_2016_1217292 crossref_primary_10_1007_s42768_024_00200_7 crossref_primary_10_1007_s12649_016_9785_9 crossref_primary_10_1016_j_wasman_2016_07_006 crossref_primary_10_1016_j_cej_2023_143142 crossref_primary_10_1016_j_ijhydene_2023_10_289 crossref_primary_10_1016_j_watres_2018_01_051 crossref_primary_10_1016_j_rser_2015_05_076 crossref_primary_10_1016_j_est_2019_03_020 crossref_primary_10_1016_j_apenergy_2015_05_105 crossref_primary_10_1016_j_scs_2020_102521 crossref_primary_10_1016_j_ijhydene_2021_05_165 crossref_primary_10_3390_fermentation9100869 crossref_primary_10_1016_j_ijhydene_2013_11_011 crossref_primary_10_1016_j_biortech_2014_02_051 crossref_primary_10_1016_j_wasman_2016_06_039 crossref_primary_10_1016_j_wasman_2016_10_047 crossref_primary_10_1016_j_fuel_2022_126169 crossref_primary_10_1016_j_jece_2022_107711 crossref_primary_10_1016_j_wasman_2020_07_010 crossref_primary_10_3390_su15043168 crossref_primary_10_1016_j_chemosphere_2021_132444 crossref_primary_10_3390_su11030622 crossref_primary_10_1016_j_biortech_2016_04_007 crossref_primary_10_1016_j_jclepro_2016_02_034 crossref_primary_10_1080_10643389_2016_1145959 |
| Cites_doi | 10.1016/j.watres.2006.03.029 10.1016/j.ijhydene.2008.12.020 10.1007/s12257-008-0142-0 10.1016/j.ijhydene.2007.09.049 10.1016/j.tibtech.2004.07.001 10.1016/j.ijhydene.2008.09.100 10.1016/j.ijhydene.2010.01.084 10.1016/j.biortech.2010.10.137 10.1021/es050244p 10.1016/j.ijhydene.2006.02.020 10.1016/j.biortech.2008.11.033 10.1016/j.ijhydene.2011.01.006 10.1016/j.ijhydene.2011.05.153 10.1016/j.ijhydene.2008.11.031 10.1016/j.jpowsour.2006.01.006 10.1016/j.biortech.2010.02.013 10.1007/s10531-004-0377-9 10.32614/RJ-2009-013 10.1016/j.procbio.2007.11.007 10.1016/j.jpowsour.2010.03.061 10.1016/j.biortech.2008.01.029 10.1016/j.biortech.2009.03.037 10.1080/15567030903117653 10.1016/j.ijhydene.2009.05.112 10.1016/j.renene.2008.08.011 10.1016/j.bej.2010.05.001 10.1128/MMBR.41.1.100-180.1977 10.1016/j.ijhydene.2011.04.136 10.1007/s00253-004-1644-0 10.1016/S0038-0717(00)00006-7 10.1016/j.ijhydene.2011.05.145 10.1016/j.biombioe.2009.06.008 10.1016/S0360-3199(03)00027-2 10.1016/j.ijhydene.2011.05.048 10.1007/s11157-007-9122-7 10.1021/es0605016 10.1021/es062127f 10.1007/s00253-010-3066-5 10.1016/j.bioelechem.2009.05.005 10.1016/j.ijhydene.2004.02.018 10.1016/j.renene.2008.02.018 10.1002/bit.20269 10.1177/0734242X0202000202 10.1016/j.enzmictec.2009.06.013 10.1016/j.biortech.2010.10.025 10.1016/j.biortech.2011.03.030 10.1016/j.ijhydene.2005.04.024 10.1016/j.biortech.2011.04.089 10.1016/j.ijhydene.2008.08.004 10.1016/j.ijhydene.2008.05.010 10.1061/(ASCE)0733-9372(2005)131:4(595) 10.1198/106186006X133933 10.1016/j.ijhydene.2010.03.097 10.1016/j.ijhydene.2009.12.041 10.1016/S0043-1354(98)00483-7 10.1016/j.ijhydene.2005.07.005 10.1016/j.ijhydene.2003.09.001 10.1016/S0360-3199(03)00083-1 10.1016/j.ijhydene.2010.03.008 10.1016/j.ijhydene.2010.05.036 10.1016/j.ijhydene.2010.12.009 10.1016/j.bios.2009.03.024 10.1016/j.ijhydene.2003.09.011 10.1021/es801553z 10.1016/j.apenergy.2010.07.004 10.1016/j.ijhydene.2009.02.039 10.1016/j.ijhydene.2008.07.130 10.1016/j.ijhydene.2008.10.041 10.1016/j.ijhydene.2006.02.034 10.1016/j.tibtech.2009.02.004 10.2166/wst.2000.0052 10.1016/j.ijhydene.2008.04.040 10.2965/jwet.2003.177 10.1016/S0960-8524(00)00023-7 10.1080/10473289.2004.10470895 10.1080/10643380600729071 10.1016/j.ijhydene.2010.08.093 10.1016/j.ijhydene.2009.11.126 10.1016/j.ijhydene.2008.05.006 10.2166/wst.2006.232 10.1016/j.ijhydene.2004.09.016 10.1016/j.ijhydene.2008.06.060 10.1016/j.ijhydene.2010.01.042 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI |
| DOI | 10.1016/j.wasman.2013.02.019 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Applied Sciences Environmental Sciences |
| EISSN | 1879-2456 |
| EndPage | 1361 |
| ExternalDocumentID | 22300359 23558084 27469004 10_1016_j_wasman_2013_02_019 S0956053X13001074 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEN SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE WUQ Y6R ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 AALMO AAPBV ABPIF ABPTK OTOTI |
| ID | FETCH-LOGICAL-c490t-d6535d2bf880f891824a76fbe0c3b58b0ae1ee0680386e8ec45b829289ef744d3 |
| ISICitedReferencesCount | 197 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321403300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-053X 1879-2456 |
| IngestDate | Thu May 18 18:38:34 EDT 2023 Thu Oct 02 06:46:31 EDT 2025 Thu Oct 02 10:55:22 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Mon Jul 21 09:16:27 EDT 2025 Sat Nov 29 04:12:55 EST 2025 Tue Nov 18 21:06:35 EST 2025 Fri Feb 23 02:24:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | OFMSW PS F/M Biological hydrogen production WAS HRT MFC Anaerobic digestion Food waste FW OLR SRT COD Organic fractions of municipal solid waste SS PBR SBR Dark fermentation HST TOC MEC VFAs AR CSTR TKN OMW UASB VS TS Statistical analysis Batchwise Food industry Urban waste Kinetics Fermentation Forecast model Reactor |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c490t-d6535d2bf880f891824a76fbe0c3b58b0ae1ee0680386e8ec45b829289ef744d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 23558084 |
| PQID | 1369236475 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | osti_scitechconnect_22300359 proquest_miscellaneous_1710231296 proquest_miscellaneous_1369236475 pubmed_primary_23558084 pascalfrancis_primary_27469004 crossref_citationtrail_10_1016_j_wasman_2013_02_019 crossref_primary_10_1016_j_wasman_2013_02_019 elsevier_sciencedirect_doi_10_1016_j_wasman_2013_02_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-01 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: United States |
| PublicationTitle | Waste management (Elmsford) |
| PublicationTitleAlternate | Waste Manag |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Mata-Alvarez, Mace, Llabres (b0330) 2000; 74 Han, Shin (b0130) 2002; 20 Lee, Li, Lin, Wang, Kuo, Cheng (b0250) 2008; 33 Kim, Shin (b0185) 2008; 33 Kim, Kim, Shin (b0190) 2009; 45 Okamoto, Miyahara, Mizuno, Noike (b0360) 2000; 41 Davila-Vazquez, Arriaga, Alatriste-Mondragón, de León-Rodríguez, Rosales-Colunga, Razo-Flores (b0070) 2008; 7 Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (b0305) 2008; 42 Li, Youcai, Qiang, Xiaoqing, Dongjie (b0270) 2008; 33 Chen, Chen, Khanal, Sung (b0050) 2006; 31 Dong, Zhenhong, Yongming, Longlong, Lianhua (b0085) 2009; 15 Nazlina, Nor’Aini, Man, Yusoff, Hassan (b0345) 2011; 36 Wu, Yao, Zhu (b0450) 2010; 35 Han, Shin (b0135) 2004; 54 Hothorn, Hornik, Zeileis (b0150) 2006; 15 Gómez, Cuetos, Prieto, Morán (b0110) 2009; 34 Manuel, Neburchilov, Wang, Guiot, Tartakovsky (b0320) 2010; 195 Lin, Lay (b0280) 2004; 29 Abreu, Danko, Costa, Ferreira, Alves (b0005) 2009; 34 Liu, Grot, Logan (b0290) 2005; 39 Dong, Zhenhong, Yongming, Xiaoying, Yu (b0080) 2009; 34 Luo, Xie, Zou, Zhou, Wang (b0310) 2010; 87 Argun, Kargi, Kapdan, Oztekin (b0020) 2008; 33 Cappai, G., De Gioannis, G., Giordano, G., Muntoni, A., Polettini, A., Pomi, R., Spiga, D., 2011. Batch hydrogen production from food waste. In: Proc. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, S. Margherita di Pula (CA) (on CD ROM). Shin, Youn, Kim (b0390) 2004; 29 Sreela-or, Plangklang, Imai, Reungsang (b0400) 2011; 36 De Baere, L., 2003. State-of-the-art of anaerobic digestion of municipal solid waste. In: Proc. Sardinia 2003, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 6–10 October 2003 (on CD ROM). Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2009. Energy and material recovery through combined hydrogen-methane production and final composting of different solid and liquid waste (HyMeC concept). In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), pp. 885–886 (volume of abstracts, full paper on CD ROM). Hong, Haiyun (b0145) 2010; 101 Lalaurette, Thammannagowda, Mohagheghi, Maness, Logan (b0220) 2009; 34 Jeremiasse, Hamelers, Buisman (b0155) 2010; 78 Bhaskar, Mohan, Sarma (b0025) 2005; 99 Kim, Wu, Jeong, Kim, Shin (b0205) 2011; 36 Lay, Lee, Noike (b0225) 1999; 33 Lay, Fan, Chang, Ku (b0230) 2003; 28 Liu, Wang, Wang, Chen (b0295) 2011; 89 Kim, Han, Shin, Kim (b0180) 2008; 43 Liu, Liu, Zeng, Angelidaki (b0285) 2006; 40 (b0325) 2002 Sharma, Li (b0375) 2010; 35 Lee, Chung (b0240) 2010; 35 Lee, Ebie, Xu, Li, Inamori (b0260) 2010; 101 Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (b0300) 2006; 40 Shin, Kim, Paik (b0385) 2003; 1 Rechtenbach, D., Stegmann, R., 2009. Combined bio-hydrogen and methane production. In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), 5–9 October 2009, pp. 79–80 (manuscript on CD ROM, 11 pp.). Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2010. Assessment through batch tests of hydrogen production from mixtures of biodegradable residues. In: Proceedings of Venice 2010, Third International Symposium on Energy from Biomass and Waste, Venice (I) (on CD ROM). Gómez, Morán, Cuetos, Sanchez (b0105) 2006; 157 Dong, Zhenhong, Yongming, Longlong (b0090) 2011; 33 Pan, Zhang, El-Mashad, Sun, Ying (b0365) 2008; 33 Rechtenbach, D., Meyer, M., Stegmann, R., 2008. (Dis-) continuous production of biohydrogen and biomethane from raw and waste materials by fermentation. In: Proceedings of Venice 2008 Second International Symposium on Energy from Biomass and Waste, Venice (I), 17–20 November 2008 (manuscript on CD ROM, 10 pp.). Angenent, Karim, Al-Dahhan, Wrenn, Domíguez-Espinosa (b0015) 2004; 22 Bolzonella, Pavan, Mace, Cecchi (b0030) 2006; 53 Kim, Kim, Kim, Shin (b0195) 2010; 35 Zong, Yu, Zhang, Fan, Zhou (b0460) 2009; 33 Elbeshbishy, Hafez, Nakhla (b0095) 2011; 36 Kim, Kim, Kim, Kim, Shin (b0200) 2011; 102 Lay, Fan, Hwang, Chang, Hsu (b0235) 2005; 131 Lee, Lin, Chang (b0245) 2006; 31 Vázquez-Larios, Solorza-Feria, Vázquez-Huerta, Esparza-García, Rinderknecht-Seijas, Poggi-Varaldo (b0435) 2011; 36 Cheng, Logan (b0055) 2011; 102 Ueno, Fukui, Goto (b0420) 2007; 41 Guo, Tang, Du, Li (b0120) 2010; 51 Li, Fang (b0265) 2007; 37 Lu, Ren, Xing, Logan (b0315) 2009; 24 Kim, Kim, Jung, Kim, Shin (b0210) 2011; 102 Sreela-or, Imai, Plangklang, Reungsang (b0395) 2011; 36 Hallenbeck, Ghosh (b0125) 2009; 27 Li, Kuo, Lin, Lee, Wang, Cheng (b0275) 2008; 33 Shin, Youn (b0380) 2005; 16 Guo, Trably, Latrille, Carrère, Steyer (b0115) 2010; 35 Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0455) 2008; 33 Chidthaisong, Conrad (b0060) 2000; 32 Valdez-Vazquez, Poggi-Varaldo (b0425) 2009; 34 Karagiannidis, Perkoulidis (b0165) 2009; 100 Han, Shin (b0140) 2004; 29 Oh, Kim, Kim, Park (b0355) 2004; 88 Poggi-Varaldo, Carmona-Martínez, Vázquez-Larios, Solorza-Feria (b0370) 2009; 12 Thauer, Jungermann, Decker (b0410) 1977; 41 Lee, Li, Kuo, Chen, Tien, Huang, Chuang, Wong, Cheng (b0255) 2010; 35 Nath, Das (b0340) 2004; 65 Fang, Li, Zhang (b0100) 2006; 31 Kyazze, Popov, Dinsdale, Esteves, Hawkes, Premier, Guwy (b0215) 2010; 35 Valdez-Vazquez, Rios-Leal, Esparza-García, Cecchi, Poggi-Varaldo (b0430) 2005; 30 Mohanakrishna, Venkata Mohan, Sarma (b0335) 2010; 35 Khanal, Chen, Li, Sung (b0160) 2004; 29 Strobl, Hothorn, Zeileis (b0405) 2009; 1 Wang, Zhao (b0445) 2009; 34 Kim, Han, Shin (b0170) 2004; 29 Tuna, Kargi, Argun (b0415) 2009; 34 Alzate-Gaviria, Sebastian, Perez-Hernandez, Eapen (b0010) 2007; 32 Chu, Yu, Kai, Yoshitaka, Yuhei, Hai (b0065) 2008; 33 Wang, Sun, Cao, Wang, Ren, Wu, Logan (b0440) 2011; 102 Kim, Nhat, Chun, Kim (b0175) 2008; E13 Li (10.1016/j.wasman.2013.02.019_b0270) 2008; 33 10.1016/j.wasman.2013.02.019_b0470 Kim (10.1016/j.wasman.2013.02.019_b0170) 2004; 29 10.1016/j.wasman.2013.02.019_b0075 Chidthaisong (10.1016/j.wasman.2013.02.019_b0060) 2000; 32 Pan (10.1016/j.wasman.2013.02.019_b0365) 2008; 33 Alzate-Gaviria (10.1016/j.wasman.2013.02.019_b0010) 2007; 32 Kim (10.1016/j.wasman.2013.02.019_b0200) 2011; 102 Lee (10.1016/j.wasman.2013.02.019_b0250) 2008; 33 (10.1016/j.wasman.2013.02.019_b0325) 2002 Kim (10.1016/j.wasman.2013.02.019_b0210) 2011; 102 Sreela-or (10.1016/j.wasman.2013.02.019_b0395) 2011; 36 Wang (10.1016/j.wasman.2013.02.019_b0445) 2009; 34 Nath (10.1016/j.wasman.2013.02.019_b0340) 2004; 65 Angenent (10.1016/j.wasman.2013.02.019_b0015) 2004; 22 Manuel (10.1016/j.wasman.2013.02.019_b0320) 2010; 195 Shin (10.1016/j.wasman.2013.02.019_b0385) 2003; 1 Lee (10.1016/j.wasman.2013.02.019_b0260) 2010; 101 Liu (10.1016/j.wasman.2013.02.019_b0290) 2005; 39 Mata-Alvarez (10.1016/j.wasman.2013.02.019_b0330) 2000; 74 10.1016/j.wasman.2013.02.019_b0465 Lay (10.1016/j.wasman.2013.02.019_b0230) 2003; 28 Lee (10.1016/j.wasman.2013.02.019_b0240) 2010; 35 Kim (10.1016/j.wasman.2013.02.019_b0185) 2008; 33 Kim (10.1016/j.wasman.2013.02.019_b0195) 2010; 35 Lu (10.1016/j.wasman.2013.02.019_b0315) 2009; 24 Abreu (10.1016/j.wasman.2013.02.019_b0005) 2009; 34 Shin (10.1016/j.wasman.2013.02.019_b0380) 2005; 16 Kim (10.1016/j.wasman.2013.02.019_b0190) 2009; 45 Liu (10.1016/j.wasman.2013.02.019_b0295) 2011; 89 Han (10.1016/j.wasman.2013.02.019_b0135) 2004; 54 Logan (10.1016/j.wasman.2013.02.019_b0300) 2006; 40 Davila-Vazquez (10.1016/j.wasman.2013.02.019_b0070) 2008; 7 Elbeshbishy (10.1016/j.wasman.2013.02.019_b0095) 2011; 36 Okamoto (10.1016/j.wasman.2013.02.019_b0360) 2000; 41 Strobl (10.1016/j.wasman.2013.02.019_b0405) 2009; 1 Bolzonella (10.1016/j.wasman.2013.02.019_b0030) 2006; 53 Han (10.1016/j.wasman.2013.02.019_b0140) 2004; 29 Khanal (10.1016/j.wasman.2013.02.019_b0160) 2004; 29 Dong (10.1016/j.wasman.2013.02.019_b0090) 2011; 33 Gómez (10.1016/j.wasman.2013.02.019_b0105) 2006; 157 Ueno (10.1016/j.wasman.2013.02.019_b0420) 2007; 41 Argun (10.1016/j.wasman.2013.02.019_b0020) 2008; 33 Bhaskar (10.1016/j.wasman.2013.02.019_b0025) 2005; 99 Luo (10.1016/j.wasman.2013.02.019_b0310) 2010; 87 Tuna (10.1016/j.wasman.2013.02.019_b0415) 2009; 34 Dong (10.1016/j.wasman.2013.02.019_b0080) 2009; 34 Oh (10.1016/j.wasman.2013.02.019_b0355) 2004; 88 Kim (10.1016/j.wasman.2013.02.019_b0205) 2011; 36 Kim (10.1016/j.wasman.2013.02.019_b0175) 2008; E13 Liu (10.1016/j.wasman.2013.02.019_b0285) 2006; 40 Karagiannidis (10.1016/j.wasman.2013.02.019_b0165) 2009; 100 Shin (10.1016/j.wasman.2013.02.019_b0390) 2004; 29 Kim (10.1016/j.wasman.2013.02.019_b0180) 2008; 43 Li (10.1016/j.wasman.2013.02.019_b0265) 2007; 37 Thauer (10.1016/j.wasman.2013.02.019_b0410) 1977; 41 Wang (10.1016/j.wasman.2013.02.019_b0440) 2011; 102 Dong (10.1016/j.wasman.2013.02.019_b0085) 2009; 15 Mohanakrishna (10.1016/j.wasman.2013.02.019_b0335) 2010; 35 Lay (10.1016/j.wasman.2013.02.019_b0235) 2005; 131 Poggi-Varaldo (10.1016/j.wasman.2013.02.019_b0370) 2009; 12 Wu (10.1016/j.wasman.2013.02.019_b0450) 2010; 35 Hothorn (10.1016/j.wasman.2013.02.019_b0150) 2006; 15 10.1016/j.wasman.2013.02.019_b0045 Kyazze (10.1016/j.wasman.2013.02.019_b0215) 2010; 35 Logan (10.1016/j.wasman.2013.02.019_b0305) 2008; 42 Fang (10.1016/j.wasman.2013.02.019_b0100) 2006; 31 10.1016/j.wasman.2013.02.019_b0040 Guo (10.1016/j.wasman.2013.02.019_b0115) 2010; 35 Hallenbeck (10.1016/j.wasman.2013.02.019_b0125) 2009; 27 Sharma (10.1016/j.wasman.2013.02.019_b0375) 2010; 35 Lee (10.1016/j.wasman.2013.02.019_b0255) 2010; 35 Hong (10.1016/j.wasman.2013.02.019_b0145) 2010; 101 Valdez-Vazquez (10.1016/j.wasman.2013.02.019_b0425) 2009; 34 Valdez-Vazquez (10.1016/j.wasman.2013.02.019_b0430) 2005; 30 Lay (10.1016/j.wasman.2013.02.019_b0225) 1999; 33 Cheng (10.1016/j.wasman.2013.02.019_b0055) 2011; 102 Han (10.1016/j.wasman.2013.02.019_b0130) 2002; 20 Lalaurette (10.1016/j.wasman.2013.02.019_b0220) 2009; 34 Vázquez-Larios (10.1016/j.wasman.2013.02.019_b0435) 2011; 36 Chu (10.1016/j.wasman.2013.02.019_b0065) 2008; 33 Lee (10.1016/j.wasman.2013.02.019_b0245) 2006; 31 Lin (10.1016/j.wasman.2013.02.019_b0280) 2004; 29 Nazlina (10.1016/j.wasman.2013.02.019_b0345) 2011; 36 Zhu (10.1016/j.wasman.2013.02.019_b0455) 2008; 33 Chen (10.1016/j.wasman.2013.02.019_b0050) 2006; 31 Guo (10.1016/j.wasman.2013.02.019_b0120) 2010; 51 Gómez (10.1016/j.wasman.2013.02.019_b0110) 2009; 34 Li (10.1016/j.wasman.2013.02.019_b0275) 2008; 33 Jeremiasse (10.1016/j.wasman.2013.02.019_b0155) 2010; 78 10.1016/j.wasman.2013.02.019_b0035 Sreela-or (10.1016/j.wasman.2013.02.019_b0400) 2011; 36 Zong (10.1016/j.wasman.2013.02.019_b0460) 2009; 33 |
| References_xml | – volume: 37 start-page: 1 year: 2007 end-page: 39 ident: b0265 article-title: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 32 start-page: 977 year: 2000 end-page: 988 ident: b0060 article-title: Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil publication-title: Soil Biol. Biochem. – volume: 102 start-page: 8646 year: 2011 end-page: 8652 ident: b0210 article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste publication-title: Bioresour. Technol. – volume: 87 start-page: 3710 year: 2010 end-page: 3717 ident: b0310 article-title: Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH publication-title: Appl. Energy – volume: 15 start-page: 651 year: 2006 end-page: 674 ident: b0150 article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J. Comput. Graph. Stat. – reference: De Baere, L., 2003. State-of-the-art of anaerobic digestion of municipal solid waste. In: Proc. Sardinia 2003, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 6–10 October 2003 (on CD ROM). – volume: 31 start-page: 465 year: 2006 end-page: 472 ident: b0245 article-title: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers publication-title: Int. J. Hydrogen Energy – volume: 53 start-page: 23 year: 2006 end-page: 32 ident: b0030 article-title: Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience publication-title: Water Sci. Technol. – volume: 34 start-page: 3639 year: 2009 end-page: 3646 ident: b0425 article-title: Alkalinity and high total solids affecting H publication-title: Int. J. Hydrogen Energy – volume: 22 start-page: 477 year: 2004 end-page: 485 ident: b0015 article-title: Production of bioenergy and biochemicals from industrial and agricultural wastewater publication-title: Trends Biotechnol. – volume: 36 start-page: 9571 year: 2011 end-page: 9580 ident: b0345 article-title: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 250 year: 2009 end-page: 257 ident: b0085 article-title: Sequential anaerobic fermentative production of hydrogen and methane from organic fraction of municipal solid waste publication-title: Chin. J. Appl. Environ. Biol. – volume: 31 start-page: 2170 year: 2006 end-page: 2178 ident: b0050 article-title: Kinetic study of biological hydrogen production by anaerobic fermentation publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 1607 year: 2004 end-page: 1616 ident: b0170 article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 41 year: 2004 end-page: 45 ident: b0280 article-title: Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora publication-title: Int. J. Hydrogen Energ – volume: 33 start-page: 2573 year: 2008 end-page: 2579 ident: b0270 article-title: Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill publication-title: Renew. Energy – volume: 33 start-page: 6968 year: 2008 end-page: 6975 ident: b0365 article-title: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 1522 year: 2008 end-page: 1531 ident: b0275 article-title: Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste publication-title: Int. J. Hydrogen Energy – reference: Rechtenbach, D., Meyer, M., Stegmann, R., 2008. (Dis-) continuous production of biohydrogen and biomethane from raw and waste materials by fermentation. In: Proceedings of Venice 2008 Second International Symposium on Energy from Biomass and Waste, Venice (I), 17–20 November 2008 (manuscript on CD ROM, 10 pp.). – volume: 33 start-page: 1458 year: 2009 end-page: 1463 ident: b0460 article-title: Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation publication-title: Biomass Bioenergy – volume: 33 start-page: 575 year: 2011 end-page: 585 ident: b0090 article-title: Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste publication-title: Energy Source Part A – volume: 35 start-page: 11746 year: 2010 end-page: 11755 ident: b0240 article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 2230 year: 2006 end-page: 2236 ident: b0285 article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process publication-title: Water Res. – volume: 33 start-page: 4739 year: 2008 end-page: 4746 ident: b0065 article-title: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 7716 year: 2010 end-page: 7722 ident: b0215 article-title: Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 1355 year: 2004 end-page: 1363 ident: b0390 article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 569 year: 2004 end-page: 577 ident: b0140 article-title: Biohydrogen production by anaerobic fermentation of food waste publication-title: Int. J. Hydrogen Energy – volume: 20 start-page: 110 year: 2002 end-page: 118 ident: b0130 article-title: Enhanced acidogenic fermentation of food waste in a continuous-flow reactor publication-title: Waste Manage. Res. – volume: 42 start-page: 8630 year: 2008 end-page: 8640 ident: b0305 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ. Sci. Technol. – reference: Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2009. Energy and material recovery through combined hydrogen-methane production and final composting of different solid and liquid waste (HyMeC concept). In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), pp. 885–886 (volume of abstracts, full paper on CD ROM). – volume: 41 start-page: 1413 year: 2007 end-page: 1419 ident: b0420 article-title: Operation of a two-stage fermentation process producing hydrogen and methane from organic waste publication-title: Environ. Sci. Technol. – volume: 28 start-page: 1361 year: 2003 end-page: 1367 ident: b0230 article-title: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 13458 year: 2010 end-page: 13466 ident: b0255 article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 14120 year: 2011 end-page: 14133 ident: b0395 article-title: Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 213 year: 2008 end-page: 218 ident: b0180 article-title: Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time publication-title: Process Biochem. – volume: 45 start-page: 181 year: 2009 end-page: 187 ident: b0190 article-title: Hydrogen fermentation of food waste without inoculum addition publication-title: Enzyme Microb. Technol. – volume: 29 start-page: 1123 year: 2004 end-page: 1131 ident: b0160 article-title: Biological hydrogen production: effect of pH and intermediate products publication-title: Int. J. Hydrogen Energ – volume: 99 start-page: 6941 year: 2005 end-page: 6948 ident: b0025 article-title: Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor publication-title: Bioresource Technol. – volume: 102 start-page: 8501 year: 2011 end-page: 8506 ident: b0200 article-title: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance publication-title: Bioresour. Technol. – volume: 41 start-page: 100 year: 1977 end-page: 180 ident: b0410 article-title: Energy conservation in chemotrophic anaerobic bacteria publication-title: Bacteriol. Rev. – volume: 102 start-page: 4137 year: 2011 end-page: 4143 ident: b0440 article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell publication-title: Bioresource Technol. – volume: 16 start-page: 33 year: 2005 end-page: 44 ident: b0380 article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis publication-title: Biodegradation – volume: 27 start-page: 287 year: 2009 end-page: 297 ident: b0125 article-title: Advances in fermentative biohydrogen production: the way forward? publication-title: Trends Biotechnol. – volume: 101 start-page: S42 year: 2010 end-page: S47 ident: b0260 article-title: Continuous H publication-title: Bioresource Technol. – volume: 1 start-page: 177 year: 2003 end-page: 187 ident: b0385 article-title: Characteristics of hydrogen production from food waste and waste activated sludge publication-title: J. Water Environ. Technol. – volume: 1 start-page: 14 year: 2009 end-page: 17 ident: b0405 article-title: Party on! – a new, conditional variable-importance measure for random forests available in the party package publication-title: R J. – volume: 74 start-page: 3 year: 2000 end-page: 16 ident: b0330 article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives publication-title: Bioresource Technol. – volume: 157 start-page: 727 year: 2006 end-page: 732 ident: b0105 article-title: The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process publication-title: J. Power Sources – volume: E13 start-page: 499 year: 2008 end-page: 504 ident: b0175 article-title: Hydrogen production conditions from food waste by dark fermentation with publication-title: Biotechnol. Bioprocess – volume: 34 start-page: 6201 year: 2009 end-page: 6210 ident: b0220 article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis publication-title: Int. J. Hydrogen Energy. – volume: 34 start-page: 970 year: 2009 end-page: 975 ident: b0110 article-title: Bio-hydrogen production from waste fermentation: mixing and static conditions publication-title: Renew. Energy – volume: 89 start-page: 1333 year: 2011 end-page: 1340 ident: b0295 article-title: Chemical inhibitors of methanogenesis and putative applications publication-title: Appl. Microbiol. Biotechnol. – volume: 36 start-page: 2896 year: 2011 end-page: 2903 ident: b0095 article-title: Ultrasonication for biohydrogen production from food waste publication-title: Int. J. Hydrogen Energy – volume: 100 start-page: 2355 year: 2009 end-page: 2360 ident: b0165 article-title: A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes publication-title: Bioresource Technol. – volume: 33 start-page: 5234 year: 2008 end-page: 5241 ident: b0250 article-title: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 2579 year: 1999 end-page: 2586 ident: b0225 article-title: Feasibility of biological hydrogen production from organic fraction of municipal solid waste publication-title: Water Res. – volume: 12 start-page: 49 year: 2009 end-page: 54 ident: b0370 article-title: Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes publication-title: J. New Mater. Electrochem. Syst. – volume: 101 start-page: 5487 year: 2010 end-page: 5493 ident: b0145 article-title: Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology publication-title: Bioresource Technol. – volume: 51 start-page: 48 year: 2010 end-page: 52 ident: b0120 article-title: Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode publication-title: Biochem. Eng. J. – volume: 35 start-page: 1590 year: 2010 end-page: 1594 ident: b0195 article-title: Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste publication-title: Int. J. Hydrogen Energy – volume: 195 start-page: 5514 year: 2010 end-page: 5519 ident: b0320 article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes publication-title: J. Power Sources – year: 2002 ident: b0325 publication-title: Biomethanization of the Organic Fraction of Municipal Solid Wastes – volume: 35 start-page: 3440 year: 2010 end-page: 3449 ident: b0335 article-title: Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach publication-title: Int. J. Hydrogen Energy – volume: 131 start-page: 595 year: 2005 end-page: 602 ident: b0235 article-title: Factors affecting hydrogen production from food wastes by Clostridium-rich composts publication-title: J. Environ. Eng. – ASCE – volume: 32 start-page: 3141 year: 2007 end-page: 3146 ident: b0010 article-title: Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 3789 year: 2010 end-page: 3797 ident: b0375 article-title: Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC) publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 1744 year: 2009 end-page: 1751 ident: b0005 article-title: Inoculum type response to different pHs on biohydrogen production from publication-title: Int. J. Hydrogen Energy – volume: 24 start-page: 3055 year: 2009 end-page: 3060 ident: b0315 article-title: Hydrogen production with effluent from an ethanol–H publication-title: Biosens. Bioelectron. – volume: 102 start-page: 3571 year: 2011 end-page: 3574 ident: b0055 article-title: High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing publication-title: Bioresource Technol. – volume: 34 start-page: 812 year: 2009 end-page: 820 ident: b0080 article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixedculture fermentation publication-title: Int. J. Hydrogen Energy – volume: 78 start-page: 39 year: 2010 end-page: 43 ident: b0155 article-title: Microbial electrolysis cell with a microbial biocathode publication-title: Bioelectrochemistry – volume: 33 start-page: 5266 year: 2008 end-page: 5274 ident: b0185 article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 6592 year: 2010 end-page: 6599 ident: b0450 article-title: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 25 year: 2000 end-page: 32 ident: b0360 article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production publication-title: Water Sci. Technol. – reference: Cappai, G., De Gioannis, G., Giordano, G., Muntoni, A., Polettini, A., Pomi, R., Spiga, D., 2011. Batch hydrogen production from food waste. In: Proc. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, S. Margherita di Pula (CA) (on CD ROM). – volume: 36 start-page: 10666 year: 2011 end-page: 10673 ident: b0205 article-title: Natural inducement of hydrogen from food waste by temperature control publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 3651 year: 2008 end-page: 3659 ident: b0455 article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 27 year: 2008 end-page: 45 ident: b0070 article-title: Fermentative biohydrogen production: trends and perspectives publication-title: Rev. Environ. Sci. Biotechnol. – volume: 31 start-page: 683 year: 2006 end-page: 692 ident: b0100 article-title: Acidophilic biohydrogen production from rice slurry publication-title: Int. J Hydrogen Energ – volume: 40 start-page: 5181 year: 2006 end-page: 5192 ident: b0300 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. – volume: 34 start-page: 245 year: 2009 end-page: 254 ident: b0445 article-title: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 1383 year: 2005 end-page: 1391 ident: b0430 article-title: Semi-continuous solid substrate anaerobic reactors for H publication-title: Int. J. Hydrogen Energy – volume: 54 start-page: 242 year: 2004 end-page: 249 ident: b0135 article-title: Performance of an innovative two-stage process converting food waste to hydrogen and methane publication-title: J. Air Waste Manage. Assoc. – volume: 34 start-page: 262 year: 2009 end-page: 269 ident: b0415 article-title: Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 10660 year: 2010 end-page: 10673 ident: b0115 article-title: Hydrogen production from agricultural waste by dark fermentation: a review publication-title: Int. J. Hydrogen Energy – reference: Rechtenbach, D., Stegmann, R., 2009. Combined bio-hydrogen and methane production. In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), 5–9 October 2009, pp. 79–80 (manuscript on CD ROM, 11 pp.). – volume: 65 start-page: 520 year: 2004 end-page: 529 ident: b0340 article-title: Improvement of fermentative hydrogen production: various approaches publication-title: Appl. Microbiol. Biotechnol. – volume: 36 start-page: 14227 year: 2011 end-page: 14237 ident: b0400 article-title: Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization publication-title: Int. J. Hydrogen Energy – volume: 33 start-page: 6109 year: 2008 end-page: 6115 ident: b0020 article-title: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentration publication-title: Int. J. Hydrogen Energy – reference: Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2010. Assessment through batch tests of hydrogen production from mixtures of biodegradable residues. In: Proceedings of Venice 2010, Third International Symposium on Energy from Biomass and Waste, Venice (I) (on CD ROM). – volume: 36 start-page: 6199 year: 2011 end-page: 6209 ident: b0435 article-title: Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 4317 year: 2005 end-page: 4320 ident: b0290 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ. Sci. Technol. – volume: 88 start-page: 690 year: 2004 end-page: 698 ident: b0355 article-title: Thermophilic biohydrogen production from glucose with trickling biofilter publication-title: Biotechnol. Bioeng. – year: 2002 ident: 10.1016/j.wasman.2013.02.019_b0325 – ident: 10.1016/j.wasman.2013.02.019_b0045 – volume: 40 start-page: 2230 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0285 article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process publication-title: Water Res. doi: 10.1016/j.watres.2006.03.029 – volume: 34 start-page: 1744 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0005 article-title: Inoculum type response to different pHs on biohydrogen production from l-arabinose, a component of hemicellulosic biopolymers publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.12.020 – volume: E13 start-page: 499 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0175 article-title: Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785 publication-title: Biotechnol. Bioprocess doi: 10.1007/s12257-008-0142-0 – volume: 33 start-page: 1522 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0275 article-title: Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.09.049 – volume: 22 start-page: 477 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0015 article-title: Production of bioenergy and biochemicals from industrial and agricultural wastewater publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2004.07.001 – volume: 34 start-page: 245 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0445 article-title: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.09.100 – volume: 35 start-page: 3440 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0335 article-title: Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.084 – volume: 102 start-page: 4137 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0440 article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2010.10.137 – volume: 39 start-page: 4317 year: 2005 ident: 10.1016/j.wasman.2013.02.019_b0290 article-title: Electrochemically assisted microbial production of hydrogen from acetate publication-title: Environ. Sci. Technol. doi: 10.1021/es050244p – volume: 31 start-page: 2170 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0050 article-title: Kinetic study of biological hydrogen production by anaerobic fermentation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.020 – volume: 100 start-page: 2355 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0165 article-title: A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2008.11.033 – volume: 36 start-page: 6199 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0435 article-title: Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.006 – volume: 36 start-page: 10666 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0205 article-title: Natural inducement of hydrogen from food waste by temperature control publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.153 – volume: 34 start-page: 812 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0080 article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixedculture fermentation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.031 – volume: 157 start-page: 727 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0105 article-title: The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.006 – volume: 101 start-page: 5487 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0145 article-title: Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2010.02.013 – volume: 16 start-page: 33 year: 2005 ident: 10.1016/j.wasman.2013.02.019_b0380 article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis publication-title: Biodegradation doi: 10.1007/s10531-004-0377-9 – volume: 1 start-page: 14 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0405 article-title: Party on! – a new, conditional variable-importance measure for random forests available in the party package publication-title: R J. doi: 10.32614/RJ-2009-013 – volume: 43 start-page: 213 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0180 article-title: Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time publication-title: Process Biochem. doi: 10.1016/j.procbio.2007.11.007 – volume: 195 start-page: 5514 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0320 article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.03.061 – volume: 99 start-page: 6941 year: 2005 ident: 10.1016/j.wasman.2013.02.019_b0025 article-title: Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2008.01.029 – volume: 101 start-page: S42 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0260 article-title: Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2009.03.037 – volume: 33 start-page: 575 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0090 article-title: Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste publication-title: Energy Source Part A doi: 10.1080/15567030903117653 – volume: 34 start-page: 6201 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0220 article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2009.05.112 – volume: 34 start-page: 970 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0110 article-title: Bio-hydrogen production from waste fermentation: mixing and static conditions publication-title: Renew. Energy doi: 10.1016/j.renene.2008.08.011 – volume: 51 start-page: 48 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0120 article-title: Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2010.05.001 – volume: 41 start-page: 100 year: 1977 ident: 10.1016/j.wasman.2013.02.019_b0410 article-title: Energy conservation in chemotrophic anaerobic bacteria publication-title: Bacteriol. Rev. doi: 10.1128/MMBR.41.1.100-180.1977 – ident: 10.1016/j.wasman.2013.02.019_b0035 – volume: 36 start-page: 14120 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0395 article-title: Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.136 – volume: 65 start-page: 520 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0340 article-title: Improvement of fermentative hydrogen production: various approaches publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1644-0 – volume: 29 start-page: 1123 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0160 article-title: Biological hydrogen production: effect of pH and intermediate products publication-title: Int. J. Hydrogen Energ – ident: 10.1016/j.wasman.2013.02.019_b0465 – volume: 32 start-page: 977 year: 2000 ident: 10.1016/j.wasman.2013.02.019_b0060 article-title: Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00006-7 – volume: 36 start-page: 14227 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0400 article-title: Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.145 – volume: 33 start-page: 1458 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0460 article-title: Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2009.06.008 – volume: 28 start-page: 1361 year: 2003 ident: 10.1016/j.wasman.2013.02.019_b0230 article-title: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(03)00027-2 – volume: 36 start-page: 9571 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0345 article-title: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.048 – volume: 7 start-page: 27 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0070 article-title: Fermentative biohydrogen production: trends and perspectives publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-007-9122-7 – volume: 40 start-page: 5181 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0300 article-title: Microbial fuel cells: methodology and technology publication-title: Environ. Sci. Technol. doi: 10.1021/es0605016 – volume: 41 start-page: 1413 year: 2007 ident: 10.1016/j.wasman.2013.02.019_b0420 article-title: Operation of a two-stage fermentation process producing hydrogen and methane from organic waste publication-title: Environ. Sci. Technol. doi: 10.1021/es062127f – volume: 89 start-page: 1333 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0295 article-title: Chemical inhibitors of methanogenesis and putative applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-3066-5 – volume: 78 start-page: 39 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0155 article-title: Microbial electrolysis cell with a microbial biocathode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.05.005 – volume: 29 start-page: 1607 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0170 article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.02.018 – volume: 33 start-page: 2573 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0270 article-title: Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill publication-title: Renew. Energy doi: 10.1016/j.renene.2008.02.018 – volume: 88 start-page: 690 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0355 article-title: Thermophilic biohydrogen production from glucose with trickling biofilter publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20269 – volume: 20 start-page: 110 year: 2002 ident: 10.1016/j.wasman.2013.02.019_b0130 article-title: Enhanced acidogenic fermentation of food waste in a continuous-flow reactor publication-title: Waste Manage. Res. doi: 10.1177/0734242X0202000202 – volume: 45 start-page: 181 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0190 article-title: Hydrogen fermentation of food waste without inoculum addition publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2009.06.013 – volume: 102 start-page: 3571 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0055 article-title: High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2010.10.025 – volume: 102 start-page: 8646 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0210 article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.030 – volume: 31 start-page: 465 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0245 article-title: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2005.04.024 – volume: 102 start-page: 8501 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0200 article-title: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.04.089 – volume: 33 start-page: 6109 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0020 article-title: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentration publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.08.004 – volume: 33 start-page: 5266 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0185 article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.010 – volume: 131 start-page: 595 year: 2005 ident: 10.1016/j.wasman.2013.02.019_b0235 article-title: Factors affecting hydrogen production from food wastes by Clostridium-rich composts publication-title: J. Environ. Eng. – ASCE doi: 10.1061/(ASCE)0733-9372(2005)131:4(595) – volume: 15 start-page: 651 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0150 article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X133933 – volume: 35 start-page: 6592 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0450 article-title: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.097 – volume: 35 start-page: 1590 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0195 article-title: Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.041 – volume: 33 start-page: 2579 year: 1999 ident: 10.1016/j.wasman.2013.02.019_b0225 article-title: Feasibility of biological hydrogen production from organic fraction of municipal solid waste publication-title: Water Res. doi: 10.1016/S0043-1354(98)00483-7 – volume: 31 start-page: 683 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0100 article-title: Acidophilic biohydrogen production from rice slurry publication-title: Int. J Hydrogen Energ doi: 10.1016/j.ijhydene.2005.07.005 – volume: 29 start-page: 569 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0140 article-title: Biohydrogen production by anaerobic fermentation of food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.09.001 – volume: 29 start-page: 41 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0280 article-title: Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora publication-title: Int. J. Hydrogen Energ doi: 10.1016/S0360-3199(03)00083-1 – volume: 35 start-page: 10660 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0115 article-title: Hydrogen production from agricultural waste by dark fermentation: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.008 – volume: 35 start-page: 7716 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0215 article-title: Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.036 – volume: 36 start-page: 2896 year: 2011 ident: 10.1016/j.wasman.2013.02.019_b0095 article-title: Ultrasonication for biohydrogen production from food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.009 – volume: 12 start-page: 49 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0370 article-title: Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes publication-title: J. New Mater. Electrochem. Syst. – volume: 24 start-page: 3055 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0315 article-title: Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.03.024 – volume: 29 start-page: 1355 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0390 article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.09.011 – volume: 42 start-page: 8630 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0305 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es801553z – volume: 87 start-page: 3710 issue: 12 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0310 article-title: Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.07.004 – volume: 34 start-page: 3639 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0425 article-title: Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.02.039 – volume: 33 start-page: 6968 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0365 article-title: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.07.130 – volume: 34 start-page: 262 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0415 article-title: Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.10.041 – volume: 32 start-page: 3141 year: 2007 ident: 10.1016/j.wasman.2013.02.019_b0010 article-title: Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.02.034 – volume: 27 start-page: 287 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0125 article-title: Advances in fermentative biohydrogen production: the way forward? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2009.02.004 – volume: 41 start-page: 25 issue: 3 year: 2000 ident: 10.1016/j.wasman.2013.02.019_b0360 article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production publication-title: Water Sci. Technol. doi: 10.2166/wst.2000.0052 – volume: 33 start-page: 3651 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0455 article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.04.040 – volume: 15 start-page: 250 year: 2009 ident: 10.1016/j.wasman.2013.02.019_b0085 article-title: Sequential anaerobic fermentative production of hydrogen and methane from organic fraction of municipal solid waste publication-title: Chin. J. Appl. Environ. Biol. – volume: 1 start-page: 177 year: 2003 ident: 10.1016/j.wasman.2013.02.019_b0385 article-title: Characteristics of hydrogen production from food waste and waste activated sludge publication-title: J. Water Environ. Technol. doi: 10.2965/jwet.2003.177 – volume: 74 start-page: 3 year: 2000 ident: 10.1016/j.wasman.2013.02.019_b0330 article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives publication-title: Bioresource Technol. doi: 10.1016/S0960-8524(00)00023-7 – volume: 54 start-page: 242 year: 2004 ident: 10.1016/j.wasman.2013.02.019_b0135 article-title: Performance of an innovative two-stage process converting food waste to hydrogen and methane publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2004.10470895 – ident: 10.1016/j.wasman.2013.02.019_b0470 – ident: 10.1016/j.wasman.2013.02.019_b0040 – volume: 37 start-page: 1 year: 2007 ident: 10.1016/j.wasman.2013.02.019_b0265 article-title: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380600729071 – volume: 35 start-page: 11746 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0240 article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.093 – volume: 35 start-page: 13458 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0255 article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.126 – volume: 33 start-page: 5234 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0250 article-title: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.006 – ident: 10.1016/j.wasman.2013.02.019_b0075 – volume: 53 start-page: 23 year: 2006 ident: 10.1016/j.wasman.2013.02.019_b0030 article-title: Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience publication-title: Water Sci. Technol. doi: 10.2166/wst.2006.232 – volume: 30 start-page: 1383 year: 2005 ident: 10.1016/j.wasman.2013.02.019_b0430 article-title: Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.09.016 – volume: 33 start-page: 4739 year: 2008 ident: 10.1016/j.wasman.2013.02.019_b0065 article-title: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.06.060 – volume: 35 start-page: 3789 year: 2010 ident: 10.1016/j.wasman.2013.02.019_b0375 article-title: Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.042 |
| SSID | ssj0014810 |
| Score | 2.4889998 |
| SecondaryResourceType | review_article |
| Snippet | ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are... Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable... Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature... |
| SourceID | osti proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1345 |
| SubjectTerms | ANAEROBIC DIGESTION Applied sciences biodegradability BIODEGRADATION Biodegradation, Environmental Biological hydrogen production Bioreactors Dark fermentation Data Interpretation, Statistical ENERGY DEMAND ENVIRONMENTAL SCIENCES Exact sciences and technology EXPERIMENTAL DATA FERMENTATION Food waste HIDDEN VARIABLES hydrogen Hydrogen - metabolism HYDROGEN PRODUCTION Hydrogen-Ion Concentration inoculum Kinetics MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES MICROORGANISMS MUNICIPAL WASTES Organic fractions of municipal solid waste PH VALUE Pollution pretreatment REACTION KINETICS Refuse Disposal - methods renewable energy sources SOLID WASTES statistical analysis Temperature Urban and domestic wastes waste management Wastes YIELDS |
| Title | A review of dark fermentative hydrogen production from biodegradable municipal waste fractions |
| URI | https://dx.doi.org/10.1016/j.wasman.2013.02.019 https://www.ncbi.nlm.nih.gov/pubmed/23558084 https://www.proquest.com/docview/1369236475 https://www.proquest.com/docview/1710231296 https://www.osti.gov/biblio/22300359 |
| Volume | 33 |
| WOSCitedRecordID | wos000321403300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6Dgk4IBi_CqMyEuJSZUrqpHGO1egEaCo7dKInLCexIaNNStuVceNP5z07SVtVY-PAparcuG3yfX55fnnvfYS80TpOwtCTjo6xJCdlypFa-06gdMh6PPKVmxixiXA45ONxdNZo_K5qYVaTMM_51VU0-69QwxiAjaWz_wB3_aUwAO8BdHgF2OH1VsD3N8pRUjn_3tFgfG2F0Up1vv1K58VXm5iV2s6xtsQkzooUG0ekppbKFI1kM8DvpwQewCG2AGKx6cx-Nh9N6wQa9FYHk-nC5svXEYZ3QMSsQG0kG4U_WoOMAsbZVkT1rAAiLbOd0Wm2zm4sgxRGMKIKUlTRRhgIjPRvbXgZ68yOPOYHjsdsR_bSiuLYxh25-nTH2tvAw8URXAk4V8zTY6YBa2mEt5prDz-Jk_PTUzEajEdvZz8c1B3D5_OlCMse2e-GQQR2cb__YTD-WD-J8rnpaFGfQFV-aXIEd3_4OvemWYDFxsRbuYC1p61oyvW7GuPdjB6SB-W2hPYtnR6RhsoPyN3jSg3wgNzfaFz5mHzpU0syWmiKJKObJKMVyeiaZBRJRrdIRmuSUUMyWpPsCTk_GYyO3zulUoeT-JG7dNJewIK0G2u4G2gewZ7Vl2FPx7DQWRzw2JXKUwplXhjvKa4SP4h5N4LNPpgEHyzEU9LMi1w9J1SDBy6DUEo34bD3D2WklK8Szbwk6mnPbRFWXWCRlG3sUU1lIqp8xQthYREIi3C7AmBpEaeeNbNtXG44PqywE6Ural1MAdy7YeYhQo2zsAtzgulqMA28cNMts0XaWxSo_003xECV67fI64oTAiDGx3cyV8XlQsAyiIzcQ_CXY3DDwMCH77XIM0uo9S-gkoLL_Re3mP2S3Fsv40PSXM4v1StyJ1kts8W8TfbCMW-XK-UPf7bhfg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+dark+fermentative+hydrogen+production+from+biodegradable+municipal+waste+fractions&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=De+Gioannis%2C+G.&rft.au=Muntoni%2C+A&rft.au=Polettini%2C+A&rft.au=Pomi%2C+R&rft.date=2013-06-01&rft.issn=0956-053X&rft.volume=33+p.1345-1361&rft.spage=1345&rft.epage=1361&rft_id=info:doi/10.1016%2Fj.wasman.2013.02.019&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |