A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed lit...

Full description

Saved in:
Bibliographic Details
Published in:Waste management (Elmsford) Vol. 33; no. 6; pp. 1345 - 1361
Main Authors: De Gioannis, G., Muntoni, A., Polettini, A., Pomi, R.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.06.2013
Elsevier
Subjects:
ISSN:0956-053X, 1879-2456, 1879-2456
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
AbstractList ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Author Muntoni, A.
Polettini, A.
Pomi, R.
De Gioannis, G.
Author_xml – sequence: 1
  givenname: G.
  surname: De Gioannis
  fullname: De Gioannis, G.
  email: degioan@unica.it
  organization: DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
– sequence: 2
  givenname: A.
  surname: Muntoni
  fullname: Muntoni, A.
  organization: DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
– sequence: 3
  givenname: A.
  surname: Polettini
  fullname: Polettini, A.
  organization: Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza”, Italy
– sequence: 4
  givenname: R.
  surname: Pomi
  fullname: Pomi, R.
  organization: Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza”, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27469004$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23558084$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22300359$$D View this record in Osti.gov
BookMark eNqFkkuLFDEUhYOMOA_9ByIFIrjp9uZZKRfCMPiCATcKrgyp5NZM2qqkTapnmH9vyu5BcOGs7uY7h3vPuafkKKaIhDynsKZA1ZvN-taWycY1A8rXwNZAu0fkhOq2WzEh1RE5gU6qFUj-_ZiclrIBoEJTeEKOGZdSgxYn5Md5k_Em4G2Thsbb_LMZME8YZzuHG2yu73xOVxibbU5-5-aQYjPkNDV9SB6vsvW2H7GZdjG4sLVjU3easSL2D1uekseDHQs-O8wz8u3D-68Xn1aXXz5-vji_XDnRwbzySnLpWT9oDYPuqGbCtmroERzvpe7BIkUEpYFrhRqdkL1mHdMdDq0Qnp-Rl3vfVOZgigszumuXYkQ3G8Y4AJddpV7vqXrNrx2W2UyhOBxHGzHtiqEtBcYp69TDKFcd40q0sqIvDuiun9CbbQ6TzXfmPuQKvDoAtjg71nCiC-Uv1wrVASzc2z3nciol42DqHXbJcc42jIaCWZo3G7Nv3izNG2CmNl_F4h_xvf8Dsnd7GdZ26h_kJTyMDn3IS3Y-hf8b_AbR0skr
CitedBy_id crossref_primary_10_1007_s13399_021_02056_x
crossref_primary_10_1016_j_radphyschem_2020_109246
crossref_primary_10_3390_molecules23113029
crossref_primary_10_1016_j_wasman_2019_02_011
crossref_primary_10_1016_j_biortech_2016_09_055
crossref_primary_10_1016_j_ijhydene_2018_04_170
crossref_primary_10_1016_j_biortech_2015_07_048
crossref_primary_10_1016_j_renene_2019_05_122
crossref_primary_10_1007_s40093_018_0196_8
crossref_primary_10_1016_j_ijhydene_2019_09_036
crossref_primary_10_1007_s00449_014_1217_2
crossref_primary_10_1016_j_biortech_2016_12_079
crossref_primary_10_1016_j_ijhydene_2022_04_229
crossref_primary_10_3390_su10124506
crossref_primary_10_1016_j_ijhydene_2015_01_120
crossref_primary_10_1016_j_ijhydene_2018_10_208
crossref_primary_10_1186_s12934_023_02193_0
crossref_primary_10_1016_j_biortech_2023_128839
crossref_primary_10_1016_j_wasman_2018_08_042
crossref_primary_10_1016_j_biortech_2014_03_020
crossref_primary_10_1016_j_biortech_2020_124241
crossref_primary_10_1080_10643389_2017_1348107
crossref_primary_10_1007_s10098_018_1536_0
crossref_primary_10_1016_j_ijhydene_2017_10_167
crossref_primary_10_1016_j_ijhydene_2017_06_221
crossref_primary_10_1016_j_ijhydene_2019_08_077
crossref_primary_10_1016_j_ijhydene_2024_03_315
crossref_primary_10_1016_j_biortech_2015_04_120
crossref_primary_10_1016_j_ijhydene_2020_03_010
crossref_primary_10_1016_j_watres_2015_01_017
crossref_primary_10_3390_en16031233
crossref_primary_10_1007_s11356_024_34252_3
crossref_primary_10_1007_s11356_015_5652_7
crossref_primary_10_1016_j_biortech_2019_01_012
crossref_primary_10_1016_j_biortech_2017_07_158
crossref_primary_10_1016_j_procbio_2017_04_013
crossref_primary_10_1016_j_scitotenv_2023_163801
crossref_primary_10_1016_j_wasman_2023_04_023
crossref_primary_10_1016_j_ijhydene_2016_09_047
crossref_primary_10_1016_j_bej_2022_108656
crossref_primary_10_1016_j_ijhydene_2018_01_114
crossref_primary_10_1016_j_biortech_2015_01_139
crossref_primary_10_1016_j_wasman_2024_09_022
crossref_primary_10_1016_j_biortech_2018_05_021
crossref_primary_10_1016_j_fuel_2022_123434
crossref_primary_10_1016_j_ijhydene_2014_04_104
crossref_primary_10_1016_j_wasman_2016_10_028
crossref_primary_10_1007_s12649_019_00687_w
crossref_primary_10_1007_s12010_017_2459_7
crossref_primary_10_1016_j_ijhydene_2014_08_004
crossref_primary_10_1016_j_wasman_2016_01_044
crossref_primary_10_1177_0734242X19826371
crossref_primary_10_3390_catal9100858
crossref_primary_10_1016_j_renene_2021_07_049
crossref_primary_10_1016_j_cnsns_2019_03_024
crossref_primary_10_1038_srep28336
crossref_primary_10_1016_j_ijhydene_2018_10_022
crossref_primary_10_1016_j_biortech_2019_01_085
crossref_primary_10_1016_j_renene_2016_03_094
crossref_primary_10_1016_j_biortech_2014_10_128
crossref_primary_10_1016_j_uncres_2025_100241
crossref_primary_10_1016_j_renene_2019_03_012
crossref_primary_10_1007_s10973_016_5932_6
crossref_primary_10_1016_j_wasman_2017_10_039
crossref_primary_10_3390_fermentation2030015
crossref_primary_10_1016_j_renene_2018_09_030
crossref_primary_10_1016_j_wasman_2017_06_013
crossref_primary_10_1016_j_biortech_2016_09_072
crossref_primary_10_1016_j_egypro_2018_08_059
crossref_primary_10_1002_er_4188
crossref_primary_10_1007_s10532_017_9812_y
crossref_primary_10_1016_j_jclepro_2015_11_085
crossref_primary_10_1016_j_wasman_2020_09_039
crossref_primary_10_1016_j_wasman_2016_09_019
crossref_primary_10_1016_j_biortech_2015_12_084
crossref_primary_10_1016_j_jenvman_2014_12_049
crossref_primary_10_1016_j_chemosphere_2021_131428
crossref_primary_10_3390_en12183552
crossref_primary_10_1016_j_jclepro_2014_01_006
crossref_primary_10_1016_j_psep_2024_06_006
crossref_primary_10_1016_j_ijhydene_2016_03_057
crossref_primary_10_1016_j_jenvman_2015_04_006
crossref_primary_10_1016_j_chemosphere_2020_129460
crossref_primary_10_1016_j_energy_2024_132327
crossref_primary_10_1016_j_energy_2014_11_028
crossref_primary_10_1016_j_apenergy_2015_01_045
crossref_primary_10_1016_j_ijhydene_2014_06_152
crossref_primary_10_1016_j_ijhydene_2015_09_117
crossref_primary_10_1016_j_cej_2022_139458
crossref_primary_10_1016_j_jclepro_2017_10_112
crossref_primary_10_1016_j_egypro_2015_07_828
crossref_primary_10_1080_07388551_2017_1312274
crossref_primary_10_3390_en16073063
crossref_primary_10_1515_psr_2016_0050
crossref_primary_10_1007_s11696_019_01010_6
crossref_primary_10_1016_j_jhazmat_2021_126037
crossref_primary_10_1016_j_wasman_2017_05_024
crossref_primary_10_1007_s12649_019_00732_8
crossref_primary_10_1016_j_biombioe_2024_107345
crossref_primary_10_3390_en14071831
crossref_primary_10_1016_j_wasman_2017_09_042
crossref_primary_10_1016_j_biortech_2017_07_006
crossref_primary_10_1016_j_envres_2024_118399
crossref_primary_10_1007_s10163_024_02114_2
crossref_primary_10_1016_j_biortech_2017_07_087
crossref_primary_10_1016_j_biortech_2018_05_076
crossref_primary_10_1016_j_biortech_2020_124166
crossref_primary_10_1016_j_ijhydene_2018_12_099
crossref_primary_10_1016_j_renene_2017_07_042
crossref_primary_10_1016_j_biteb_2019_100278
crossref_primary_10_1080_17597269_2018_1432275
crossref_primary_10_1016_j_watres_2016_07_002
crossref_primary_10_1016_j_ijhydene_2019_07_236
crossref_primary_10_1016_j_ijhydene_2024_11_236
crossref_primary_10_3390_su11072139
crossref_primary_10_1080_10934529_2015_1012001
crossref_primary_10_1016_j_biortech_2016_06_053
crossref_primary_10_1016_j_envres_2023_116943
crossref_primary_10_1016_j_biortech_2016_12_048
crossref_primary_10_1016_j_ijhydene_2021_04_017
crossref_primary_10_1007_s12649_018_0504_6
crossref_primary_10_1016_j_renene_2020_01_151
crossref_primary_10_1016_j_chemosphere_2021_129981
crossref_primary_10_1016_j_rser_2017_03_091
crossref_primary_10_1007_s12649_017_0161_1
crossref_primary_10_1016_j_wasman_2014_11_019
crossref_primary_10_3389_fenrg_2021_580808
crossref_primary_10_1016_j_resconrec_2021_105900
crossref_primary_10_3390_en18051092
crossref_primary_10_1016_j_rser_2020_110283
crossref_primary_10_1002_er_3466
crossref_primary_10_1016_j_jes_2023_04_031
crossref_primary_10_1016_j_rser_2018_04_033
crossref_primary_10_1177_0734242X221103940
crossref_primary_10_15446_dyna_v82n189_42461
crossref_primary_10_1016_j_ijhydene_2021_06_174
crossref_primary_10_1016_j_cej_2023_145684
crossref_primary_10_1080_21622515_2022_2139641
crossref_primary_10_1016_j_ijhydene_2019_02_028
crossref_primary_10_1016_j_ijhydene_2019_08_091
crossref_primary_10_1016_j_biortech_2017_06_145
crossref_primary_10_1016_j_renene_2017_12_017
crossref_primary_10_1016_j_ijhydene_2019_11_224
crossref_primary_10_1016_j_ijhydene_2017_07_007
crossref_primary_10_1016_j_jece_2025_115829
crossref_primary_10_1016_j_wasman_2015_06_001
crossref_primary_10_1016_j_ijhydene_2022_06_138
crossref_primary_10_1016_j_jclepro_2021_128776
crossref_primary_10_1007_s13399_025_06570_0
crossref_primary_10_1016_j_wasman_2015_06_008
crossref_primary_10_1016_j_biortech_2014_03_088
crossref_primary_10_1016_j_biortech_2017_07_062
crossref_primary_10_1016_j_ijhydene_2019_08_256
crossref_primary_10_1016_j_wasman_2015_07_049
crossref_primary_10_1016_j_fuel_2022_123449
crossref_primary_10_1016_j_ijhydene_2023_08_274
crossref_primary_10_1080_15567036_2016_1217292
crossref_primary_10_1007_s42768_024_00200_7
crossref_primary_10_1007_s12649_016_9785_9
crossref_primary_10_1016_j_wasman_2016_07_006
crossref_primary_10_1016_j_cej_2023_143142
crossref_primary_10_1016_j_ijhydene_2023_10_289
crossref_primary_10_1016_j_watres_2018_01_051
crossref_primary_10_1016_j_rser_2015_05_076
crossref_primary_10_1016_j_est_2019_03_020
crossref_primary_10_1016_j_apenergy_2015_05_105
crossref_primary_10_1016_j_scs_2020_102521
crossref_primary_10_1016_j_ijhydene_2021_05_165
crossref_primary_10_3390_fermentation9100869
crossref_primary_10_1016_j_ijhydene_2013_11_011
crossref_primary_10_1016_j_biortech_2014_02_051
crossref_primary_10_1016_j_wasman_2016_06_039
crossref_primary_10_1016_j_wasman_2016_10_047
crossref_primary_10_1016_j_fuel_2022_126169
crossref_primary_10_1016_j_jece_2022_107711
crossref_primary_10_1016_j_wasman_2020_07_010
crossref_primary_10_3390_su15043168
crossref_primary_10_1016_j_chemosphere_2021_132444
crossref_primary_10_3390_su11030622
crossref_primary_10_1016_j_biortech_2016_04_007
crossref_primary_10_1016_j_jclepro_2016_02_034
crossref_primary_10_1080_10643389_2016_1145959
Cites_doi 10.1016/j.watres.2006.03.029
10.1016/j.ijhydene.2008.12.020
10.1007/s12257-008-0142-0
10.1016/j.ijhydene.2007.09.049
10.1016/j.tibtech.2004.07.001
10.1016/j.ijhydene.2008.09.100
10.1016/j.ijhydene.2010.01.084
10.1016/j.biortech.2010.10.137
10.1021/es050244p
10.1016/j.ijhydene.2006.02.020
10.1016/j.biortech.2008.11.033
10.1016/j.ijhydene.2011.01.006
10.1016/j.ijhydene.2011.05.153
10.1016/j.ijhydene.2008.11.031
10.1016/j.jpowsour.2006.01.006
10.1016/j.biortech.2010.02.013
10.1007/s10531-004-0377-9
10.32614/RJ-2009-013
10.1016/j.procbio.2007.11.007
10.1016/j.jpowsour.2010.03.061
10.1016/j.biortech.2008.01.029
10.1016/j.biortech.2009.03.037
10.1080/15567030903117653
10.1016/j.ijhydene.2009.05.112
10.1016/j.renene.2008.08.011
10.1016/j.bej.2010.05.001
10.1128/MMBR.41.1.100-180.1977
10.1016/j.ijhydene.2011.04.136
10.1007/s00253-004-1644-0
10.1016/S0038-0717(00)00006-7
10.1016/j.ijhydene.2011.05.145
10.1016/j.biombioe.2009.06.008
10.1016/S0360-3199(03)00027-2
10.1016/j.ijhydene.2011.05.048
10.1007/s11157-007-9122-7
10.1021/es0605016
10.1021/es062127f
10.1007/s00253-010-3066-5
10.1016/j.bioelechem.2009.05.005
10.1016/j.ijhydene.2004.02.018
10.1016/j.renene.2008.02.018
10.1002/bit.20269
10.1177/0734242X0202000202
10.1016/j.enzmictec.2009.06.013
10.1016/j.biortech.2010.10.025
10.1016/j.biortech.2011.03.030
10.1016/j.ijhydene.2005.04.024
10.1016/j.biortech.2011.04.089
10.1016/j.ijhydene.2008.08.004
10.1016/j.ijhydene.2008.05.010
10.1061/(ASCE)0733-9372(2005)131:4(595)
10.1198/106186006X133933
10.1016/j.ijhydene.2010.03.097
10.1016/j.ijhydene.2009.12.041
10.1016/S0043-1354(98)00483-7
10.1016/j.ijhydene.2005.07.005
10.1016/j.ijhydene.2003.09.001
10.1016/S0360-3199(03)00083-1
10.1016/j.ijhydene.2010.03.008
10.1016/j.ijhydene.2010.05.036
10.1016/j.ijhydene.2010.12.009
10.1016/j.bios.2009.03.024
10.1016/j.ijhydene.2003.09.011
10.1021/es801553z
10.1016/j.apenergy.2010.07.004
10.1016/j.ijhydene.2009.02.039
10.1016/j.ijhydene.2008.07.130
10.1016/j.ijhydene.2008.10.041
10.1016/j.ijhydene.2006.02.034
10.1016/j.tibtech.2009.02.004
10.2166/wst.2000.0052
10.1016/j.ijhydene.2008.04.040
10.2965/jwet.2003.177
10.1016/S0960-8524(00)00023-7
10.1080/10473289.2004.10470895
10.1080/10643380600729071
10.1016/j.ijhydene.2010.08.093
10.1016/j.ijhydene.2009.11.126
10.1016/j.ijhydene.2008.05.006
10.2166/wst.2006.232
10.1016/j.ijhydene.2004.09.016
10.1016/j.ijhydene.2008.06.060
10.1016/j.ijhydene.2010.01.042
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1016/j.wasman.2013.02.019
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Environmental Sciences
EISSN 1879-2456
EndPage 1361
ExternalDocumentID 22300359
23558084
27469004
10_1016_j_wasman_2013_02_019
S0956053X13001074
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
WUQ
Y6R
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c490t-d6535d2bf880f891824a76fbe0c3b58b0ae1ee0680386e8ec45b829289ef744d3
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321403300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-053X
1879-2456
IngestDate Thu May 18 18:38:34 EDT 2023
Thu Oct 02 06:46:31 EDT 2025
Thu Oct 02 10:55:22 EDT 2025
Mon Jul 21 06:05:31 EDT 2025
Mon Jul 21 09:16:27 EDT 2025
Sat Nov 29 04:12:55 EST 2025
Tue Nov 18 21:06:35 EST 2025
Fri Feb 23 02:24:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords OFMSW
PS
F/M
Biological hydrogen production
WAS
HRT
MFC
Anaerobic digestion
Food waste
FW
OLR
SRT
COD
Organic fractions of municipal solid waste
SS
PBR
SBR
Dark fermentation
HST
TOC
MEC
VFAs
AR
CSTR
TKN
OMW
UASB
VS
TS
Statistical analysis
Batchwise
Food industry
Urban waste
Kinetics
Fermentation
Forecast model
Reactor
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-d6535d2bf880f891824a76fbe0c3b58b0ae1ee0680386e8ec45b829289ef744d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23558084
PQID 1369236475
PQPubID 23479
PageCount 17
ParticipantIDs osti_scitechconnect_22300359
proquest_miscellaneous_1710231296
proquest_miscellaneous_1369236475
pubmed_primary_23558084
pascalfrancis_primary_27469004
crossref_citationtrail_10_1016_j_wasman_2013_02_019
crossref_primary_10_1016_j_wasman_2013_02_019
elsevier_sciencedirect_doi_10_1016_j_wasman_2013_02_019
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Waste management (Elmsford)
PublicationTitleAlternate Waste Manag
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mata-Alvarez, Mace, Llabres (b0330) 2000; 74
Han, Shin (b0130) 2002; 20
Lee, Li, Lin, Wang, Kuo, Cheng (b0250) 2008; 33
Kim, Shin (b0185) 2008; 33
Kim, Kim, Shin (b0190) 2009; 45
Okamoto, Miyahara, Mizuno, Noike (b0360) 2000; 41
Davila-Vazquez, Arriaga, Alatriste-Mondragón, de León-Rodríguez, Rosales-Colunga, Razo-Flores (b0070) 2008; 7
Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (b0305) 2008; 42
Li, Youcai, Qiang, Xiaoqing, Dongjie (b0270) 2008; 33
Chen, Chen, Khanal, Sung (b0050) 2006; 31
Dong, Zhenhong, Yongming, Longlong, Lianhua (b0085) 2009; 15
Nazlina, Nor’Aini, Man, Yusoff, Hassan (b0345) 2011; 36
Wu, Yao, Zhu (b0450) 2010; 35
Han, Shin (b0135) 2004; 54
Hothorn, Hornik, Zeileis (b0150) 2006; 15
Gómez, Cuetos, Prieto, Morán (b0110) 2009; 34
Manuel, Neburchilov, Wang, Guiot, Tartakovsky (b0320) 2010; 195
Lin, Lay (b0280) 2004; 29
Abreu, Danko, Costa, Ferreira, Alves (b0005) 2009; 34
Liu, Grot, Logan (b0290) 2005; 39
Dong, Zhenhong, Yongming, Xiaoying, Yu (b0080) 2009; 34
Luo, Xie, Zou, Zhou, Wang (b0310) 2010; 87
Argun, Kargi, Kapdan, Oztekin (b0020) 2008; 33
Cappai, G., De Gioannis, G., Giordano, G., Muntoni, A., Polettini, A., Pomi, R., Spiga, D., 2011. Batch hydrogen production from food waste. In: Proc. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, S. Margherita di Pula (CA) (on CD ROM).
Shin, Youn, Kim (b0390) 2004; 29
Sreela-or, Plangklang, Imai, Reungsang (b0400) 2011; 36
De Baere, L., 2003. State-of-the-art of anaerobic digestion of municipal solid waste. In: Proc. Sardinia 2003, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 6–10 October 2003 (on CD ROM).
Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2009. Energy and material recovery through combined hydrogen-methane production and final composting of different solid and liquid waste (HyMeC concept). In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), pp. 885–886 (volume of abstracts, full paper on CD ROM).
Hong, Haiyun (b0145) 2010; 101
Lalaurette, Thammannagowda, Mohagheghi, Maness, Logan (b0220) 2009; 34
Jeremiasse, Hamelers, Buisman (b0155) 2010; 78
Bhaskar, Mohan, Sarma (b0025) 2005; 99
Kim, Wu, Jeong, Kim, Shin (b0205) 2011; 36
Lay, Lee, Noike (b0225) 1999; 33
Lay, Fan, Chang, Ku (b0230) 2003; 28
Liu, Wang, Wang, Chen (b0295) 2011; 89
Kim, Han, Shin, Kim (b0180) 2008; 43
Liu, Liu, Zeng, Angelidaki (b0285) 2006; 40
(b0325) 2002
Sharma, Li (b0375) 2010; 35
Lee, Chung (b0240) 2010; 35
Lee, Ebie, Xu, Li, Inamori (b0260) 2010; 101
Logan, Hamelers, Rozendal, Schröder, Keller, Freguia, Aelterman, Verstraete, Rabaey (b0300) 2006; 40
Shin, Kim, Paik (b0385) 2003; 1
Rechtenbach, D., Stegmann, R., 2009. Combined bio-hydrogen and methane production. In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), 5–9 October 2009, pp. 79–80 (manuscript on CD ROM, 11 pp.).
Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2010. Assessment through batch tests of hydrogen production from mixtures of biodegradable residues. In: Proceedings of Venice 2010, Third International Symposium on Energy from Biomass and Waste, Venice (I) (on CD ROM).
Gómez, Morán, Cuetos, Sanchez (b0105) 2006; 157
Dong, Zhenhong, Yongming, Longlong (b0090) 2011; 33
Pan, Zhang, El-Mashad, Sun, Ying (b0365) 2008; 33
Rechtenbach, D., Meyer, M., Stegmann, R., 2008. (Dis-) continuous production of biohydrogen and biomethane from raw and waste materials by fermentation. In: Proceedings of Venice 2008 Second International Symposium on Energy from Biomass and Waste, Venice (I), 17–20 November 2008 (manuscript on CD ROM, 10 pp.).
Angenent, Karim, Al-Dahhan, Wrenn, Domíguez-Espinosa (b0015) 2004; 22
Bolzonella, Pavan, Mace, Cecchi (b0030) 2006; 53
Kim, Kim, Kim, Shin (b0195) 2010; 35
Zong, Yu, Zhang, Fan, Zhou (b0460) 2009; 33
Elbeshbishy, Hafez, Nakhla (b0095) 2011; 36
Kim, Kim, Kim, Kim, Shin (b0200) 2011; 102
Lay, Fan, Hwang, Chang, Hsu (b0235) 2005; 131
Lee, Lin, Chang (b0245) 2006; 31
Vázquez-Larios, Solorza-Feria, Vázquez-Huerta, Esparza-García, Rinderknecht-Seijas, Poggi-Varaldo (b0435) 2011; 36
Cheng, Logan (b0055) 2011; 102
Ueno, Fukui, Goto (b0420) 2007; 41
Guo, Tang, Du, Li (b0120) 2010; 51
Li, Fang (b0265) 2007; 37
Lu, Ren, Xing, Logan (b0315) 2009; 24
Kim, Kim, Jung, Kim, Shin (b0210) 2011; 102
Sreela-or, Imai, Plangklang, Reungsang (b0395) 2011; 36
Hallenbeck, Ghosh (b0125) 2009; 27
Li, Kuo, Lin, Lee, Wang, Cheng (b0275) 2008; 33
Shin, Youn (b0380) 2005; 16
Guo, Trably, Latrille, Carrère, Steyer (b0115) 2010; 35
Zhu, Parker, Basnar, Proracki, Falletta, Beland, Seto (b0455) 2008; 33
Chidthaisong, Conrad (b0060) 2000; 32
Valdez-Vazquez, Poggi-Varaldo (b0425) 2009; 34
Karagiannidis, Perkoulidis (b0165) 2009; 100
Han, Shin (b0140) 2004; 29
Oh, Kim, Kim, Park (b0355) 2004; 88
Poggi-Varaldo, Carmona-Martínez, Vázquez-Larios, Solorza-Feria (b0370) 2009; 12
Thauer, Jungermann, Decker (b0410) 1977; 41
Lee, Li, Kuo, Chen, Tien, Huang, Chuang, Wong, Cheng (b0255) 2010; 35
Nath, Das (b0340) 2004; 65
Fang, Li, Zhang (b0100) 2006; 31
Kyazze, Popov, Dinsdale, Esteves, Hawkes, Premier, Guwy (b0215) 2010; 35
Valdez-Vazquez, Rios-Leal, Esparza-García, Cecchi, Poggi-Varaldo (b0430) 2005; 30
Mohanakrishna, Venkata Mohan, Sarma (b0335) 2010; 35
Khanal, Chen, Li, Sung (b0160) 2004; 29
Strobl, Hothorn, Zeileis (b0405) 2009; 1
Wang, Zhao (b0445) 2009; 34
Kim, Han, Shin (b0170) 2004; 29
Tuna, Kargi, Argun (b0415) 2009; 34
Alzate-Gaviria, Sebastian, Perez-Hernandez, Eapen (b0010) 2007; 32
Chu, Yu, Kai, Yoshitaka, Yuhei, Hai (b0065) 2008; 33
Wang, Sun, Cao, Wang, Ren, Wu, Logan (b0440) 2011; 102
Kim, Nhat, Chun, Kim (b0175) 2008; E13
Li (10.1016/j.wasman.2013.02.019_b0270) 2008; 33
10.1016/j.wasman.2013.02.019_b0470
Kim (10.1016/j.wasman.2013.02.019_b0170) 2004; 29
10.1016/j.wasman.2013.02.019_b0075
Chidthaisong (10.1016/j.wasman.2013.02.019_b0060) 2000; 32
Pan (10.1016/j.wasman.2013.02.019_b0365) 2008; 33
Alzate-Gaviria (10.1016/j.wasman.2013.02.019_b0010) 2007; 32
Kim (10.1016/j.wasman.2013.02.019_b0200) 2011; 102
Lee (10.1016/j.wasman.2013.02.019_b0250) 2008; 33
(10.1016/j.wasman.2013.02.019_b0325) 2002
Kim (10.1016/j.wasman.2013.02.019_b0210) 2011; 102
Sreela-or (10.1016/j.wasman.2013.02.019_b0395) 2011; 36
Wang (10.1016/j.wasman.2013.02.019_b0445) 2009; 34
Nath (10.1016/j.wasman.2013.02.019_b0340) 2004; 65
Angenent (10.1016/j.wasman.2013.02.019_b0015) 2004; 22
Manuel (10.1016/j.wasman.2013.02.019_b0320) 2010; 195
Shin (10.1016/j.wasman.2013.02.019_b0385) 2003; 1
Lee (10.1016/j.wasman.2013.02.019_b0260) 2010; 101
Liu (10.1016/j.wasman.2013.02.019_b0290) 2005; 39
Mata-Alvarez (10.1016/j.wasman.2013.02.019_b0330) 2000; 74
10.1016/j.wasman.2013.02.019_b0465
Lay (10.1016/j.wasman.2013.02.019_b0230) 2003; 28
Lee (10.1016/j.wasman.2013.02.019_b0240) 2010; 35
Kim (10.1016/j.wasman.2013.02.019_b0185) 2008; 33
Kim (10.1016/j.wasman.2013.02.019_b0195) 2010; 35
Lu (10.1016/j.wasman.2013.02.019_b0315) 2009; 24
Abreu (10.1016/j.wasman.2013.02.019_b0005) 2009; 34
Shin (10.1016/j.wasman.2013.02.019_b0380) 2005; 16
Kim (10.1016/j.wasman.2013.02.019_b0190) 2009; 45
Liu (10.1016/j.wasman.2013.02.019_b0295) 2011; 89
Han (10.1016/j.wasman.2013.02.019_b0135) 2004; 54
Logan (10.1016/j.wasman.2013.02.019_b0300) 2006; 40
Davila-Vazquez (10.1016/j.wasman.2013.02.019_b0070) 2008; 7
Elbeshbishy (10.1016/j.wasman.2013.02.019_b0095) 2011; 36
Okamoto (10.1016/j.wasman.2013.02.019_b0360) 2000; 41
Strobl (10.1016/j.wasman.2013.02.019_b0405) 2009; 1
Bolzonella (10.1016/j.wasman.2013.02.019_b0030) 2006; 53
Han (10.1016/j.wasman.2013.02.019_b0140) 2004; 29
Khanal (10.1016/j.wasman.2013.02.019_b0160) 2004; 29
Dong (10.1016/j.wasman.2013.02.019_b0090) 2011; 33
Gómez (10.1016/j.wasman.2013.02.019_b0105) 2006; 157
Ueno (10.1016/j.wasman.2013.02.019_b0420) 2007; 41
Argun (10.1016/j.wasman.2013.02.019_b0020) 2008; 33
Bhaskar (10.1016/j.wasman.2013.02.019_b0025) 2005; 99
Luo (10.1016/j.wasman.2013.02.019_b0310) 2010; 87
Tuna (10.1016/j.wasman.2013.02.019_b0415) 2009; 34
Dong (10.1016/j.wasman.2013.02.019_b0080) 2009; 34
Oh (10.1016/j.wasman.2013.02.019_b0355) 2004; 88
Kim (10.1016/j.wasman.2013.02.019_b0205) 2011; 36
Kim (10.1016/j.wasman.2013.02.019_b0175) 2008; E13
Liu (10.1016/j.wasman.2013.02.019_b0285) 2006; 40
Karagiannidis (10.1016/j.wasman.2013.02.019_b0165) 2009; 100
Shin (10.1016/j.wasman.2013.02.019_b0390) 2004; 29
Kim (10.1016/j.wasman.2013.02.019_b0180) 2008; 43
Li (10.1016/j.wasman.2013.02.019_b0265) 2007; 37
Thauer (10.1016/j.wasman.2013.02.019_b0410) 1977; 41
Wang (10.1016/j.wasman.2013.02.019_b0440) 2011; 102
Dong (10.1016/j.wasman.2013.02.019_b0085) 2009; 15
Mohanakrishna (10.1016/j.wasman.2013.02.019_b0335) 2010; 35
Lay (10.1016/j.wasman.2013.02.019_b0235) 2005; 131
Poggi-Varaldo (10.1016/j.wasman.2013.02.019_b0370) 2009; 12
Wu (10.1016/j.wasman.2013.02.019_b0450) 2010; 35
Hothorn (10.1016/j.wasman.2013.02.019_b0150) 2006; 15
10.1016/j.wasman.2013.02.019_b0045
Kyazze (10.1016/j.wasman.2013.02.019_b0215) 2010; 35
Logan (10.1016/j.wasman.2013.02.019_b0305) 2008; 42
Fang (10.1016/j.wasman.2013.02.019_b0100) 2006; 31
10.1016/j.wasman.2013.02.019_b0040
Guo (10.1016/j.wasman.2013.02.019_b0115) 2010; 35
Hallenbeck (10.1016/j.wasman.2013.02.019_b0125) 2009; 27
Sharma (10.1016/j.wasman.2013.02.019_b0375) 2010; 35
Lee (10.1016/j.wasman.2013.02.019_b0255) 2010; 35
Hong (10.1016/j.wasman.2013.02.019_b0145) 2010; 101
Valdez-Vazquez (10.1016/j.wasman.2013.02.019_b0425) 2009; 34
Valdez-Vazquez (10.1016/j.wasman.2013.02.019_b0430) 2005; 30
Lay (10.1016/j.wasman.2013.02.019_b0225) 1999; 33
Cheng (10.1016/j.wasman.2013.02.019_b0055) 2011; 102
Han (10.1016/j.wasman.2013.02.019_b0130) 2002; 20
Lalaurette (10.1016/j.wasman.2013.02.019_b0220) 2009; 34
Vázquez-Larios (10.1016/j.wasman.2013.02.019_b0435) 2011; 36
Chu (10.1016/j.wasman.2013.02.019_b0065) 2008; 33
Lee (10.1016/j.wasman.2013.02.019_b0245) 2006; 31
Lin (10.1016/j.wasman.2013.02.019_b0280) 2004; 29
Nazlina (10.1016/j.wasman.2013.02.019_b0345) 2011; 36
Zhu (10.1016/j.wasman.2013.02.019_b0455) 2008; 33
Chen (10.1016/j.wasman.2013.02.019_b0050) 2006; 31
Guo (10.1016/j.wasman.2013.02.019_b0120) 2010; 51
Gómez (10.1016/j.wasman.2013.02.019_b0110) 2009; 34
Li (10.1016/j.wasman.2013.02.019_b0275) 2008; 33
Jeremiasse (10.1016/j.wasman.2013.02.019_b0155) 2010; 78
10.1016/j.wasman.2013.02.019_b0035
Sreela-or (10.1016/j.wasman.2013.02.019_b0400) 2011; 36
Zong (10.1016/j.wasman.2013.02.019_b0460) 2009; 33
References_xml – volume: 37
  start-page: 1
  year: 2007
  end-page: 39
  ident: b0265
  article-title: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 32
  start-page: 977
  year: 2000
  end-page: 988
  ident: b0060
  article-title: Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil
  publication-title: Soil Biol. Biochem.
– volume: 102
  start-page: 8646
  year: 2011
  end-page: 8652
  ident: b0210
  article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste
  publication-title: Bioresour. Technol.
– volume: 87
  start-page: 3710
  year: 2010
  end-page: 3717
  ident: b0310
  article-title: Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH
  publication-title: Appl. Energy
– volume: 15
  start-page: 651
  year: 2006
  end-page: 674
  ident: b0150
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
– reference: De Baere, L., 2003. State-of-the-art of anaerobic digestion of municipal solid waste. In: Proc. Sardinia 2003, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 6–10 October 2003 (on CD ROM).
– volume: 31
  start-page: 465
  year: 2006
  end-page: 472
  ident: b0245
  article-title: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers
  publication-title: Int. J. Hydrogen Energy
– volume: 53
  start-page: 23
  year: 2006
  end-page: 32
  ident: b0030
  article-title: Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience
  publication-title: Water Sci. Technol.
– volume: 34
  start-page: 3639
  year: 2009
  end-page: 3646
  ident: b0425
  article-title: Alkalinity and high total solids affecting H
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 477
  year: 2004
  end-page: 485
  ident: b0015
  article-title: Production of bioenergy and biochemicals from industrial and agricultural wastewater
  publication-title: Trends Biotechnol.
– volume: 36
  start-page: 9571
  year: 2011
  end-page: 9580
  ident: b0345
  article-title: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 250
  year: 2009
  end-page: 257
  ident: b0085
  article-title: Sequential anaerobic fermentative production of hydrogen and methane from organic fraction of municipal solid waste
  publication-title: Chin. J. Appl. Environ. Biol.
– volume: 31
  start-page: 2170
  year: 2006
  end-page: 2178
  ident: b0050
  article-title: Kinetic study of biological hydrogen production by anaerobic fermentation
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 1607
  year: 2004
  end-page: 1616
  ident: b0170
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 41
  year: 2004
  end-page: 45
  ident: b0280
  article-title: Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora
  publication-title: Int. J. Hydrogen Energ
– volume: 33
  start-page: 2573
  year: 2008
  end-page: 2579
  ident: b0270
  article-title: Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill
  publication-title: Renew. Energy
– volume: 33
  start-page: 6968
  year: 2008
  end-page: 6975
  ident: b0365
  article-title: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 1522
  year: 2008
  end-page: 1531
  ident: b0275
  article-title: Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste
  publication-title: Int. J. Hydrogen Energy
– reference: Rechtenbach, D., Meyer, M., Stegmann, R., 2008. (Dis-) continuous production of biohydrogen and biomethane from raw and waste materials by fermentation. In: Proceedings of Venice 2008 Second International Symposium on Energy from Biomass and Waste, Venice (I), 17–20 November 2008 (manuscript on CD ROM, 10 pp.).
– volume: 33
  start-page: 1458
  year: 2009
  end-page: 1463
  ident: b0460
  article-title: Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation
  publication-title: Biomass Bioenergy
– volume: 33
  start-page: 575
  year: 2011
  end-page: 585
  ident: b0090
  article-title: Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste
  publication-title: Energy Source Part A
– volume: 35
  start-page: 11746
  year: 2010
  end-page: 11755
  ident: b0240
  article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 2230
  year: 2006
  end-page: 2236
  ident: b0285
  article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process
  publication-title: Water Res.
– volume: 33
  start-page: 4739
  year: 2008
  end-page: 4746
  ident: b0065
  article-title: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 7716
  year: 2010
  end-page: 7722
  ident: b0215
  article-title: Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 1355
  year: 2004
  end-page: 1363
  ident: b0390
  article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 569
  year: 2004
  end-page: 577
  ident: b0140
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 20
  start-page: 110
  year: 2002
  end-page: 118
  ident: b0130
  article-title: Enhanced acidogenic fermentation of food waste in a continuous-flow reactor
  publication-title: Waste Manage. Res.
– volume: 42
  start-page: 8630
  year: 2008
  end-page: 8640
  ident: b0305
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ. Sci. Technol.
– reference: Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2009. Energy and material recovery through combined hydrogen-methane production and final composting of different solid and liquid waste (HyMeC concept). In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), pp. 885–886 (volume of abstracts, full paper on CD ROM).
– volume: 41
  start-page: 1413
  year: 2007
  end-page: 1419
  ident: b0420
  article-title: Operation of a two-stage fermentation process producing hydrogen and methane from organic waste
  publication-title: Environ. Sci. Technol.
– volume: 28
  start-page: 1361
  year: 2003
  end-page: 1367
  ident: b0230
  article-title: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 13458
  year: 2010
  end-page: 13466
  ident: b0255
  article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 14120
  year: 2011
  end-page: 14133
  ident: b0395
  article-title: Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 213
  year: 2008
  end-page: 218
  ident: b0180
  article-title: Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time
  publication-title: Process Biochem.
– volume: 45
  start-page: 181
  year: 2009
  end-page: 187
  ident: b0190
  article-title: Hydrogen fermentation of food waste without inoculum addition
  publication-title: Enzyme Microb. Technol.
– volume: 29
  start-page: 1123
  year: 2004
  end-page: 1131
  ident: b0160
  article-title: Biological hydrogen production: effect of pH and intermediate products
  publication-title: Int. J. Hydrogen Energ
– volume: 99
  start-page: 6941
  year: 2005
  end-page: 6948
  ident: b0025
  article-title: Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor
  publication-title: Bioresource Technol.
– volume: 102
  start-page: 8501
  year: 2011
  end-page: 8506
  ident: b0200
  article-title: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance
  publication-title: Bioresour. Technol.
– volume: 41
  start-page: 100
  year: 1977
  end-page: 180
  ident: b0410
  article-title: Energy conservation in chemotrophic anaerobic bacteria
  publication-title: Bacteriol. Rev.
– volume: 102
  start-page: 4137
  year: 2011
  end-page: 4143
  ident: b0440
  article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
  publication-title: Bioresource Technol.
– volume: 16
  start-page: 33
  year: 2005
  end-page: 44
  ident: b0380
  article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis
  publication-title: Biodegradation
– volume: 27
  start-page: 287
  year: 2009
  end-page: 297
  ident: b0125
  article-title: Advances in fermentative biohydrogen production: the way forward?
  publication-title: Trends Biotechnol.
– volume: 101
  start-page: S42
  year: 2010
  end-page: S47
  ident: b0260
  article-title: Continuous H
  publication-title: Bioresource Technol.
– volume: 1
  start-page: 177
  year: 2003
  end-page: 187
  ident: b0385
  article-title: Characteristics of hydrogen production from food waste and waste activated sludge
  publication-title: J. Water Environ. Technol.
– volume: 1
  start-page: 14
  year: 2009
  end-page: 17
  ident: b0405
  article-title: Party on! – a new, conditional variable-importance measure for random forests available in the party package
  publication-title: R J.
– volume: 74
  start-page: 3
  year: 2000
  end-page: 16
  ident: b0330
  article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
  publication-title: Bioresource Technol.
– volume: 157
  start-page: 727
  year: 2006
  end-page: 732
  ident: b0105
  article-title: The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process
  publication-title: J. Power Sources
– volume: E13
  start-page: 499
  year: 2008
  end-page: 504
  ident: b0175
  article-title: Hydrogen production conditions from food waste by dark fermentation with
  publication-title: Biotechnol. Bioprocess
– volume: 34
  start-page: 6201
  year: 2009
  end-page: 6210
  ident: b0220
  article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
  publication-title: Int. J. Hydrogen Energy.
– volume: 34
  start-page: 970
  year: 2009
  end-page: 975
  ident: b0110
  article-title: Bio-hydrogen production from waste fermentation: mixing and static conditions
  publication-title: Renew. Energy
– volume: 89
  start-page: 1333
  year: 2011
  end-page: 1340
  ident: b0295
  article-title: Chemical inhibitors of methanogenesis and putative applications
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 36
  start-page: 2896
  year: 2011
  end-page: 2903
  ident: b0095
  article-title: Ultrasonication for biohydrogen production from food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 100
  start-page: 2355
  year: 2009
  end-page: 2360
  ident: b0165
  article-title: A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes
  publication-title: Bioresource Technol.
– volume: 33
  start-page: 5234
  year: 2008
  end-page: 5241
  ident: b0250
  article-title: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 2579
  year: 1999
  end-page: 2586
  ident: b0225
  article-title: Feasibility of biological hydrogen production from organic fraction of municipal solid waste
  publication-title: Water Res.
– volume: 12
  start-page: 49
  year: 2009
  end-page: 54
  ident: b0370
  article-title: Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 101
  start-page: 5487
  year: 2010
  end-page: 5493
  ident: b0145
  article-title: Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology
  publication-title: Bioresource Technol.
– volume: 51
  start-page: 48
  year: 2010
  end-page: 52
  ident: b0120
  article-title: Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode
  publication-title: Biochem. Eng. J.
– volume: 35
  start-page: 1590
  year: 2010
  end-page: 1594
  ident: b0195
  article-title: Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 195
  start-page: 5514
  year: 2010
  end-page: 5519
  ident: b0320
  article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes
  publication-title: J. Power Sources
– year: 2002
  ident: b0325
  publication-title: Biomethanization of the Organic Fraction of Municipal Solid Wastes
– volume: 35
  start-page: 3440
  year: 2010
  end-page: 3449
  ident: b0335
  article-title: Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach
  publication-title: Int. J. Hydrogen Energy
– volume: 131
  start-page: 595
  year: 2005
  end-page: 602
  ident: b0235
  article-title: Factors affecting hydrogen production from food wastes by Clostridium-rich composts
  publication-title: J. Environ. Eng. – ASCE
– volume: 32
  start-page: 3141
  year: 2007
  end-page: 3146
  ident: b0010
  article-title: Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 3789
  year: 2010
  end-page: 3797
  ident: b0375
  article-title: Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC)
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 1744
  year: 2009
  end-page: 1751
  ident: b0005
  article-title: Inoculum type response to different pHs on biohydrogen production from
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  start-page: 3055
  year: 2009
  end-page: 3060
  ident: b0315
  article-title: Hydrogen production with effluent from an ethanol–H
  publication-title: Biosens. Bioelectron.
– volume: 102
  start-page: 3571
  year: 2011
  end-page: 3574
  ident: b0055
  article-title: High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
  publication-title: Bioresource Technol.
– volume: 34
  start-page: 812
  year: 2009
  end-page: 820
  ident: b0080
  article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixedculture fermentation
  publication-title: Int. J. Hydrogen Energy
– volume: 78
  start-page: 39
  year: 2010
  end-page: 43
  ident: b0155
  article-title: Microbial electrolysis cell with a microbial biocathode
  publication-title: Bioelectrochemistry
– volume: 33
  start-page: 5266
  year: 2008
  end-page: 5274
  ident: b0185
  article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 6592
  year: 2010
  end-page: 6599
  ident: b0450
  article-title: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 25
  year: 2000
  end-page: 32
  ident: b0360
  article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
  publication-title: Water Sci. Technol.
– reference: Cappai, G., De Gioannis, G., Giordano, G., Muntoni, A., Polettini, A., Pomi, R., Spiga, D., 2011. Batch hydrogen production from food waste. In: Proc. Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, S. Margherita di Pula (CA) (on CD ROM).
– volume: 36
  start-page: 10666
  year: 2011
  end-page: 10673
  ident: b0205
  article-title: Natural inducement of hydrogen from food waste by temperature control
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 3651
  year: 2008
  end-page: 3659
  ident: b0455
  article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 27
  year: 2008
  end-page: 45
  ident: b0070
  article-title: Fermentative biohydrogen production: trends and perspectives
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 31
  start-page: 683
  year: 2006
  end-page: 692
  ident: b0100
  article-title: Acidophilic biohydrogen production from rice slurry
  publication-title: Int. J Hydrogen Energ
– volume: 40
  start-page: 5181
  year: 2006
  end-page: 5192
  ident: b0300
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 245
  year: 2009
  end-page: 254
  ident: b0445
  article-title: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 1383
  year: 2005
  end-page: 1391
  ident: b0430
  article-title: Semi-continuous solid substrate anaerobic reactors for H
  publication-title: Int. J. Hydrogen Energy
– volume: 54
  start-page: 242
  year: 2004
  end-page: 249
  ident: b0135
  article-title: Performance of an innovative two-stage process converting food waste to hydrogen and methane
  publication-title: J. Air Waste Manage. Assoc.
– volume: 34
  start-page: 262
  year: 2009
  end-page: 269
  ident: b0415
  article-title: Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 10660
  year: 2010
  end-page: 10673
  ident: b0115
  article-title: Hydrogen production from agricultural waste by dark fermentation: a review
  publication-title: Int. J. Hydrogen Energy
– reference: Rechtenbach, D., Stegmann, R., 2009. Combined bio-hydrogen and methane production. In: Proceedings of Sardinia 2009 Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula (I), 5–9 October 2009, pp. 79–80 (manuscript on CD ROM, 11 pp.).
– volume: 65
  start-page: 520
  year: 2004
  end-page: 529
  ident: b0340
  article-title: Improvement of fermentative hydrogen production: various approaches
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 36
  start-page: 14227
  year: 2011
  end-page: 14237
  ident: b0400
  article-title: Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization
  publication-title: Int. J. Hydrogen Energy
– volume: 33
  start-page: 6109
  year: 2008
  end-page: 6115
  ident: b0020
  article-title: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentration
  publication-title: Int. J. Hydrogen Energy
– reference: Cappai, G., De Gioannis, G., Giordano, A., Muntoni, A., Polettini, A., Pomi, R., 2010. Assessment through batch tests of hydrogen production from mixtures of biodegradable residues. In: Proceedings of Venice 2010, Third International Symposium on Energy from Biomass and Waste, Venice (I) (on CD ROM).
– volume: 36
  start-page: 6199
  year: 2011
  end-page: 6209
  ident: b0435
  article-title: Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 4317
  year: 2005
  end-page: 4320
  ident: b0290
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ. Sci. Technol.
– volume: 88
  start-page: 690
  year: 2004
  end-page: 698
  ident: b0355
  article-title: Thermophilic biohydrogen production from glucose with trickling biofilter
  publication-title: Biotechnol. Bioeng.
– year: 2002
  ident: 10.1016/j.wasman.2013.02.019_b0325
– ident: 10.1016/j.wasman.2013.02.019_b0045
– volume: 40
  start-page: 2230
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0285
  article-title: Hydrogen and methane production from household solid waste in the two-stage fermentation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.03.029
– volume: 34
  start-page: 1744
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0005
  article-title: Inoculum type response to different pHs on biohydrogen production from l-arabinose, a component of hemicellulosic biopolymers
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.12.020
– volume: E13
  start-page: 499
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0175
  article-title: Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785
  publication-title: Biotechnol. Bioprocess
  doi: 10.1007/s12257-008-0142-0
– volume: 33
  start-page: 1522
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0275
  article-title: Process performance evaluation of intermittent–continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.09.049
– volume: 22
  start-page: 477
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0015
  article-title: Production of bioenergy and biochemicals from industrial and agricultural wastewater
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2004.07.001
– volume: 34
  start-page: 245
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0445
  article-title: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.09.100
– volume: 35
  start-page: 3440
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0335
  article-title: Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.084
– volume: 102
  start-page: 4137
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0440
  article-title: Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2010.10.137
– volume: 39
  start-page: 4317
  year: 2005
  ident: 10.1016/j.wasman.2013.02.019_b0290
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050244p
– volume: 31
  start-page: 2170
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0050
  article-title: Kinetic study of biological hydrogen production by anaerobic fermentation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.020
– volume: 100
  start-page: 2355
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0165
  article-title: A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2008.11.033
– volume: 36
  start-page: 6199
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0435
  article-title: Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.006
– volume: 36
  start-page: 10666
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0205
  article-title: Natural inducement of hydrogen from food waste by temperature control
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.153
– volume: 34
  start-page: 812
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0080
  article-title: Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixedculture fermentation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.031
– volume: 157
  start-page: 727
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0105
  article-title: The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.006
– volume: 101
  start-page: 5487
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0145
  article-title: Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2010.02.013
– volume: 16
  start-page: 33
  year: 2005
  ident: 10.1016/j.wasman.2013.02.019_b0380
  article-title: Conversion of food waste into hydrogen by thermophilic acidogenesis
  publication-title: Biodegradation
  doi: 10.1007/s10531-004-0377-9
– volume: 1
  start-page: 14
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0405
  article-title: Party on! – a new, conditional variable-importance measure for random forests available in the party package
  publication-title: R J.
  doi: 10.32614/RJ-2009-013
– volume: 43
  start-page: 213
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0180
  article-title: Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2007.11.007
– volume: 195
  start-page: 5514
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0320
  article-title: Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.03.061
– volume: 99
  start-page: 6941
  year: 2005
  ident: 10.1016/j.wasman.2013.02.019_b0025
  article-title: Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2008.01.029
– volume: 101
  start-page: S42
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0260
  article-title: Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2009.03.037
– volume: 33
  start-page: 575
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0090
  article-title: Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste
  publication-title: Energy Source Part A
  doi: 10.1080/15567030903117653
– volume: 34
  start-page: 6201
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0220
  article-title: Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2009.05.112
– volume: 34
  start-page: 970
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0110
  article-title: Bio-hydrogen production from waste fermentation: mixing and static conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.08.011
– volume: 51
  start-page: 48
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0120
  article-title: Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2010.05.001
– volume: 41
  start-page: 100
  year: 1977
  ident: 10.1016/j.wasman.2013.02.019_b0410
  article-title: Energy conservation in chemotrophic anaerobic bacteria
  publication-title: Bacteriol. Rev.
  doi: 10.1128/MMBR.41.1.100-180.1977
– ident: 10.1016/j.wasman.2013.02.019_b0035
– volume: 36
  start-page: 14120
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0395
  article-title: Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.136
– volume: 65
  start-page: 520
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0340
  article-title: Improvement of fermentative hydrogen production: various approaches
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1644-0
– volume: 29
  start-page: 1123
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0160
  article-title: Biological hydrogen production: effect of pH and intermediate products
  publication-title: Int. J. Hydrogen Energ
– ident: 10.1016/j.wasman.2013.02.019_b0465
– volume: 32
  start-page: 977
  year: 2000
  ident: 10.1016/j.wasman.2013.02.019_b0060
  article-title: Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00006-7
– volume: 36
  start-page: 14227
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0400
  article-title: Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.145
– volume: 33
  start-page: 1458
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0460
  article-title: Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2009.06.008
– volume: 28
  start-page: 1361
  year: 2003
  ident: 10.1016/j.wasman.2013.02.019_b0230
  article-title: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00027-2
– volume: 36
  start-page: 9571
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0345
  article-title: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.048
– volume: 7
  start-page: 27
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0070
  article-title: Fermentative biohydrogen production: trends and perspectives
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-007-9122-7
– volume: 40
  start-page: 5181
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0300
  article-title: Microbial fuel cells: methodology and technology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0605016
– volume: 41
  start-page: 1413
  year: 2007
  ident: 10.1016/j.wasman.2013.02.019_b0420
  article-title: Operation of a two-stage fermentation process producing hydrogen and methane from organic waste
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062127f
– volume: 89
  start-page: 1333
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0295
  article-title: Chemical inhibitors of methanogenesis and putative applications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-3066-5
– volume: 78
  start-page: 39
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0155
  article-title: Microbial electrolysis cell with a microbial biocathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2009.05.005
– volume: 29
  start-page: 1607
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0170
  article-title: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.02.018
– volume: 33
  start-page: 2573
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0270
  article-title: Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.02.018
– volume: 88
  start-page: 690
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0355
  article-title: Thermophilic biohydrogen production from glucose with trickling biofilter
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20269
– volume: 20
  start-page: 110
  year: 2002
  ident: 10.1016/j.wasman.2013.02.019_b0130
  article-title: Enhanced acidogenic fermentation of food waste in a continuous-flow reactor
  publication-title: Waste Manage. Res.
  doi: 10.1177/0734242X0202000202
– volume: 45
  start-page: 181
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0190
  article-title: Hydrogen fermentation of food waste without inoculum addition
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2009.06.013
– volume: 102
  start-page: 3571
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0055
  article-title: High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2010.10.025
– volume: 102
  start-page: 8646
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0210
  article-title: Effect of initial pH independent of operational pH on hydrogen fermentation of food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.030
– volume: 31
  start-page: 465
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0245
  article-title: Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.04.024
– volume: 102
  start-page: 8501
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0200
  article-title: Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.04.089
– volume: 33
  start-page: 6109
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0020
  article-title: Batch dark fermentation of powdered wheat starch to hydrogen gas: effects of the initial substrate and biomass concentration
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.08.004
– volume: 33
  start-page: 5266
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0185
  article-title: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.010
– volume: 131
  start-page: 595
  year: 2005
  ident: 10.1016/j.wasman.2013.02.019_b0235
  article-title: Factors affecting hydrogen production from food wastes by Clostridium-rich composts
  publication-title: J. Environ. Eng. – ASCE
  doi: 10.1061/(ASCE)0733-9372(2005)131:4(595)
– volume: 15
  start-page: 651
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0150
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X133933
– volume: 35
  start-page: 6592
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0450
  article-title: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.097
– volume: 35
  start-page: 1590
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0195
  article-title: Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.041
– volume: 33
  start-page: 2579
  year: 1999
  ident: 10.1016/j.wasman.2013.02.019_b0225
  article-title: Feasibility of biological hydrogen production from organic fraction of municipal solid waste
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00483-7
– volume: 31
  start-page: 683
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0100
  article-title: Acidophilic biohydrogen production from rice slurry
  publication-title: Int. J Hydrogen Energ
  doi: 10.1016/j.ijhydene.2005.07.005
– volume: 29
  start-page: 569
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0140
  article-title: Biohydrogen production by anaerobic fermentation of food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.09.001
– volume: 29
  start-page: 41
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0280
  article-title: Carbon/nitrogen ratio effect on fermentative hydrogen production by mixed microflora
  publication-title: Int. J. Hydrogen Energ
  doi: 10.1016/S0360-3199(03)00083-1
– volume: 35
  start-page: 10660
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0115
  article-title: Hydrogen production from agricultural waste by dark fermentation: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.008
– volume: 35
  start-page: 7716
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0215
  article-title: Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.036
– volume: 36
  start-page: 2896
  year: 2011
  ident: 10.1016/j.wasman.2013.02.019_b0095
  article-title: Ultrasonication for biohydrogen production from food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.009
– volume: 12
  start-page: 49
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0370
  article-title: Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 24
  start-page: 3055
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0315
  article-title: Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.03.024
– volume: 29
  start-page: 1355
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0390
  article-title: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.09.011
– volume: 42
  start-page: 8630
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0305
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801553z
– volume: 87
  start-page: 3710
  issue: 12
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0310
  article-title: Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.07.004
– volume: 34
  start-page: 3639
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0425
  article-title: Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.02.039
– volume: 33
  start-page: 6968
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0365
  article-title: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.07.130
– volume: 34
  start-page: 262
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0415
  article-title: Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.10.041
– volume: 32
  start-page: 3141
  year: 2007
  ident: 10.1016/j.wasman.2013.02.019_b0010
  article-title: Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.034
– volume: 27
  start-page: 287
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0125
  article-title: Advances in fermentative biohydrogen production: the way forward?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2009.02.004
– volume: 41
  start-page: 25
  issue: 3
  year: 2000
  ident: 10.1016/j.wasman.2013.02.019_b0360
  article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2000.0052
– volume: 33
  start-page: 3651
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0455
  article-title: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.040
– volume: 15
  start-page: 250
  year: 2009
  ident: 10.1016/j.wasman.2013.02.019_b0085
  article-title: Sequential anaerobic fermentative production of hydrogen and methane from organic fraction of municipal solid waste
  publication-title: Chin. J. Appl. Environ. Biol.
– volume: 1
  start-page: 177
  year: 2003
  ident: 10.1016/j.wasman.2013.02.019_b0385
  article-title: Characteristics of hydrogen production from food waste and waste activated sludge
  publication-title: J. Water Environ. Technol.
  doi: 10.2965/jwet.2003.177
– volume: 74
  start-page: 3
  year: 2000
  ident: 10.1016/j.wasman.2013.02.019_b0330
  article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
  publication-title: Bioresource Technol.
  doi: 10.1016/S0960-8524(00)00023-7
– volume: 54
  start-page: 242
  year: 2004
  ident: 10.1016/j.wasman.2013.02.019_b0135
  article-title: Performance of an innovative two-stage process converting food waste to hydrogen and methane
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2004.10470895
– ident: 10.1016/j.wasman.2013.02.019_b0470
– ident: 10.1016/j.wasman.2013.02.019_b0040
– volume: 37
  start-page: 1
  year: 2007
  ident: 10.1016/j.wasman.2013.02.019_b0265
  article-title: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380600729071
– volume: 35
  start-page: 11746
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0240
  article-title: Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.093
– volume: 35
  start-page: 13458
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0255
  article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.126
– volume: 33
  start-page: 5234
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0250
  article-title: Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.006
– ident: 10.1016/j.wasman.2013.02.019_b0075
– volume: 53
  start-page: 23
  year: 2006
  ident: 10.1016/j.wasman.2013.02.019_b0030
  article-title: Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2006.232
– volume: 30
  start-page: 1383
  year: 2005
  ident: 10.1016/j.wasman.2013.02.019_b0430
  article-title: Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.09.016
– volume: 33
  start-page: 4739
  year: 2008
  ident: 10.1016/j.wasman.2013.02.019_b0065
  article-title: A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.06.060
– volume: 35
  start-page: 3789
  year: 2010
  ident: 10.1016/j.wasman.2013.02.019_b0375
  article-title: Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.042
SSID ssj0014810
Score 2.4889998
SecondaryResourceType review_article
Snippet ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are...
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable...
Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1345
SubjectTerms ANAEROBIC DIGESTION
Applied sciences
biodegradability
BIODEGRADATION
Biodegradation, Environmental
Biological hydrogen production
Bioreactors
Dark fermentation
Data Interpretation, Statistical
ENERGY DEMAND
ENVIRONMENTAL SCIENCES
Exact sciences and technology
EXPERIMENTAL DATA
FERMENTATION
Food waste
HIDDEN VARIABLES
hydrogen
Hydrogen - metabolism
HYDROGEN PRODUCTION
Hydrogen-Ion Concentration
inoculum
Kinetics
MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
MICROORGANISMS
MUNICIPAL WASTES
Organic fractions of municipal solid waste
PH VALUE
Pollution
pretreatment
REACTION KINETICS
Refuse Disposal - methods
renewable energy sources
SOLID WASTES
statistical analysis
Temperature
Urban and domestic wastes
waste management
Wastes
YIELDS
Title A review of dark fermentative hydrogen production from biodegradable municipal waste fractions
URI https://dx.doi.org/10.1016/j.wasman.2013.02.019
https://www.ncbi.nlm.nih.gov/pubmed/23558084
https://www.proquest.com/docview/1369236475
https://www.proquest.com/docview/1710231296
https://www.osti.gov/biblio/22300359
Volume 33
WOSCitedRecordID wos000321403300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6Dgk4IBi_CqMyEuJSZUrqpHGO1egEaCo7dKInLCexIaNNStuVceNP5z07SVtVY-PAparcuG3yfX55fnnvfYS80TpOwtCTjo6xJCdlypFa-06gdMh6PPKVmxixiXA45ONxdNZo_K5qYVaTMM_51VU0-69QwxiAjaWz_wB3_aUwAO8BdHgF2OH1VsD3N8pRUjn_3tFgfG2F0Up1vv1K58VXm5iV2s6xtsQkzooUG0ekppbKFI1kM8DvpwQewCG2AGKx6cx-Nh9N6wQa9FYHk-nC5svXEYZ3QMSsQG0kG4U_WoOMAsbZVkT1rAAiLbOd0Wm2zm4sgxRGMKIKUlTRRhgIjPRvbXgZ68yOPOYHjsdsR_bSiuLYxh25-nTH2tvAw8URXAk4V8zTY6YBa2mEt5prDz-Jk_PTUzEajEdvZz8c1B3D5_OlCMse2e-GQQR2cb__YTD-WD-J8rnpaFGfQFV-aXIEd3_4OvemWYDFxsRbuYC1p61oyvW7GuPdjB6SB-W2hPYtnR6RhsoPyN3jSg3wgNzfaFz5mHzpU0syWmiKJKObJKMVyeiaZBRJRrdIRmuSUUMyWpPsCTk_GYyO3zulUoeT-JG7dNJewIK0G2u4G2gewZ7Vl2FPx7DQWRzw2JXKUwplXhjvKa4SP4h5N4LNPpgEHyzEU9LMi1w9J1SDBy6DUEo34bD3D2WklK8Szbwk6mnPbRFWXWCRlG3sUU1lIqp8xQthYREIi3C7AmBpEaeeNbNtXG44PqywE6Ural1MAdy7YeYhQo2zsAtzgulqMA28cNMts0XaWxSo_003xECV67fI64oTAiDGx3cyV8XlQsAyiIzcQ_CXY3DDwMCH77XIM0uo9S-gkoLL_Re3mP2S3Fsv40PSXM4v1StyJ1kts8W8TfbCMW-XK-UPf7bhfg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+dark+fermentative+hydrogen+production+from+biodegradable+municipal+waste+fractions&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=De+Gioannis%2C+G.&rft.au=Muntoni%2C+A&rft.au=Polettini%2C+A&rft.au=Pomi%2C+R&rft.date=2013-06-01&rft.issn=0956-053X&rft.volume=33+p.1345-1361&rft.spage=1345&rft.epage=1361&rft_id=info:doi/10.1016%2Fj.wasman.2013.02.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon