Giant virus with a remarkable complement of genes infects marine zooplankton
As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 107; číslo 45; s. 19508 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
09.11.2010
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. |
|---|---|
| AbstractList | As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans. |
| Author | Suttle, Curtis A Fischer, Matthias G Allen, Michael J Wilson, William H |
| Author_xml | – sequence: 1 givenname: Matthias G surname: Fischer fullname: Fischer, Matthias G organization: Department of Microbiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 – sequence: 2 givenname: Michael J surname: Allen fullname: Allen, Michael J – sequence: 3 givenname: William H surname: Wilson fullname: Wilson, William H – sequence: 4 givenname: Curtis A surname: Suttle fullname: Suttle, Curtis A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20974979$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAQQIOsuB969ia5eapO0m7SHGXRVVjwoueSNFON2ya1aRX99QZcwdM8hsfwmCWZ-eCRkHMGVwxkft17HROBFGydFkdkwUCxTBQKZv94TpYxvgGAWpdwQuYclCyUVAuy2zrtR_rhhinSTze-Uk0H7PSw16ZFWoeub7HDpISGvqDHSJ1vsB4jTZLzSL9D6Fvt92Pwp-S40W3Es8Nckee726fNfbZ73D5sbnZZnVrGzDQFKMMM8lJZI-vc5tDw1C-EwtIwzbRiorGFAJvQGDQ811jKNdfWouArcvl7tx_C-4RxrDoXa2xTBoYpVlLkhWRMlcm8OJiT6dBW_eBS9lf19wD-A2GlYHM |
| CitedBy_id | crossref_primary_10_1098_rsob_130160 crossref_primary_10_1134_S0006297920140072 crossref_primary_10_1016_j_egg_2023_100210 crossref_primary_10_3390_v12101130 crossref_primary_10_1038_s42003_025_07905_3 crossref_primary_10_1371_journal_pcbi_1002364 crossref_primary_10_1038_nrmicro2670 crossref_primary_10_1007_s00705_014_2257_2 crossref_primary_10_3390_v9010017 crossref_primary_10_3390_v9010016 crossref_primary_10_1038_nrmicro2676 crossref_primary_10_1038_s41598_017_05824_w crossref_primary_10_1073_pnas_2314606121 crossref_primary_10_4161_cib_18624 crossref_primary_10_1093_plankt_fbr068 crossref_primary_10_1128_aem_01156_23 crossref_primary_10_1146_annurev_virology_100520_125832 crossref_primary_10_1113_jphysiol_2014_271130 crossref_primary_10_1186_1743_422X_9_161 crossref_primary_10_1128_JVI_02414_14 crossref_primary_10_1016_j_mib_2016_03_001 crossref_primary_10_3390_v11020180 crossref_primary_10_3390_ijms22115643 crossref_primary_10_1016_j_jphotobiol_2016_06_020 crossref_primary_10_1016_j_coviro_2019_02_007 crossref_primary_10_1038_nature20593 crossref_primary_10_1016_j_cmi_2018_09_010 crossref_primary_10_1038_s42003_019_0475_6 crossref_primary_10_1089_dna_2023_0048 crossref_primary_10_3390_ijms23031120 crossref_primary_10_1016_j_shpsc_2016_02_015 crossref_primary_10_1016_j_ympev_2014_12_013 crossref_primary_10_1186_1743_422X_10_158 crossref_primary_10_1016_j_shpsc_2016_02_013 crossref_primary_10_1038_ismej_2016_134 crossref_primary_10_1016_j_ympev_2018_07_019 crossref_primary_10_1038_s41598_024_52626_y crossref_primary_10_1016_j_virol_2013_12_032 crossref_primary_10_1038_s41467_020_15507_2 crossref_primary_10_1016_j_mib_2013_10_001 crossref_primary_10_1111_mec_15210 crossref_primary_10_1038_s41467_023_41910_6 crossref_primary_10_1016_j_mib_2016_03_011 crossref_primary_10_1371_journal_pbio_3001430 crossref_primary_10_3389_fcimb_2017_00527 crossref_primary_10_1016_j_mib_2016_03_004 crossref_primary_10_1038_s41598_022_20758_8 crossref_primary_10_1007_s00705_017_3497_8 crossref_primary_10_3389_fmicb_2015_01308 crossref_primary_10_1186_s12985_019_1244_3 crossref_primary_10_3390_v3010032 crossref_primary_10_1016_j_csbj_2018_07_001 crossref_primary_10_1111_j_1574_6941_2011_01090_x crossref_primary_10_1007_s00705_023_05906_3 crossref_primary_10_1016_j_ejop_2019_125665 crossref_primary_10_1093_femsre_fuv037 crossref_primary_10_1128_MMBR_00049_13 crossref_primary_10_1038_ncomms16054 crossref_primary_10_3103_S0891416812010041 crossref_primary_10_3390_v8110317 crossref_primary_10_1016_j_coviro_2018_07_013 crossref_primary_10_3390_v10090506 crossref_primary_10_1111_j_1558_5646_2012_01738_x crossref_primary_10_1016_j_coviro_2011_06_005 crossref_primary_10_1016_j_micpath_2014_09_005 crossref_primary_10_1007_s00705_013_1768_6 crossref_primary_10_1038_s41467_018_07335_2 crossref_primary_10_1038_s41559_020_01288_w crossref_primary_10_3390_v14051056 crossref_primary_10_3390_pathogens11121453 crossref_primary_10_3389_fmicb_2016_01942 crossref_primary_10_3390_v9030052 crossref_primary_10_3390_v11050404 crossref_primary_10_1038_nrmicro_2016_197 crossref_primary_10_1128_JVI_01534_19 crossref_primary_10_1038_s41579_022_00754_5 crossref_primary_10_3390_v11111043 crossref_primary_10_3390_v9090238 crossref_primary_10_1074_jbc_M114_588947 crossref_primary_10_1128_AEM_01160_21 crossref_primary_10_1016_j_gene_2022_147037 crossref_primary_10_3390_v8030076 crossref_primary_10_1007_s11427_018_9414_7 crossref_primary_10_1093_nar_gkv224 crossref_primary_10_3390_v13010081 crossref_primary_10_1093_ve_veae021 crossref_primary_10_1128_JVI_00372_18 crossref_primary_10_1371_journal_pgen_1006532 crossref_primary_10_1073_pnas_1907517116 crossref_primary_10_3389_fmicb_2018_00752 crossref_primary_10_1128_AEM_00123_14 crossref_primary_10_1371_journal_ppat_1007592 crossref_primary_10_1186_s40168_022_01451_4 crossref_primary_10_1128_JVI_02446_20 crossref_primary_10_1159_000354556 crossref_primary_10_1159_000354557 crossref_primary_10_3389_fmicb_2015_00423 crossref_primary_10_1159_000354558 crossref_primary_10_1074_jbc_M111_314559 crossref_primary_10_3389_fmicb_2019_01003 crossref_primary_10_1038_s41467_020_16414_2 crossref_primary_10_1002_mbo3_392 crossref_primary_10_1073_pnas_1101118108 crossref_primary_10_1038_s41396_019_0565_y crossref_primary_10_3389_fmicb_2023_1284617 crossref_primary_10_1073_pnas_2011038118 crossref_primary_10_1089_ast_2017_1649 crossref_primary_10_1042_BST20230527 crossref_primary_10_3389_fmicb_2016_02029 crossref_primary_10_1128_JVI_03398_12 crossref_primary_10_1371_journal_pone_0050649 crossref_primary_10_1093_glycob_cwt089 crossref_primary_10_1016_j_coviro_2011_05_003 crossref_primary_10_1038_s41467_018_03168_1 crossref_primary_10_1016_j_coviro_2011_05_008 crossref_primary_10_3390_v11080733 crossref_primary_10_1126_science_1199412 crossref_primary_10_1016_j_virol_2014_12_014 crossref_primary_10_1111_1462_2920_12068 crossref_primary_10_1007_s00705_020_04626_2 crossref_primary_10_3390_v10090496 crossref_primary_10_3389_fmicb_2015_00960 crossref_primary_10_3389_fmicb_2015_00722 crossref_primary_10_1038_ismej_2010_210 crossref_primary_10_1038_s41579_019_0270_x crossref_primary_10_1146_annurev_virology_031413_085540 crossref_primary_10_1371_journal_pone_0094923 crossref_primary_10_1186_s12985_018_1097_1 crossref_primary_10_1093_femsml_uqac002 crossref_primary_10_1128_JVI_00149_20 crossref_primary_10_3390_v12111337 crossref_primary_10_1038_s41467_024_47308_2 crossref_primary_10_3390_jmse13091797 crossref_primary_10_1186_1743_422X_8_511 crossref_primary_10_5194_bg_19_1303_2022 crossref_primary_10_3389_fmicb_2016_00026 crossref_primary_10_1159_000354563 crossref_primary_10_1007_s11262_013_0965_4 crossref_primary_10_1159_000354564 crossref_primary_10_1016_j_virol_2014_07_001 crossref_primary_10_1371_journal_pone_0018935 crossref_primary_10_1073_pnas_1510795112 crossref_primary_10_1007_s11262_013_1016_x crossref_primary_10_1016_j_virusres_2013_10_017 crossref_primary_10_1093_femsre_fuad053 crossref_primary_10_1007_s00705_017_3286_4 crossref_primary_10_1111_nyas_14469 crossref_primary_10_7554_eLife_72674 crossref_primary_10_1073_pnas_1110889108 crossref_primary_10_3390_ijms161226169 crossref_primary_10_3390_microorganisms8040506 crossref_primary_10_1007_s00705_018_4067_4 crossref_primary_10_1186_1743_422X_8_99 crossref_primary_10_3390_v9040088 crossref_primary_10_1016_j_virol_2014_07_014 crossref_primary_10_1038_ismej_2013_214 crossref_primary_10_3390_v16071061 crossref_primary_10_3892_mmr_2022_12723 crossref_primary_10_3390_v9040084 crossref_primary_10_1007_s42995_024_00270_w crossref_primary_10_3390_v9030046 crossref_primary_10_1038_s44298_024_00021_9 crossref_primary_10_1016_j_micinf_2024_105467 crossref_primary_10_3390_v11040312 crossref_primary_10_1007_s00705_015_2720_8 crossref_primary_10_1016_j_coviro_2013_07_003 crossref_primary_10_1093_nar_gkr564 crossref_primary_10_1038_nrmicro2676_c1 crossref_primary_10_1099_vir_0_066951_0 crossref_primary_10_6064_2012_734023 crossref_primary_10_1038_s41597_020_0363_4 crossref_primary_10_1016_j_bbagrm_2012_08_009 crossref_primary_10_3390_v10090468 crossref_primary_10_3390_v8110278 crossref_primary_10_1007_s00705_015_2622_9 crossref_primary_10_1111_j_1462_2920_2011_02441_x crossref_primary_10_3389_fmicb_2018_00358 crossref_primary_10_7554_eLife_78674 crossref_primary_10_1016_j_virol_2018_03_010 crossref_primary_10_1126_science_1239181 crossref_primary_10_1128_spectrum_05157_22 crossref_primary_10_3389_fmicb_2017_02562 crossref_primary_10_1186_s40168_024_01851_8 crossref_primary_10_1016_j_plrev_2013_07_001 crossref_primary_10_1007_s12268_013_0362_5 crossref_primary_10_1016_j_jtbi_2014_03_008 crossref_primary_10_15252_embr_202153464 crossref_primary_10_1016_j_virol_2014_05_029 crossref_primary_10_1093_ismejo_wrae150 crossref_primary_10_2217_fvl_15_27 crossref_primary_10_1038_nrmicro3289 crossref_primary_10_3389_fmicb_2021_657471 crossref_primary_10_1186_1743_422X_10_106 crossref_primary_10_1111_nyas_12735 crossref_primary_10_1111_j_1462_2920_2012_02706_x crossref_primary_10_1128_jvi_02114_21 crossref_primary_10_1126_science_aal4657 crossref_primary_10_1016_j_mib_2016_01_006 crossref_primary_10_1016_j_virol_2014_05_013 crossref_primary_10_1093_ve_veaa059 crossref_primary_10_2217_fvl_13_79 crossref_primary_10_1016_j_jcv_2013_03_018 crossref_primary_10_1128_msystems_00042_24 crossref_primary_10_7554_eLife_33014 crossref_primary_10_1128_JVI_01088_17 crossref_primary_10_1073_pnas_1208835109 crossref_primary_10_1186_1743_422X_11_95 crossref_primary_10_3390_biom12081061 crossref_primary_10_1007_s11262_019_01684_w crossref_primary_10_1186_1743_422X_11_120 crossref_primary_10_1016_j_humic_2017_11_001 crossref_primary_10_1128_jvi_00813_22 crossref_primary_10_3389_fmicb_2016_00349 crossref_primary_10_1042_BST20180623 crossref_primary_10_1038_ismej_2016_154 crossref_primary_10_1038_s41598_020_78658_8 crossref_primary_10_1093_ismeco_ycae155 crossref_primary_10_3389_fmicb_2016_00127 crossref_primary_10_1016_j_virol_2014_06_031 crossref_primary_10_1073_pnas_1303251110 crossref_primary_10_3390_v7072782 crossref_primary_10_1038_s43705_023_00252_6 crossref_primary_10_1038_ismej_2013_59 crossref_primary_10_1360_TB_2023_1013 crossref_primary_10_3389_fmicb_2021_704052 crossref_primary_10_1007_s00436_015_4731_5 crossref_primary_10_1128_JVI_00230_17 crossref_primary_10_3390_microorganisms11010169 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1007615107 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 20974979 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c490t-bf409b1be289db7c3d30f2510669e8b1a1a916fd460d1a9bbeb23ae8752adde62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283997800069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 18:43:02 EDT 2025 Mon Jul 21 05:33:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 45 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-bf409b1be289db7c3d30f2510669e8b1a1a916fd460d1a9bbeb23ae8752adde62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 20974979 |
| PQID | 763471198 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_763471198 pubmed_primary_20974979 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-11-09 |
| PublicationDateYYYYMMDD | 2010-11-09 |
| PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2010 |
| References | 18205905 - BMC Evol Biol. 2008;8:12 16494962 - Virus Res. 2006 Apr;117(1):156-84 19828609 - J Virol. 2010 Jan;84(1):532-42 11751054 - Curr Opin Struct Biol. 2001 Dec;11(6):725-32 17652424 - Genome Res. 2007 Sep;17(9):1353-61 17027058 - Virology. 2007 Feb 20;358(2):472-84 19228922 - Mol Biol Evol. 2009 May;26(5):1143-53 1695830 - Annu Rev Biochem. 1990;59:129-70 16254344 - J Virol. 2005 Nov;79(22):14095-101 18215256 - Virol J. 2008;5:12 9097450 - Appl Environ Microbiol. 1997 Apr;63(4):1551-6 15486256 - Science. 2004 Nov 19;306(5700):1344-50 19270719 - Nat Rev Microbiol. 2009 Apr;7(4):306-11 12142479 - Annu Rev Microbiol. 2002;56:263-87 20360389 - Genome Res. 2010 May;20(5):664-74 11140455 - J Eukaryot Microbiol. 2000 Jul-Aug;47(4):400-11 16352556 - J Virol. 2006 Jan;80(1):314-21 11689653 - J Virol. 2001 Dec;75(23):11720-34 16984643 - Biol Direct. 2006 Sep 19;1:29 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 16099989 - Science. 2005 Aug 12;309(5737):1090-2 16877063 - Adv Virus Res. 2006;66:293-336 18359826 - Appl Environ Microbiol. 2008 May;74(10):3048-57 17922751 - Environ Microbiol. 2007 Nov;9(11):2660-9 19036122 - BMC Evol Biol. 2008;8:320 17785533 - Genome Res. 2007 Oct;17(10):1486-95 16777069 - Biochem Biophys Res Commun. 2006 Aug 4;346(3):879-88 11752343 - Nucleic Acids Res. 2002 Jan 1;30(1):383-4 17293019 - Biochimie. 2007 Apr;89(4):427-46 20007369 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21848-53 18572389 - Res Microbiol. 2008 Jun;159(5):325-31 17069655 - BMC Biol. 2006;4:38 16000767 - Appl Environ Microbiol. 2005 Jul;71(7):3599-607 15707490 - Virol J. 2005;2:8 20690825 - Annu Rev Microbiol. 2010;64:83-99 16203998 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14689-93 15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46 16787527 - Genome Biol. 2006;7(6):110 19109393 - J Virol. 2009 Mar;83(5):2099-108 17109990 - Trends Genet. 2007 Jan;23(1):10-5 11883191 - Virology. 2001 Nov 25;290(2):272-80 20017929 - Virol J. 2009;6:223 11160666 - J Virol. 2001 Feb;75(4):1681-8 |
| References_xml | – reference: 17922751 - Environ Microbiol. 2007 Nov;9(11):2660-9 – reference: 17109990 - Trends Genet. 2007 Jan;23(1):10-5 – reference: 11160666 - J Virol. 2001 Feb;75(4):1681-8 – reference: 16494962 - Virus Res. 2006 Apr;117(1):156-84 – reference: 11689653 - J Virol. 2001 Dec;75(23):11720-34 – reference: 11751054 - Curr Opin Struct Biol. 2001 Dec;11(6):725-32 – reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 – reference: 20360389 - Genome Res. 2010 May;20(5):664-74 – reference: 15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46 – reference: 16203998 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14689-93 – reference: 16352556 - J Virol. 2006 Jan;80(1):314-21 – reference: 15486256 - Science. 2004 Nov 19;306(5700):1344-50 – reference: 11140455 - J Eukaryot Microbiol. 2000 Jul-Aug;47(4):400-11 – reference: 11883191 - Virology. 2001 Nov 25;290(2):272-80 – reference: 17293019 - Biochimie. 2007 Apr;89(4):427-46 – reference: 19109393 - J Virol. 2009 Mar;83(5):2099-108 – reference: 16984643 - Biol Direct. 2006 Sep 19;1:29 – reference: 19270719 - Nat Rev Microbiol. 2009 Apr;7(4):306-11 – reference: 18572389 - Res Microbiol. 2008 Jun;159(5):325-31 – reference: 16877063 - Adv Virus Res. 2006;66:293-336 – reference: 16000767 - Appl Environ Microbiol. 2005 Jul;71(7):3599-607 – reference: 18205905 - BMC Evol Biol. 2008;8:12 – reference: 17785533 - Genome Res. 2007 Oct;17(10):1486-95 – reference: 17069655 - BMC Biol. 2006;4:38 – reference: 20690825 - Annu Rev Microbiol. 2010;64:83-99 – reference: 12142479 - Annu Rev Microbiol. 2002;56:263-87 – reference: 9097450 - Appl Environ Microbiol. 1997 Apr;63(4):1551-6 – reference: 19036122 - BMC Evol Biol. 2008;8:320 – reference: 16787527 - Genome Biol. 2006;7(6):110 – reference: 19228922 - Mol Biol Evol. 2009 May;26(5):1143-53 – reference: 15707490 - Virol J. 2005;2:8 – reference: 16777069 - Biochem Biophys Res Commun. 2006 Aug 4;346(3):879-88 – reference: 17027058 - Virology. 2007 Feb 20;358(2):472-84 – reference: 16254344 - J Virol. 2005 Nov;79(22):14095-101 – reference: 20017929 - Virol J. 2009;6:223 – reference: 18215256 - Virol J. 2008;5:12 – reference: 17652424 - Genome Res. 2007 Sep;17(9):1353-61 – reference: 18359826 - Appl Environ Microbiol. 2008 May;74(10):3048-57 – reference: 16099989 - Science. 2005 Aug 12;309(5737):1090-2 – reference: 19828609 - J Virol. 2010 Jan;84(1):532-42 – reference: 1695830 - Annu Rev Biochem. 1990;59:129-70 – reference: 11752343 - Nucleic Acids Res. 2002 Jan 1;30(1):383-4 – reference: 20007369 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21848-53 |
| SSID | ssj0009580 |
| Score | 2.4954097 |
| Snippet | As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 19508 |
| SubjectTerms | Acanthamoeba - genetics Animals DNA Viruses Food Chain Genes, Viral Genome, Viral Marine Biology Molecular Sequence Data Oceans and Seas Phylogeny Zooplankton - virology |
| Title | Giant virus with a remarkable complement of genes infects marine zooplankton |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20974979 https://www.proquest.com/docview/763471198 |
| Volume | 107 |
| WOSCitedRecordID | wos000283997800069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWAByrO85IEBhqhJnMbxhBCiMEDVAaRukR07qAKSkLQd-PWcHRexIAaWKEOiRJd7fN_d5Q7gXDOaxQrtm_lceRih0aTCQejRKKfGQs26F7tsgo1GyWTCx643p3FtlUufaB21KjOTI--jHaAfRYp8VX14ZmmUKa66DRqr0KGIZIxSs0nyY-Zu0g4j4IEXR9xfTvZhtF8VorENAiag--x3eGnDzHDrny-4DZsOX5LrViG6sKKLHeg6C27IhRszfbkLD3eoGTOymNbzhph0LBGk1u-ifjV_UxHba25zh6TMyYtxiaTt3GoIXoTglHyWZfUmileEj3vwPLx9urn33G4FL0NJzDyZI7GTgdRIuJRkGVXUzxHrIALhOpGBCAQCx1xFsa_wVEpk4FRoZDeh8YhxuA9rRVnoQyA8idVAGuaWBRELMykGOX7zSCA0M4_pAVkKLEXdNQUJUehy3qTfIuvBQSv0tGpnbKShj0SHM370983HsGFL-ibXy0-gk6Pd6lNYzxazaVOfWZ3A42j8-AWtj8Cg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+virus+with+a+remarkable+complement+of+genes+infects+marine+zooplankton&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fischer%2C+Matthias+G&rft.au=Allen%2C+Michael+J&rft.au=Wilson%2C+William+H&rft.au=Suttle%2C+Curtis+A&rft.date=2010-11-09&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=45&rft.spage=19508&rft_id=info:doi/10.1073%2Fpnas.1007615107&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |