Giant virus with a remarkable complement of genes infects marine zooplankton

As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 107; číslo 45; s. 19508
Hlavní autori: Fischer, Matthias G, Allen, Michael J, Wilson, William H, Suttle, Curtis A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 09.11.2010
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.
AbstractList As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.
As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine microflagellate grazer is infected by a giant virus, Cafeteria roenbergensis virus (CroV), which has the largest genome of any described marine virus (≈730 kb of double-stranded DNA). The central 618-kb coding part of this AT-rich genome contains 544 predicted protein-coding genes; putative early and late promoter motifs have been detected and assigned to 191 and 72 of them, respectively, and at least 274 genes were expressed during infection. The diverse coding potential of CroV includes predicted translation factors, DNA repair enzymes such as DNA mismatch repair protein MutS and two photolyases, multiple ubiquitin pathway components, four intein elements, and 22 tRNAs. Many genes including isoleucyl-tRNA synthetase, eIF-2γ, and an Elp3-like histone acetyltransferase are usually not found in viruses. We also discovered a 38-kb genomic region of putative bacterial origin, which encodes several predicted carbohydrate metabolizing enzymes, including an entire pathway for the biosynthesis of 3-deoxy-d-manno-octulosonate, a key component of the outer membrane in Gram-negative bacteria. Phylogenetic analysis indicates that CroV is a nucleocytoplasmic large DNA virus, with Acanthamoeba polyphaga mimivirus as its closest relative, although less than one-third of the genes of CroV have homologs in Mimivirus. CroV is a highly complex marine virus and the only virus studied in genetic detail that infects one of the major groups of predators in the oceans.
Author Suttle, Curtis A
Fischer, Matthias G
Allen, Michael J
Wilson, William H
Author_xml – sequence: 1
  givenname: Matthias G
  surname: Fischer
  fullname: Fischer, Matthias G
  organization: Department of Microbiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
– sequence: 2
  givenname: Michael J
  surname: Allen
  fullname: Allen, Michael J
– sequence: 3
  givenname: William H
  surname: Wilson
  fullname: Wilson, William H
– sequence: 4
  givenname: Curtis A
  surname: Suttle
  fullname: Suttle, Curtis A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20974979$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAQQIOsuB969ia5eapO0m7SHGXRVVjwoueSNFON2ya1aRX99QZcwdM8hsfwmCWZ-eCRkHMGVwxkft17HROBFGydFkdkwUCxTBQKZv94TpYxvgGAWpdwQuYclCyUVAuy2zrtR_rhhinSTze-Uk0H7PSw16ZFWoeub7HDpISGvqDHSJ1vsB4jTZLzSL9D6Fvt92Pwp-S40W3Es8Nckee726fNfbZ73D5sbnZZnVrGzDQFKMMM8lJZI-vc5tDw1C-EwtIwzbRiorGFAJvQGDQ811jKNdfWouArcvl7tx_C-4RxrDoXa2xTBoYpVlLkhWRMlcm8OJiT6dBW_eBS9lf19wD-A2GlYHM
CitedBy_id crossref_primary_10_1098_rsob_130160
crossref_primary_10_1134_S0006297920140072
crossref_primary_10_1016_j_egg_2023_100210
crossref_primary_10_3390_v12101130
crossref_primary_10_1038_s42003_025_07905_3
crossref_primary_10_1371_journal_pcbi_1002364
crossref_primary_10_1038_nrmicro2670
crossref_primary_10_1007_s00705_014_2257_2
crossref_primary_10_3390_v9010017
crossref_primary_10_3390_v9010016
crossref_primary_10_1038_nrmicro2676
crossref_primary_10_1038_s41598_017_05824_w
crossref_primary_10_1073_pnas_2314606121
crossref_primary_10_4161_cib_18624
crossref_primary_10_1093_plankt_fbr068
crossref_primary_10_1128_aem_01156_23
crossref_primary_10_1146_annurev_virology_100520_125832
crossref_primary_10_1113_jphysiol_2014_271130
crossref_primary_10_1186_1743_422X_9_161
crossref_primary_10_1128_JVI_02414_14
crossref_primary_10_1016_j_mib_2016_03_001
crossref_primary_10_3390_v11020180
crossref_primary_10_3390_ijms22115643
crossref_primary_10_1016_j_jphotobiol_2016_06_020
crossref_primary_10_1016_j_coviro_2019_02_007
crossref_primary_10_1038_nature20593
crossref_primary_10_1016_j_cmi_2018_09_010
crossref_primary_10_1038_s42003_019_0475_6
crossref_primary_10_1089_dna_2023_0048
crossref_primary_10_3390_ijms23031120
crossref_primary_10_1016_j_shpsc_2016_02_015
crossref_primary_10_1016_j_ympev_2014_12_013
crossref_primary_10_1186_1743_422X_10_158
crossref_primary_10_1016_j_shpsc_2016_02_013
crossref_primary_10_1038_ismej_2016_134
crossref_primary_10_1016_j_ympev_2018_07_019
crossref_primary_10_1038_s41598_024_52626_y
crossref_primary_10_1016_j_virol_2013_12_032
crossref_primary_10_1038_s41467_020_15507_2
crossref_primary_10_1016_j_mib_2013_10_001
crossref_primary_10_1111_mec_15210
crossref_primary_10_1038_s41467_023_41910_6
crossref_primary_10_1016_j_mib_2016_03_011
crossref_primary_10_1371_journal_pbio_3001430
crossref_primary_10_3389_fcimb_2017_00527
crossref_primary_10_1016_j_mib_2016_03_004
crossref_primary_10_1038_s41598_022_20758_8
crossref_primary_10_1007_s00705_017_3497_8
crossref_primary_10_3389_fmicb_2015_01308
crossref_primary_10_1186_s12985_019_1244_3
crossref_primary_10_3390_v3010032
crossref_primary_10_1016_j_csbj_2018_07_001
crossref_primary_10_1111_j_1574_6941_2011_01090_x
crossref_primary_10_1007_s00705_023_05906_3
crossref_primary_10_1016_j_ejop_2019_125665
crossref_primary_10_1093_femsre_fuv037
crossref_primary_10_1128_MMBR_00049_13
crossref_primary_10_1038_ncomms16054
crossref_primary_10_3103_S0891416812010041
crossref_primary_10_3390_v8110317
crossref_primary_10_1016_j_coviro_2018_07_013
crossref_primary_10_3390_v10090506
crossref_primary_10_1111_j_1558_5646_2012_01738_x
crossref_primary_10_1016_j_coviro_2011_06_005
crossref_primary_10_1016_j_micpath_2014_09_005
crossref_primary_10_1007_s00705_013_1768_6
crossref_primary_10_1038_s41467_018_07335_2
crossref_primary_10_1038_s41559_020_01288_w
crossref_primary_10_3390_v14051056
crossref_primary_10_3390_pathogens11121453
crossref_primary_10_3389_fmicb_2016_01942
crossref_primary_10_3390_v9030052
crossref_primary_10_3390_v11050404
crossref_primary_10_1038_nrmicro_2016_197
crossref_primary_10_1128_JVI_01534_19
crossref_primary_10_1038_s41579_022_00754_5
crossref_primary_10_3390_v11111043
crossref_primary_10_3390_v9090238
crossref_primary_10_1074_jbc_M114_588947
crossref_primary_10_1128_AEM_01160_21
crossref_primary_10_1016_j_gene_2022_147037
crossref_primary_10_3390_v8030076
crossref_primary_10_1007_s11427_018_9414_7
crossref_primary_10_1093_nar_gkv224
crossref_primary_10_3390_v13010081
crossref_primary_10_1093_ve_veae021
crossref_primary_10_1128_JVI_00372_18
crossref_primary_10_1371_journal_pgen_1006532
crossref_primary_10_1073_pnas_1907517116
crossref_primary_10_3389_fmicb_2018_00752
crossref_primary_10_1128_AEM_00123_14
crossref_primary_10_1371_journal_ppat_1007592
crossref_primary_10_1186_s40168_022_01451_4
crossref_primary_10_1128_JVI_02446_20
crossref_primary_10_1159_000354556
crossref_primary_10_1159_000354557
crossref_primary_10_3389_fmicb_2015_00423
crossref_primary_10_1159_000354558
crossref_primary_10_1074_jbc_M111_314559
crossref_primary_10_3389_fmicb_2019_01003
crossref_primary_10_1038_s41467_020_16414_2
crossref_primary_10_1002_mbo3_392
crossref_primary_10_1073_pnas_1101118108
crossref_primary_10_1038_s41396_019_0565_y
crossref_primary_10_3389_fmicb_2023_1284617
crossref_primary_10_1073_pnas_2011038118
crossref_primary_10_1089_ast_2017_1649
crossref_primary_10_1042_BST20230527
crossref_primary_10_3389_fmicb_2016_02029
crossref_primary_10_1128_JVI_03398_12
crossref_primary_10_1371_journal_pone_0050649
crossref_primary_10_1093_glycob_cwt089
crossref_primary_10_1016_j_coviro_2011_05_003
crossref_primary_10_1038_s41467_018_03168_1
crossref_primary_10_1016_j_coviro_2011_05_008
crossref_primary_10_3390_v11080733
crossref_primary_10_1126_science_1199412
crossref_primary_10_1016_j_virol_2014_12_014
crossref_primary_10_1111_1462_2920_12068
crossref_primary_10_1007_s00705_020_04626_2
crossref_primary_10_3390_v10090496
crossref_primary_10_3389_fmicb_2015_00960
crossref_primary_10_3389_fmicb_2015_00722
crossref_primary_10_1038_ismej_2010_210
crossref_primary_10_1038_s41579_019_0270_x
crossref_primary_10_1146_annurev_virology_031413_085540
crossref_primary_10_1371_journal_pone_0094923
crossref_primary_10_1186_s12985_018_1097_1
crossref_primary_10_1093_femsml_uqac002
crossref_primary_10_1128_JVI_00149_20
crossref_primary_10_3390_v12111337
crossref_primary_10_1038_s41467_024_47308_2
crossref_primary_10_3390_jmse13091797
crossref_primary_10_1186_1743_422X_8_511
crossref_primary_10_5194_bg_19_1303_2022
crossref_primary_10_3389_fmicb_2016_00026
crossref_primary_10_1159_000354563
crossref_primary_10_1007_s11262_013_0965_4
crossref_primary_10_1159_000354564
crossref_primary_10_1016_j_virol_2014_07_001
crossref_primary_10_1371_journal_pone_0018935
crossref_primary_10_1073_pnas_1510795112
crossref_primary_10_1007_s11262_013_1016_x
crossref_primary_10_1016_j_virusres_2013_10_017
crossref_primary_10_1093_femsre_fuad053
crossref_primary_10_1007_s00705_017_3286_4
crossref_primary_10_1111_nyas_14469
crossref_primary_10_7554_eLife_72674
crossref_primary_10_1073_pnas_1110889108
crossref_primary_10_3390_ijms161226169
crossref_primary_10_3390_microorganisms8040506
crossref_primary_10_1007_s00705_018_4067_4
crossref_primary_10_1186_1743_422X_8_99
crossref_primary_10_3390_v9040088
crossref_primary_10_1016_j_virol_2014_07_014
crossref_primary_10_1038_ismej_2013_214
crossref_primary_10_3390_v16071061
crossref_primary_10_3892_mmr_2022_12723
crossref_primary_10_3390_v9040084
crossref_primary_10_1007_s42995_024_00270_w
crossref_primary_10_3390_v9030046
crossref_primary_10_1038_s44298_024_00021_9
crossref_primary_10_1016_j_micinf_2024_105467
crossref_primary_10_3390_v11040312
crossref_primary_10_1007_s00705_015_2720_8
crossref_primary_10_1016_j_coviro_2013_07_003
crossref_primary_10_1093_nar_gkr564
crossref_primary_10_1038_nrmicro2676_c1
crossref_primary_10_1099_vir_0_066951_0
crossref_primary_10_6064_2012_734023
crossref_primary_10_1038_s41597_020_0363_4
crossref_primary_10_1016_j_bbagrm_2012_08_009
crossref_primary_10_3390_v10090468
crossref_primary_10_3390_v8110278
crossref_primary_10_1007_s00705_015_2622_9
crossref_primary_10_1111_j_1462_2920_2011_02441_x
crossref_primary_10_3389_fmicb_2018_00358
crossref_primary_10_7554_eLife_78674
crossref_primary_10_1016_j_virol_2018_03_010
crossref_primary_10_1126_science_1239181
crossref_primary_10_1128_spectrum_05157_22
crossref_primary_10_3389_fmicb_2017_02562
crossref_primary_10_1186_s40168_024_01851_8
crossref_primary_10_1016_j_plrev_2013_07_001
crossref_primary_10_1007_s12268_013_0362_5
crossref_primary_10_1016_j_jtbi_2014_03_008
crossref_primary_10_15252_embr_202153464
crossref_primary_10_1016_j_virol_2014_05_029
crossref_primary_10_1093_ismejo_wrae150
crossref_primary_10_2217_fvl_15_27
crossref_primary_10_1038_nrmicro3289
crossref_primary_10_3389_fmicb_2021_657471
crossref_primary_10_1186_1743_422X_10_106
crossref_primary_10_1111_nyas_12735
crossref_primary_10_1111_j_1462_2920_2012_02706_x
crossref_primary_10_1128_jvi_02114_21
crossref_primary_10_1126_science_aal4657
crossref_primary_10_1016_j_mib_2016_01_006
crossref_primary_10_1016_j_virol_2014_05_013
crossref_primary_10_1093_ve_veaa059
crossref_primary_10_2217_fvl_13_79
crossref_primary_10_1016_j_jcv_2013_03_018
crossref_primary_10_1128_msystems_00042_24
crossref_primary_10_7554_eLife_33014
crossref_primary_10_1128_JVI_01088_17
crossref_primary_10_1073_pnas_1208835109
crossref_primary_10_1186_1743_422X_11_95
crossref_primary_10_3390_biom12081061
crossref_primary_10_1007_s11262_019_01684_w
crossref_primary_10_1186_1743_422X_11_120
crossref_primary_10_1016_j_humic_2017_11_001
crossref_primary_10_1128_jvi_00813_22
crossref_primary_10_3389_fmicb_2016_00349
crossref_primary_10_1042_BST20180623
crossref_primary_10_1038_ismej_2016_154
crossref_primary_10_1038_s41598_020_78658_8
crossref_primary_10_1093_ismeco_ycae155
crossref_primary_10_3389_fmicb_2016_00127
crossref_primary_10_1016_j_virol_2014_06_031
crossref_primary_10_1073_pnas_1303251110
crossref_primary_10_3390_v7072782
crossref_primary_10_1038_s43705_023_00252_6
crossref_primary_10_1038_ismej_2013_59
crossref_primary_10_1360_TB_2023_1013
crossref_primary_10_3389_fmicb_2021_704052
crossref_primary_10_1007_s00436_015_4731_5
crossref_primary_10_1128_JVI_00230_17
crossref_primary_10_3390_microorganisms11010169
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1007615107
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 20974979
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c490t-bf409b1be289db7c3d30f2510669e8b1a1a916fd460d1a9bbeb23ae8752adde62
IEDL.DBID 7X8
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283997800069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Sep 04 18:43:02 EDT 2025
Mon Jul 21 05:33:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-bf409b1be289db7c3d30f2510669e8b1a1a916fd460d1a9bbeb23ae8752adde62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20974979
PQID 763471198
PQPubID 23479
ParticipantIDs proquest_miscellaneous_763471198
pubmed_primary_20974979
PublicationCentury 2000
PublicationDate 2010-11-09
PublicationDateYYYYMMDD 2010-11-09
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
References 18205905 - BMC Evol Biol. 2008;8:12
16494962 - Virus Res. 2006 Apr;117(1):156-84
19828609 - J Virol. 2010 Jan;84(1):532-42
11751054 - Curr Opin Struct Biol. 2001 Dec;11(6):725-32
17652424 - Genome Res. 2007 Sep;17(9):1353-61
17027058 - Virology. 2007 Feb 20;358(2):472-84
19228922 - Mol Biol Evol. 2009 May;26(5):1143-53
1695830 - Annu Rev Biochem. 1990;59:129-70
16254344 - J Virol. 2005 Nov;79(22):14095-101
18215256 - Virol J. 2008;5:12
9097450 - Appl Environ Microbiol. 1997 Apr;63(4):1551-6
15486256 - Science. 2004 Nov 19;306(5700):1344-50
19270719 - Nat Rev Microbiol. 2009 Apr;7(4):306-11
12142479 - Annu Rev Microbiol. 2002;56:263-87
20360389 - Genome Res. 2010 May;20(5):664-74
11140455 - J Eukaryot Microbiol. 2000 Jul-Aug;47(4):400-11
16352556 - J Virol. 2006 Jan;80(1):314-21
11689653 - J Virol. 2001 Dec;75(23):11720-34
16984643 - Biol Direct. 2006 Sep 19;1:29
7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
16099989 - Science. 2005 Aug 12;309(5737):1090-2
16877063 - Adv Virus Res. 2006;66:293-336
18359826 - Appl Environ Microbiol. 2008 May;74(10):3048-57
17922751 - Environ Microbiol. 2007 Nov;9(11):2660-9
19036122 - BMC Evol Biol. 2008;8:320
17785533 - Genome Res. 2007 Oct;17(10):1486-95
16777069 - Biochem Biophys Res Commun. 2006 Aug 4;346(3):879-88
11752343 - Nucleic Acids Res. 2002 Jan 1;30(1):383-4
17293019 - Biochimie. 2007 Apr;89(4):427-46
20007369 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21848-53
18572389 - Res Microbiol. 2008 Jun;159(5):325-31
17069655 - BMC Biol. 2006;4:38
16000767 - Appl Environ Microbiol. 2005 Jul;71(7):3599-607
15707490 - Virol J. 2005;2:8
20690825 - Annu Rev Microbiol. 2010;64:83-99
16203998 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14689-93
15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46
16787527 - Genome Biol. 2006;7(6):110
19109393 - J Virol. 2009 Mar;83(5):2099-108
17109990 - Trends Genet. 2007 Jan;23(1):10-5
11883191 - Virology. 2001 Nov 25;290(2):272-80
20017929 - Virol J. 2009;6:223
11160666 - J Virol. 2001 Feb;75(4):1681-8
References_xml – reference: 17922751 - Environ Microbiol. 2007 Nov;9(11):2660-9
– reference: 17109990 - Trends Genet. 2007 Jan;23(1):10-5
– reference: 11160666 - J Virol. 2001 Feb;75(4):1681-8
– reference: 16494962 - Virus Res. 2006 Apr;117(1):156-84
– reference: 11689653 - J Virol. 2001 Dec;75(23):11720-34
– reference: 11751054 - Curr Opin Struct Biol. 2001 Dec;11(6):725-32
– reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
– reference: 20360389 - Genome Res. 2010 May;20(5):664-74
– reference: 15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46
– reference: 16203998 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14689-93
– reference: 16352556 - J Virol. 2006 Jan;80(1):314-21
– reference: 15486256 - Science. 2004 Nov 19;306(5700):1344-50
– reference: 11140455 - J Eukaryot Microbiol. 2000 Jul-Aug;47(4):400-11
– reference: 11883191 - Virology. 2001 Nov 25;290(2):272-80
– reference: 17293019 - Biochimie. 2007 Apr;89(4):427-46
– reference: 19109393 - J Virol. 2009 Mar;83(5):2099-108
– reference: 16984643 - Biol Direct. 2006 Sep 19;1:29
– reference: 19270719 - Nat Rev Microbiol. 2009 Apr;7(4):306-11
– reference: 18572389 - Res Microbiol. 2008 Jun;159(5):325-31
– reference: 16877063 - Adv Virus Res. 2006;66:293-336
– reference: 16000767 - Appl Environ Microbiol. 2005 Jul;71(7):3599-607
– reference: 18205905 - BMC Evol Biol. 2008;8:12
– reference: 17785533 - Genome Res. 2007 Oct;17(10):1486-95
– reference: 17069655 - BMC Biol. 2006;4:38
– reference: 20690825 - Annu Rev Microbiol. 2010;64:83-99
– reference: 12142479 - Annu Rev Microbiol. 2002;56:263-87
– reference: 9097450 - Appl Environ Microbiol. 1997 Apr;63(4):1551-6
– reference: 19036122 - BMC Evol Biol. 2008;8:320
– reference: 16787527 - Genome Biol. 2006;7(6):110
– reference: 19228922 - Mol Biol Evol. 2009 May;26(5):1143-53
– reference: 15707490 - Virol J. 2005;2:8
– reference: 16777069 - Biochem Biophys Res Commun. 2006 Aug 4;346(3):879-88
– reference: 17027058 - Virology. 2007 Feb 20;358(2):472-84
– reference: 16254344 - J Virol. 2005 Nov;79(22):14095-101
– reference: 20017929 - Virol J. 2009;6:223
– reference: 18215256 - Virol J. 2008;5:12
– reference: 17652424 - Genome Res. 2007 Sep;17(9):1353-61
– reference: 18359826 - Appl Environ Microbiol. 2008 May;74(10):3048-57
– reference: 16099989 - Science. 2005 Aug 12;309(5737):1090-2
– reference: 19828609 - J Virol. 2010 Jan;84(1):532-42
– reference: 1695830 - Annu Rev Biochem. 1990;59:129-70
– reference: 11752343 - Nucleic Acids Res. 2002 Jan 1;30(1):383-4
– reference: 20007369 - Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21848-53
SSID ssj0009580
Score 2.4954097
Snippet As major consumers of heterotrophic bacteria and phytoplankton, microzooplankton are a critical link in aquatic foodwebs. Here, we show that a major marine...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 19508
SubjectTerms Acanthamoeba - genetics
Animals
DNA Viruses
Food Chain
Genes, Viral
Genome, Viral
Marine Biology
Molecular Sequence Data
Oceans and Seas
Phylogeny
Zooplankton - virology
Title Giant virus with a remarkable complement of genes infects marine zooplankton
URI https://www.ncbi.nlm.nih.gov/pubmed/20974979
https://www.proquest.com/docview/763471198
Volume 107
WOSCitedRecordID wos000283997800069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWAByrO85IEBhqhJnMbxhBCiMEDVAaRukR07qAKSkLQd-PWcHRexIAaWKEOiRJd7fN_d5Q7gXDOaxQrtm_lceRih0aTCQejRKKfGQs26F7tsgo1GyWTCx643p3FtlUufaB21KjOTI--jHaAfRYp8VX14ZmmUKa66DRqr0KGIZIxSs0nyY-Zu0g4j4IEXR9xfTvZhtF8VorENAiag--x3eGnDzHDrny-4DZsOX5LrViG6sKKLHeg6C27IhRszfbkLD3eoGTOymNbzhph0LBGk1u-ifjV_UxHba25zh6TMyYtxiaTt3GoIXoTglHyWZfUmileEj3vwPLx9urn33G4FL0NJzDyZI7GTgdRIuJRkGVXUzxHrIALhOpGBCAQCx1xFsa_wVEpk4FRoZDeh8YhxuA9rRVnoQyA8idVAGuaWBRELMykGOX7zSCA0M4_pAVkKLEXdNQUJUehy3qTfIuvBQSv0tGpnbKShj0SHM370983HsGFL-ibXy0-gk6Pd6lNYzxazaVOfWZ3A42j8-AWtj8Cg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+virus+with+a+remarkable+complement+of+genes+infects+marine+zooplankton&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fischer%2C+Matthias+G&rft.au=Allen%2C+Michael+J&rft.au=Wilson%2C+William+H&rft.au=Suttle%2C+Curtis+A&rft.date=2010-11-09&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=45&rft.spage=19508&rft_id=info:doi/10.1073%2Fpnas.1007615107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon