A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance
Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital ro...
Gespeichert in:
| Veröffentlicht in: | Frontiers in neuroscience Jg. 12; S. 227 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Research Foundation
06.04.2018
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1662-453X, 1662-4548, 1662-453X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method. |
|---|---|
| AbstractList | Motor imagery–based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users’ movement related mental intention. The selection of control signals, e.g. the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session – performance increases asymptotically by increasing the number of channels, saturates, and then decreases – no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects’ average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method. Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method. |
| Author | Olsoe, Jaron Beyko, Angeliki He, Bin Jacobs, Gabriel Zhang, Shuying Edelman, Bradley J. Meng, Jianjun |
| AuthorAffiliation | 2 Department of Biomedical Engineering, University of Minnesota , Minneapolis, MN , United States 1 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , United States 3 Institute for Engineering in Medicine, University of Minnesota , Minneapolis, MN , United States |
| AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, University of Minnesota , Minneapolis, MN , United States – name: 1 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , United States – name: 3 Institute for Engineering in Medicine, University of Minnesota , Minneapolis, MN , United States |
| Author_xml | – sequence: 1 givenname: Jianjun surname: Meng fullname: Meng, Jianjun – sequence: 2 givenname: Bradley J. surname: Edelman fullname: Edelman, Bradley J. – sequence: 3 givenname: Jaron surname: Olsoe fullname: Olsoe, Jaron – sequence: 4 givenname: Gabriel surname: Jacobs fullname: Jacobs, Gabriel – sequence: 5 givenname: Shuying surname: Zhang fullname: Zhang, Shuying – sequence: 6 givenname: Angeliki surname: Beyko fullname: Beyko, Angeliki – sequence: 7 givenname: Bin surname: He fullname: He, Bin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29681792$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1vGyEQhldVquajvfdUIfXSi11g2V24VLJdJ7UUNZXaSr0hFgYbaxdc2I2Uf19sJ1ESqScGeOZlhnnPixMfPBTFe4KnZcnFZ-udT1OKCZ9iTGnzqjgjdU0nrCr_nDyJT4vzlLYY15Qz-qY4paLmpBH0rNjN0M9hNHcoWDRsAC2tBT2k_XbZ5SgGA-j72LcQkfIGfQUdjPNrNOvWIbph06Pg0Y3vnM_Jy6vJXCUwaL5YoTls1K0LUXXoB0QbYq-8hrfFa6u6BO_u14vi9-Xy1-Lb5PrmarWYXU80E3iYtBbXVU2MMqYihmtMDGuEZZQZ4LYGsAQb0I3CojJaE8uBNJluW66Bt215UayOuiaordxF16t4J4Ny8nAQ4lqqODjdgTSGsUoIsEAwKzVTNeCmJIYCN1xUPGt9OWrtxrYHo8EPuatnos9vvNvIdbiVFRcNYzQLfLoXiOHvCGmQvUsauk55CGOSFOeJsPw6y-jHF-g2jNHnr5K0xHWJhSj31IenFT2W8jDYDOAjoGNIKYJ9RAiWe-_Ig3fk3jvy4J2cUr9I0W5Qgwv7nlz3_8R_fb7Kwg |
| CitedBy_id | crossref_primary_10_1016_j_cose_2023_103520 crossref_primary_10_1371_journal_pbio_2006719 crossref_primary_10_1134_S1063785020060127 crossref_primary_10_1007_s11517_023_02770_w crossref_primary_10_3389_fnins_2022_909434 crossref_primary_10_3390_children10091456 crossref_primary_10_1088_1741_2552_ac605f crossref_primary_10_3389_fnhum_2021_647908 crossref_primary_10_1016_j_nec_2021_03_012 crossref_primary_10_3103_S1062873821010226 crossref_primary_10_3389_fneur_2018_00955 crossref_primary_10_3389_fnhum_2019_00128 crossref_primary_10_3390_signals4010004 crossref_primary_10_1109_TBME_2022_3202189 crossref_primary_10_1109_TNSRE_2019_2920748 |
| Cites_doi | 10.1016/j.neucom.2016.05.035 10.1038/srep30383 10.1016/S1388-2457(02)00057-3 10.1186/s12938-015-0087-4 10.1155/2007/94397 10.1109/MRA.2012.2229936 10.1002/ana.24390 10.1109/TNSRE.2017.2655542 10.1016/j.jneumeth.2003.10.009 10.1142/S233954781450023X 10.1007/s10548-010-0135-0 10.1088/1741-2560/12/1/016005 10.1016/j.neuroimage.2013.04.097 10.1016/j.biopsycho.2011.09.006 10.1016/j.jneumeth.2015.01.033 10.1016/j.neuroimage.2005.12.003 10.1109/TBME.2004.827072 10.1027/0269-8803.18.23.121 10.1016/j.brs.2016.07.003 10.1109/TBME.2015.2467312 10.1109/TBME.2011.2131142 10.1109/86.895947 10.1109/RBME.2013.2290621 10.1088/1741-2560/10/4/046003 10.1007/978-1-4614-5227-0_2 10.1109/MSP.2008.4408441 10.1088/1741-2560/4/2/R01 10.1109/TNSRE.2003.814439 10.3389/fnins.2010.00055 10.1109/JBHI.2013.2285232 10.1088/1741-2560/8/3/036006 10.1038/srep38565 10.1016/S0304-3940(03)00947-9 10.1073/pnas.1508080112 10.1109/TNSRE.2010.2077654 10.1016/0013-4694(75)90056-5 10.3389/fnins.2012.00055 10.1016/j.neuroimage.2008.03.042 10.1016/j.neucom.2012.11.004 10.1515/BMT.2010.003 10.1016/S0013-4694(97)00022-2 10.1038/srep12815 10.1109/TBME.2004.827827 10.1201/b17883 10.1109/86.895946 10.1002/ana.23879 10.1109/TNSRE.2006.875642 10.1109/TBME.2008.923152 10.1016/j.ijpsycho.2014.07.009 10.1016/j.neuroimage.2015.04.020 10.1109/TBME.2010.2082539 10.1016/j.cogbrainres.2005.08.014 10.1186/s12984-015-0068-7 10.1073/pnas.0403504101 10.1088/1741-2560/8/2/025020 10.3389/fnins.2012.00039 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He. 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He |
| Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He. 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnins.2018.00227 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_dd44599efe1043c4a6e0731d2e8d8958 PMC5897442 29681792 10_3389_fnins_2018_00227 |
| Genre | Journal Article |
| GeographicLocations | Minneapolis Minnesota United States--US |
| GeographicLocations_xml | – name: Minneapolis Minnesota – name: United States--US |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D ACXDI C1A NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c490t-bf06561dadd51d8c01d479f424de8f6eef10dec7a095dcc1f8e17dadbb8ce8bb3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Mon Nov 10 04:25:28 EST 2025 Tue Nov 04 02:02:19 EST 2025 Sun Nov 09 11:02:44 EST 2025 Fri Jul 25 11:55:05 EDT 2025 Thu Apr 03 07:03:06 EDT 2025 Tue Nov 18 22:15:20 EST 2025 Sat Nov 29 02:13:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CSP BCI channel configuration EEG electrode number |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-bf06561dadd51d8c01d479f424de8f6eef10dec7a095dcc1f8e17dadbb8ce8bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Edited by: Tetsunari Inamura, National Institute of Informatics, Japan Reviewed by: Mahnaz Arvaneh, University of Sheffield, United Kingdom; Jing Jin, East China University of Science and Technology, China |
| OpenAccessLink | https://www.proquest.com/docview/2306309934?pq-origsite=%requestingapplication% |
| PMID | 29681792 |
| PQID | 2306309934 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dd44599efe1043c4a6e0731d2e8d8958 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5897442 proquest_miscellaneous_2029641044 proquest_journals_2306309934 pubmed_primary_29681792 crossref_primary_10_3389_fnins_2018_00227 crossref_citationtrail_10_3389_fnins_2018_00227 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-06 |
| PublicationDateYYYYMMDD | 2018-04-06 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2018 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Guillot (B18) 2008; 41 Lal (B28) 2004; 51 Cassady (B11) 2014; 2 Hammer (B19) 2012; 89 Yao (B55) 2014; 12 Ramos-Murguialday (B45) 2013; 74 Guger (B17) 2000; 8 Meng (B35) 2014; 18 Sannelli (B49) 2010; 23 Donati (B14) 2016; 6 Hjorth (B21) 1975; 39 Delorme (B13) 2004; 134 Royer (B47) 2010; 18 Kaiser (B24) 2014; 85 Blokland (B9) 2015; 5 Meng (B36) 2016; 6 He (B20) 2013 Edelman (B15) 2016; 63 Wolpaw (B53) 2002; 113 Nijber (B16) 2010; 4 King (B25) 2015; 12 Carlson (B10) 2013; 20 Ahn (B1) 2015; 243 Zich (B56) 2015; 114 Blankertz (B7) 2006; 14 Birbaumer (B5) 2003; 11 Pichiorri (B41) 2015; 77 Blankertz (B6); 55 Shan (B51) 2015; 14 Tangermann (B52) 2012; 6 Chen (B12) 2015; 112 LaFleur (B27) 2013; 10 Schalk (B50) 2004; 51 Lawson (B29) 2014 Baxter (B4) 2016; 9 Blankertz (B8); 25 Jin (B23) 2011; 8 Jin (B22) 2010; 55 Qin (B42) 2007; 2007 Wolpaw (B54) 2004; 101 Lotte (B30) 2007; 4 Pfurtscheller (B38) 2006; 31 Ramoser (B46) 2000; 8 McFarland (B33) 1997; 103 Samek (B48) 2014; 7 Neuper (B37) 2005; 25 Lotte (B31) 2011; 58 Qiu (B43) 2017; 25 Ang (B2) 2012; 6 McFarland (B32) 2015; 97 Pfurtscheller (B39) 2003; 351 Qiu (B44) 2016; 207 Meng (B34) 2013; 104 Pichiorri (B40) 2011; 8 Kübler (B26) 2004; 18 Arvaneh (B3) 2011; 58 |
| References_xml | – volume: 207 start-page: 519 year: 2016 ident: B44 article-title: Improved SFFS method for channel selection in motor imagery based BCI publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.035 – volume: 6 start-page: 30383 year: 2016 ident: B14 article-title: Long-Term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients publication-title: Sci. Rep. doi: 10.1038/srep30383 – volume: 113 start-page: 767 year: 2002 ident: B53 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 14 start-page: 93 year: 2015 ident: B51 article-title: A novel channel selection method for optimal classification in different motor imagery BCI paradigms publication-title: Biomed. Eng. Online doi: 10.1186/s12938-015-0087-4 – volume: 2007 start-page: 1 year: 2007 ident: B42 article-title: A semisupervised support vector machines algorithm for BCI systems publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/94397 – volume: 20 start-page: 65 year: 2013 ident: B10 article-title: “Brain-controlled wheelchairs: a robotic architecture publication-title: IEEE Robotics and Automation Magazine doi: 10.1109/MRA.2012.2229936 – volume: 77 start-page: 851 year: 2015 ident: B41 article-title: Brain–computer interface boosts motor imagery practice during stroke recovery publication-title: Ann. Neurol. doi: 10.1002/ana.24390 – volume: 25 start-page: 1009 year: 2017 ident: B43 article-title: Optimized motor imagery paradigm based on imagining Chinese characters writing movement publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2655542 – volume: 134 start-page: 9 year: 2004 ident: B13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 2 start-page: 254 year: 2014 ident: B11 article-title: The impact of mind-body awareness training on the early learning of a brain-computer interface publication-title: Technology doi: 10.1142/S233954781450023X – volume: 23 start-page: 186 year: 2010 ident: B49 article-title: On optimal channel configurations for SMR-based brain–computer interfaces publication-title: Brain Topogr. doi: 10.1007/s10548-010-0135-0 – volume: 12 start-page: 016005 year: 2014 ident: B55 article-title: A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/1/016005 – volume: 85 start-page: 432 year: 2014 ident: B24 article-title: Cortical effects of user training in a motor imagery based brain–computer interface measured by fNIRS and EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.097 – volume: 89 start-page: 80 year: 2012 ident: B19 article-title: Psychological predictors of SMR-BCI performance publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2011.09.006 – volume: 243 start-page: 103 year: 2015 ident: B1 article-title: Performance variation in motor imagery brain–computer interface: a brief review publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.033 – volume: 31 start-page: 153 year: 2006 ident: B38 article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 51 start-page: 1034 year: 2004 ident: B50 article-title: BCI2000: a general-purpose brain-computer interface (BCI) system publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2004.827072 – volume: 18 start-page: 121 year: 2004 ident: B26 article-title: Predictability of brain-computer communication publication-title: J. Psychophysiol. doi: 10.1027/0269-8803.18.23.121 – volume: 9 start-page: 834 year: 2016 ident: B4 article-title: Sensorimotor rhythm BCI with simultaneous high definition-transcranial direct current stimulation alters task performance publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.07.003 – volume: 63 start-page: 4 year: 2016 ident: B15 article-title: EEG source imaging enhances the decoding of complex right-hand motor imagery tasks publication-title: Biomed. Eng IEEE Trans. doi: 10.1109/TBME.2015.2467312 – volume: 58 start-page: 1865 year: 2011 ident: B3 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2011.2131142 – volume: 8 start-page: 447 year: 2000 ident: B17 article-title: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) publication-title: IEEE Transac. Rehabil. Eng. doi: 10.1109/86.895947 – volume: 7 start-page: 50 year: 2014 ident: B48 article-title: Divergence-based framework for common spatial patterns algorithms publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2013.2290621 – volume: 10 start-page: 046003 year: 2013 ident: B27 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/4/046003 – start-page: 87 volume-title: Neural Engineering year: 2013 ident: B20 article-title: Brain–computer interfaces doi: 10.1007/978-1-4614-5227-0_2 – volume: 25 start-page: 41 ident: B8 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: Signal Process. Mag. IEEE doi: 10.1109/MSP.2008.4408441 – volume: 4 start-page: R1 year: 2007 ident: B30 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 11 start-page: 120 year: 2003 ident: B5 article-title: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814439 – volume: 4 start-page: 55 year: 2010 ident: B16 article-title: The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study publication-title: Front. Neurosci. doi: 10.3389/fnins.2010.00055 – volume: 18 start-page: 1461 year: 2014 ident: B35 article-title: Improved semisupervised adaptation for a small training dataset in the brain–computer interface publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2285232 – volume: 8 start-page: 036006 year: 2011 ident: B23 article-title: An adaptive P300-based control system publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036006 – volume: 6 start-page: 38565 year: 2016 ident: B36 article-title: Noninvasive Electroencephalogram based control of a robotic arm for reach and grasp tasks publication-title: Sci. Rep. doi: 10.1038/srep38565 – volume: 351 start-page: 33 year: 2003 ident: B39 article-title: ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00947-9 – volume: 112 start-page: E6058 year: 2015 ident: B12 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508080112 – volume: 18 start-page: 581 year: 2010 ident: B47 article-title: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies publication-title: Neural Syst. Rehabil. Eng. IEEE Trans. doi: 10.1109/TNSRE.2010.2077654 – volume: 39 start-page: 526 year: 1975 ident: B21 article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(75)90056-5 – volume: 6 start-page: 55 year: 2012 ident: B52 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 41 start-page: 1471 year: 2008 ident: B18 article-title: Functional neuroanatomical networks associated with expertise in motor imagery publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.042 – volume: 104 start-page: 115 year: 2013 ident: B34 article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain–computer interface publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.004 – volume: 55 start-page: 5 year: 2010 ident: B22 article-title: P300 Chinese input system based on Bayesian, LDA publication-title: Biomed. Tech. Biomed. Eng. doi: 10.1515/BMT.2010.003 – volume: 103 start-page: 386 year: 1997 ident: B33 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00022-2 – volume: 5 start-page: 12815 year: 2015 ident: B9 article-title: Detection of attempted movement from the EEG during neuromuscular block: proof of principle study in awake volunteers publication-title: Sci. Rep. doi: 10.1038/srep12815 – volume: 51 start-page: 1003 year: 2004 ident: B28 article-title: Support vector channel selection in BCI publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2004.827827 – start-page: 351 volume-title: Chapter 9: Design and Analysis of Experiments with R year: 2014 ident: B29 doi: 10.1201/b17883 – volume: 8 start-page: 441 year: 2000 ident: B46 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 74 start-page: 100 year: 2013 ident: B45 article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study publication-title: Ann. Neurol. doi: 10.1002/ana.23879 – volume: 14 start-page: 153 year: 2006 ident: B7 article-title: The BCI competition III: Validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 55 start-page: 2452 ident: B6 article-title: The Berlin Brain–Computer Interface: accurate performance from first-session in BCI-naive subjects publication-title: IEEE trans. Biomed. Eng. doi: 10.1109/TBME.2008.923152 – volume: 97 start-page: 271 year: 2015 ident: B32 article-title: The advantages of the surface Laplacian in brain–computer interface research publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.07.009 – volume: 114 start-page: 438 year: 2015 ident: B56 article-title: Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.04.020 – volume: 58 start-page: 355 year: 2011 ident: B31 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 25 start-page: 668 year: 2005 ident: B37 article-title: Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG publication-title: Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2005.08.014 – volume: 12 start-page: 80 year: 2015 ident: B25 article-title: The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0068-7 – volume: 101 start-page: 17849 year: 2004 ident: B54 article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0403504101 – volume: 8 start-page: 025020 year: 2011 ident: B40 article-title: Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness publication-title: J. Neural Eng doi: 10.1088/1741-2560/8/2/025020 – volume: 6 start-page: 39 year: 2012 ident: B2 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 |
| SSID | ssj0062842 |
| Score | 2.280633 |
| Snippet | Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users'... Motor imagery–based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users’... Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users'... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 227 |
| SubjectTerms | Algorithms BCI Biomedical engineering Brain channel configuration Computer applications CSP EEG electrode number Electrodes Electroencephalography Emulation Implants Internet Learning Mental task performance Motor task performance Neuroscience Robotics Signal processing Stroke Studies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELYQ2gMv0zbYlg3QTUJIe4gaJ27iPLasbHupeGASb1Fsn0clcFApk_j3nO00aye0veyxsZM6vvPdd_H5O8ZOWgLBQqkqtW1rUvLXWaqsylKyx1wiefCC61BsoprP5dVVfbFR6svnhEV64DhxI2OEGNc1WqTAodCiLZG0kpscpZH1OBzzJdSzDqaiDS7J6OZxU5JCsHpk3cJ5bm4eEid9BZkNJxS4-p8DmH_mSW44nvNX7GWPGGESR_qa7aB7w_YnjqLl20c4hZDDGT6O77O7CfjEwEfoLBCyg8hNfO9_zmK9G4MwD0VAoHUGvlDw6Z0XTG5-dsvF6voWOgeRfhRms6_plJycgenZd5gO5_nh4vdhgwP243x2efYt7WsqpFrU2YoEQZij5IbM2pgbqTNuRFVbkQuD0paIlmcGddUS9DJacyuRV9RbKalRKlW8Zbuuc_iegSGwZYQv8CmQQJWtC40qs6rMK6uqFhM2Wk9yo3vCcV_34qahwMOLpQliabxYmiCWhH0e7riLZBt_6Tv1chv6eZrscIGUp-mVp_mX8iTscC31pl-79B-F5yEj3CYS9mloplXnt1Jah92DH4ffrqaHUp93UUmGkVCLJDOXJ6zaUp-toW63uMV1YPYeSwrvRP7hf7zbR7bnZytkGZWHbHe1fMAj9kL_Wi3ul8dhuTwBXEMdHA priority: 102 providerName: Directory of Open Access Journals |
| Title | A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29681792 https://www.proquest.com/docview/2306309934 https://www.proquest.com/docview/2029641044 https://pubmed.ncbi.nlm.nih.gov/PMC5897442 https://doaj.org/article/dd44599efe1043c4a6e0731d2e8d8958 |
| Volume | 12 |
| WOSCitedRecordID | wos000429368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M7P dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: PIMPY dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M2P dateStart: 20071015 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYxgMvfI2PwKiMhJB4iBonbuI8oWZksIdVEQKpPEXx11Zpc0rbIe2_585Jw4rQXniJ1NitnZ599zvf5XeEvGsABHMps9A2jQ7BXkehtDIKQR8zYcCCJ0z5YhPZbCbm87zqD9zWfVrlVid6Ra1bhWfkY4TKCcCZhH9c_gyxahRGV_sSGnvkAFkSEp-6V201cQqq10c7U3wzCKB5F6YEpywfW7dwyNbNfCol1pS5ZZY8e_-_IOffmZO3TNHJo_99iMfkYQ9C6bRbNU_IPeOeksOpAwf86oa-pz4t1J-3H5LllGKu4Q1tLQWwSDu64zV-LLsSOtrQma8rQhun6SfwZ9Ee0unlOQy9ubiiraMdoykty89hAXZT0-L4lBYDRQCt_ry_8Ix8Pym_HX8J-zINoeJ5tAHZAoxJmQZNOWFaqIhpnuWWx1wbYVNjLIu0UVkDaE4rxawwLIPeUgplhJTJc7LvWmdeEqoBv2mONUO5AZxm80QZGVmZxpmVWWMCMt5KqVY9hzmW0riswZdBudZerjXKtfZyDciH4RvLjr_jjr4FCn7oh8zb_ka7Oq_7jVxrzfkkz4014MgmijepAS3JdGyEFvlEBORoK_q6VwcwxiD3gLwdmmEjY3Smcaa9xnlgBBx-FPq86FbZMBNoEaA544BkO-tvZ6q7LW5x4cnCJwI8Rh6_untar8kD_B98SlJ6RPY3q2vzhtxXvzaL9WpE9rK5GJGDopxVX0f-2AKuZ3E18vsNWqrTs-rHb9I0M00 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvMrDUGCRAImDFa-9sdcHhJI2pVHbKIcilZPxvtpIrR2SFJQ_xW9kdv2gQai3Hjgmu3HWzrcz32Rm5wN4myMJZkIkvslz5aO_DnxhROCjPaZcowePqHRiE8l4zE9O0skG_GrOwtiyysYmOkOtSmn_I-9aqhwhnYnYp9l336pG2exqI6FRweJAr35iyLb4ONrF3_ddGO4Nj3f2_VpVwJcsDZa4FPS6MVW4sXtUcRlQxZLUsJApzU2staGB0jLJkXwoKanhmiY4WwguNRciwuvegk2GYOcd2JyMjiZfG9sfo7F3-dXYnkXCYKBKjGIYmHZNMS1sf3Dqijetis0VR-j0Av5Fcv-u1bzi_Pbu_2-P7QHcq2k26Vf74iFs6OIRbPWLfFlerMh74gpfXUZhC2Z9YqspV6Q0BOkwqRo6L-zLYSUSpDQZO-UUkheK7GLEbj0-6Z-f4q0uzy5IWZCqZysZDj_7A2QGigx2RmTQNkEgkz8nNB7Dlxu59yfQKcpCPwOikKEqZlVRmUYmatJIahEYEYeJEUmuPeg2qMhk3aXdioWcZxitWRxlDkeZxVHmcOTBh_YTs6pDyTVzBxZo7TzbW9y9Uc5Ps9pUZUox1ktTbTSG6pFkeazRD1AVaq542uMebDdQy2qDh9_R4syDN-0wmiqbf8oLXV7addgcP14U5zytUN2uBEc4-obQg2QN72tLXR8ppmeuHXqPY0zMwufXL-s13Nk_PjrMDkfjgxdw1z4TV4AVb0NnOb_UL-G2_LGcLuav6j1N4NtN74ffgWGQ8g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXXqUQKLBIgMTBih8be31AKGkSiIqiHEDqzXhfbaTWDkkKyl_j1zGzftAg1FsPHJPdOGPnm5lvMrMzAK9zJMFcysSzea499Ne-J630PbTHgTDowaNAuWETyXQqjo_T2Q78as7CUFllYxOdodalov_Iu0SVI6QzEe_auixiNhx_WHz3aIIUZVqbcRoVRI7M5ieGb6v3kyH-1m_CcDz6cvjJqycMeIqn_hrFQg8cBxqVvBdoofxA8yS1POTaCBsbYwNfG5XkSES0UoEVJkhwt5RCGSFlhNe9ATcTalruygZnjReI0ey7TGtMp5IwLKhSpBgQpl1bzAvqFB64Mk6aZ3PJJbrJAf-iu39XbV5yg-N7__MDvA93a_LN-pW2PIAdUzyEvX6Rr8vzDXvLXDmsyzPswaLPqMZyw0rLkCSzqs3zil6OqtFB2rCpm6fC8kKzIcbxxANY_-wEb3V9es7KglWdXNlo9NEbIF_QbHA4YYO2NQKb_Tm38Qi-Xsu978NuURbmCTCNvFVzmpXKDfJTm0bKSN_KOEysTHLTgW6DkEzVvdtphMhZhjEcYSpzmMoIU5nDVAfetZ9YVH1Lrtg7INC1-6jjuHujXJ5ktQHLtOa8l6bGGgzgI8Xz2KB3CHRohBZpT3TgoIFdVptB_I4Wcx141S6jAaOsVF6Y8oLkoMw_XhT3PK4Q3kqCKwI9RtiBZAv7W6JurxTzU9ckvScwUubh06vFegm3UQmyz5Pp0TO4Q4_EVWXFB7C7Xl6Y53BL_VjPV8sXTrkZfLtuZfgNC4GYMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+the+Effects+of+Electrode+Number+and+Decoding+Algorithm+on+Online+EEG-Based+BCI+Behavioral+Performance&rft.jtitle=Frontiers+in+neuroscience&rft.au=Meng%2C+Jianjun&rft.au=Edelman%2C+Bradley+J&rft.au=Olsoe%2C+Jaron&rft.au=Jacobs%2C+Gabriel&rft.date=2018-04-06&rft.issn=1662-4548&rft.volume=12&rft.spage=227&rft_id=info:doi/10.3389%2Ffnins.2018.00227&rft_id=info%3Apmid%2F29681792&rft.externalDocID=29681792 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |