A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance

Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital ro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroscience Ročník 12; s. 227
Hlavní autoři: Meng, Jianjun, Edelman, Bradley J., Olsoe, Jaron, Jacobs, Gabriel, Zhang, Shuying, Beyko, Angeliki, He, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 06.04.2018
Frontiers Media S.A
Témata:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.
AbstractList Motor imagery–based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users’ movement related mental intention. The selection of control signals, e.g. the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session – performance increases asymptotically by increasing the number of channels, saturates, and then decreases – no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects’ average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.
Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.
Author Olsoe, Jaron
Beyko, Angeliki
He, Bin
Jacobs, Gabriel
Zhang, Shuying
Edelman, Bradley J.
Meng, Jianjun
AuthorAffiliation 2 Department of Biomedical Engineering, University of Minnesota , Minneapolis, MN , United States
1 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , United States
3 Institute for Engineering in Medicine, University of Minnesota , Minneapolis, MN , United States
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, University of Minnesota , Minneapolis, MN , United States
– name: 1 Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , United States
– name: 3 Institute for Engineering in Medicine, University of Minnesota , Minneapolis, MN , United States
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Meng
  fullname: Meng, Jianjun
– sequence: 2
  givenname: Bradley J.
  surname: Edelman
  fullname: Edelman, Bradley J.
– sequence: 3
  givenname: Jaron
  surname: Olsoe
  fullname: Olsoe, Jaron
– sequence: 4
  givenname: Gabriel
  surname: Jacobs
  fullname: Jacobs, Gabriel
– sequence: 5
  givenname: Shuying
  surname: Zhang
  fullname: Zhang, Shuying
– sequence: 6
  givenname: Angeliki
  surname: Beyko
  fullname: Beyko, Angeliki
– sequence: 7
  givenname: Bin
  surname: He
  fullname: He, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29681792$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vGyEQhldVquajvfdUIfXSi11g2V24VLJdJ7UUNZXaSr0hFgYbaxdc2I2Uf19sJ1ESqScGeOZlhnnPixMfPBTFe4KnZcnFZ-udT1OKCZ9iTGnzqjgjdU0nrCr_nDyJT4vzlLYY15Qz-qY4paLmpBH0rNjN0M9hNHcoWDRsAC2tBT2k_XbZ5SgGA-j72LcQkfIGfQUdjPNrNOvWIbph06Pg0Y3vnM_Jy6vJXCUwaL5YoTls1K0LUXXoB0QbYq-8hrfFa6u6BO_u14vi9-Xy1-Lb5PrmarWYXU80E3iYtBbXVU2MMqYihmtMDGuEZZQZ4LYGsAQb0I3CojJaE8uBNJluW66Bt215UayOuiaordxF16t4J4Ny8nAQ4lqqODjdgTSGsUoIsEAwKzVTNeCmJIYCN1xUPGt9OWrtxrYHo8EPuatnos9vvNvIdbiVFRcNYzQLfLoXiOHvCGmQvUsauk55CGOSFOeJsPw6y-jHF-g2jNHnr5K0xHWJhSj31IenFT2W8jDYDOAjoGNIKYJ9RAiWe-_Ig3fk3jvy4J2cUr9I0W5Qgwv7nlz3_8R_fb7Kwg
CitedBy_id crossref_primary_10_1016_j_cose_2023_103520
crossref_primary_10_1371_journal_pbio_2006719
crossref_primary_10_1134_S1063785020060127
crossref_primary_10_1007_s11517_023_02770_w
crossref_primary_10_3389_fnins_2022_909434
crossref_primary_10_3390_children10091456
crossref_primary_10_1088_1741_2552_ac605f
crossref_primary_10_3389_fnhum_2021_647908
crossref_primary_10_1016_j_nec_2021_03_012
crossref_primary_10_3103_S1062873821010226
crossref_primary_10_3389_fneur_2018_00955
crossref_primary_10_3389_fnhum_2019_00128
crossref_primary_10_3390_signals4010004
crossref_primary_10_1109_TBME_2022_3202189
crossref_primary_10_1109_TNSRE_2019_2920748
Cites_doi 10.1016/j.neucom.2016.05.035
10.1038/srep30383
10.1016/S1388-2457(02)00057-3
10.1186/s12938-015-0087-4
10.1155/2007/94397
10.1109/MRA.2012.2229936
10.1002/ana.24390
10.1109/TNSRE.2017.2655542
10.1016/j.jneumeth.2003.10.009
10.1142/S233954781450023X
10.1007/s10548-010-0135-0
10.1088/1741-2560/12/1/016005
10.1016/j.neuroimage.2013.04.097
10.1016/j.biopsycho.2011.09.006
10.1016/j.jneumeth.2015.01.033
10.1016/j.neuroimage.2005.12.003
10.1109/TBME.2004.827072
10.1027/0269-8803.18.23.121
10.1016/j.brs.2016.07.003
10.1109/TBME.2015.2467312
10.1109/TBME.2011.2131142
10.1109/86.895947
10.1109/RBME.2013.2290621
10.1088/1741-2560/10/4/046003
10.1007/978-1-4614-5227-0_2
10.1109/MSP.2008.4408441
10.1088/1741-2560/4/2/R01
10.1109/TNSRE.2003.814439
10.3389/fnins.2010.00055
10.1109/JBHI.2013.2285232
10.1088/1741-2560/8/3/036006
10.1038/srep38565
10.1016/S0304-3940(03)00947-9
10.1073/pnas.1508080112
10.1109/TNSRE.2010.2077654
10.1016/0013-4694(75)90056-5
10.3389/fnins.2012.00055
10.1016/j.neuroimage.2008.03.042
10.1016/j.neucom.2012.11.004
10.1515/BMT.2010.003
10.1016/S0013-4694(97)00022-2
10.1038/srep12815
10.1109/TBME.2004.827827
10.1201/b17883
10.1109/86.895946
10.1002/ana.23879
10.1109/TNSRE.2006.875642
10.1109/TBME.2008.923152
10.1016/j.ijpsycho.2014.07.009
10.1016/j.neuroimage.2015.04.020
10.1109/TBME.2010.2082539
10.1016/j.cogbrainres.2005.08.014
10.1186/s12984-015-0068-7
10.1073/pnas.0403504101
10.1088/1741-2560/8/2/025020
10.3389/fnins.2012.00039
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He. 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He. 2018 Meng, Edelman, Olsoe, Jacobs, Zhang, Beyko and He
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2018.00227
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_dd44599efe1043c4a6e0731d2e8d8958
PMC5897442
29681792
10_3389_fnins_2018_00227
Genre Journal Article
GeographicLocations Minneapolis Minnesota
United States--US
GeographicLocations_xml – name: Minneapolis Minnesota
– name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c490t-bf06561dadd51d8c01d479f424de8f6eef10dec7a095dcc1f8e17dadbb8ce8bb3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Mon Nov 10 04:25:28 EST 2025
Tue Nov 04 02:02:19 EST 2025
Sun Nov 09 11:02:44 EST 2025
Fri Jul 25 11:55:05 EDT 2025
Thu Apr 03 07:03:06 EDT 2025
Tue Nov 18 22:15:20 EST 2025
Sat Nov 29 02:13:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CSP
BCI
channel configuration
EEG
electrode number
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-bf06561dadd51d8c01d479f424de8f6eef10dec7a095dcc1f8e17dadbb8ce8bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Edited by: Tetsunari Inamura, National Institute of Informatics, Japan
Reviewed by: Mahnaz Arvaneh, University of Sheffield, United Kingdom; Jing Jin, East China University of Science and Technology, China
OpenAccessLink https://doaj.org/article/dd44599efe1043c4a6e0731d2e8d8958
PMID 29681792
PQID 2306309934
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_dd44599efe1043c4a6e0731d2e8d8958
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5897442
proquest_miscellaneous_2029641044
proquest_journals_2306309934
pubmed_primary_29681792
crossref_primary_10_3389_fnins_2018_00227
crossref_citationtrail_10_3389_fnins_2018_00227
PublicationCentury 2000
PublicationDate 2018-04-06
PublicationDateYYYYMMDD 2018-04-06
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-06
  day: 06
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Guillot (B18) 2008; 41
Lal (B28) 2004; 51
Cassady (B11) 2014; 2
Hammer (B19) 2012; 89
Yao (B55) 2014; 12
Ramos-Murguialday (B45) 2013; 74
Guger (B17) 2000; 8
Meng (B35) 2014; 18
Sannelli (B49) 2010; 23
Donati (B14) 2016; 6
Hjorth (B21) 1975; 39
Delorme (B13) 2004; 134
Royer (B47) 2010; 18
Kaiser (B24) 2014; 85
Blokland (B9) 2015; 5
Meng (B36) 2016; 6
He (B20) 2013
Edelman (B15) 2016; 63
Wolpaw (B53) 2002; 113
Nijber (B16) 2010; 4
King (B25) 2015; 12
Carlson (B10) 2013; 20
Ahn (B1) 2015; 243
Zich (B56) 2015; 114
Blankertz (B7) 2006; 14
Birbaumer (B5) 2003; 11
Pichiorri (B41) 2015; 77
Blankertz (B6); 55
Shan (B51) 2015; 14
Tangermann (B52) 2012; 6
Chen (B12) 2015; 112
LaFleur (B27) 2013; 10
Schalk (B50) 2004; 51
Lawson (B29) 2014
Baxter (B4) 2016; 9
Blankertz (B8); 25
Jin (B23) 2011; 8
Jin (B22) 2010; 55
Qin (B42) 2007; 2007
Wolpaw (B54) 2004; 101
Lotte (B30) 2007; 4
Pfurtscheller (B38) 2006; 31
Ramoser (B46) 2000; 8
McFarland (B33) 1997; 103
Samek (B48) 2014; 7
Neuper (B37) 2005; 25
Lotte (B31) 2011; 58
Qiu (B43) 2017; 25
Ang (B2) 2012; 6
McFarland (B32) 2015; 97
Pfurtscheller (B39) 2003; 351
Qiu (B44) 2016; 207
Meng (B34) 2013; 104
Pichiorri (B40) 2011; 8
Kübler (B26) 2004; 18
Arvaneh (B3) 2011; 58
References_xml – volume: 207
  start-page: 519
  year: 2016
  ident: B44
  article-title: Improved SFFS method for channel selection in motor imagery based BCI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.035
– volume: 6
  start-page: 30383
  year: 2016
  ident: B14
  article-title: Long-Term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients
  publication-title: Sci. Rep.
  doi: 10.1038/srep30383
– volume: 113
  start-page: 767
  year: 2002
  ident: B53
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 14
  start-page: 93
  year: 2015
  ident: B51
  article-title: A novel channel selection method for optimal classification in different motor imagery BCI paradigms
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-015-0087-4
– volume: 2007
  start-page: 1
  year: 2007
  ident: B42
  article-title: A semisupervised support vector machines algorithm for BCI systems
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/94397
– volume: 20
  start-page: 65
  year: 2013
  ident: B10
  article-title: “Brain-controlled wheelchairs: a robotic architecture
  publication-title: IEEE Robotics and Automation Magazine
  doi: 10.1109/MRA.2012.2229936
– volume: 77
  start-page: 851
  year: 2015
  ident: B41
  article-title: Brain–computer interface boosts motor imagery practice during stroke recovery
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24390
– volume: 25
  start-page: 1009
  year: 2017
  ident: B43
  article-title: Optimized motor imagery paradigm based on imagining Chinese characters writing movement
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2655542
– volume: 134
  start-page: 9
  year: 2004
  ident: B13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 2
  start-page: 254
  year: 2014
  ident: B11
  article-title: The impact of mind-body awareness training on the early learning of a brain-computer interface
  publication-title: Technology
  doi: 10.1142/S233954781450023X
– volume: 23
  start-page: 186
  year: 2010
  ident: B49
  article-title: On optimal channel configurations for SMR-based brain–computer interfaces
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-010-0135-0
– volume: 12
  start-page: 016005
  year: 2014
  ident: B55
  article-title: A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/1/016005
– volume: 85
  start-page: 432
  year: 2014
  ident: B24
  article-title: Cortical effects of user training in a motor imagery based brain–computer interface measured by fNIRS and EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.097
– volume: 89
  start-page: 80
  year: 2012
  ident: B19
  article-title: Psychological predictors of SMR-BCI performance
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2011.09.006
– volume: 243
  start-page: 103
  year: 2015
  ident: B1
  article-title: Performance variation in motor imagery brain–computer interface: a brief review
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.033
– volume: 31
  start-page: 153
  year: 2006
  ident: B38
  article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 51
  start-page: 1034
  year: 2004
  ident: B50
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2004.827072
– volume: 18
  start-page: 121
  year: 2004
  ident: B26
  article-title: Predictability of brain-computer communication
  publication-title: J. Psychophysiol.
  doi: 10.1027/0269-8803.18.23.121
– volume: 9
  start-page: 834
  year: 2016
  ident: B4
  article-title: Sensorimotor rhythm BCI with simultaneous high definition-transcranial direct current stimulation alters task performance
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.07.003
– volume: 63
  start-page: 4
  year: 2016
  ident: B15
  article-title: EEG source imaging enhances the decoding of complex right-hand motor imagery tasks
  publication-title: Biomed. Eng IEEE Trans.
  doi: 10.1109/TBME.2015.2467312
– volume: 58
  start-page: 1865
  year: 2011
  ident: B3
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2011.2131142
– volume: 8
  start-page: 447
  year: 2000
  ident: B17
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI)
  publication-title: IEEE Transac. Rehabil. Eng.
  doi: 10.1109/86.895947
– volume: 7
  start-page: 50
  year: 2014
  ident: B48
  article-title: Divergence-based framework for common spatial patterns algorithms
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2013.2290621
– volume: 10
  start-page: 046003
  year: 2013
  ident: B27
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046003
– start-page: 87
  volume-title: Neural Engineering
  year: 2013
  ident: B20
  article-title: Brain–computer interfaces
  doi: 10.1007/978-1-4614-5227-0_2
– volume: 25
  start-page: 41
  ident: B8
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: Signal Process. Mag. IEEE
  doi: 10.1109/MSP.2008.4408441
– volume: 4
  start-page: R1
  year: 2007
  ident: B30
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 11
  start-page: 120
  year: 2003
  ident: B5
  article-title: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814439
– volume: 4
  start-page: 55
  year: 2010
  ident: B16
  article-title: The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00055
– volume: 18
  start-page: 1461
  year: 2014
  ident: B35
  article-title: Improved semisupervised adaptation for a small training dataset in the brain–computer interface
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2285232
– volume: 8
  start-page: 036006
  year: 2011
  ident: B23
  article-title: An adaptive P300-based control system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036006
– volume: 6
  start-page: 38565
  year: 2016
  ident: B36
  article-title: Noninvasive Electroencephalogram based control of a robotic arm for reach and grasp tasks
  publication-title: Sci. Rep.
  doi: 10.1038/srep38565
– volume: 351
  start-page: 33
  year: 2003
  ident: B39
  article-title: ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00947-9
– volume: 112
  start-page: E6058
  year: 2015
  ident: B12
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508080112
– volume: 18
  start-page: 581
  year: 2010
  ident: B47
  article-title: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies
  publication-title: Neural Syst. Rehabil. Eng. IEEE Trans.
  doi: 10.1109/TNSRE.2010.2077654
– volume: 39
  start-page: 526
  year: 1975
  ident: B21
  article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(75)90056-5
– volume: 6
  start-page: 55
  year: 2012
  ident: B52
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 41
  start-page: 1471
  year: 2008
  ident: B18
  article-title: Functional neuroanatomical networks associated with expertise in motor imagery
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.042
– volume: 104
  start-page: 115
  year: 2013
  ident: B34
  article-title: Optimizing spatial spectral patterns jointly with channel configuration for brain–computer interface
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.004
– volume: 55
  start-page: 5
  year: 2010
  ident: B22
  article-title: P300 Chinese input system based on Bayesian, LDA
  publication-title: Biomed. Tech. Biomed. Eng.
  doi: 10.1515/BMT.2010.003
– volume: 103
  start-page: 386
  year: 1997
  ident: B33
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 5
  start-page: 12815
  year: 2015
  ident: B9
  article-title: Detection of attempted movement from the EEG during neuromuscular block: proof of principle study in awake volunteers
  publication-title: Sci. Rep.
  doi: 10.1038/srep12815
– volume: 51
  start-page: 1003
  year: 2004
  ident: B28
  article-title: Support vector channel selection in BCI
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2004.827827
– start-page: 351
  volume-title: Chapter 9: Design and Analysis of Experiments with R
  year: 2014
  ident: B29
  doi: 10.1201/b17883
– volume: 8
  start-page: 441
  year: 2000
  ident: B46
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 74
  start-page: 100
  year: 2013
  ident: B45
  article-title: Brain–machine interface in chronic stroke rehabilitation: a controlled study
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23879
– volume: 14
  start-page: 153
  year: 2006
  ident: B7
  article-title: The BCI competition III: Validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 55
  start-page: 2452
  ident: B6
  article-title: The Berlin Brain–Computer Interface: accurate performance from first-session in BCI-naive subjects
  publication-title: IEEE trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.923152
– volume: 97
  start-page: 271
  year: 2015
  ident: B32
  article-title: The advantages of the surface Laplacian in brain–computer interface research
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.07.009
– volume: 114
  start-page: 438
  year: 2015
  ident: B56
  article-title: Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.04.020
– volume: 58
  start-page: 355
  year: 2011
  ident: B31
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 25
  start-page: 668
  year: 2005
  ident: B37
  article-title: Imagery of motor actions: differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG
  publication-title: Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2005.08.014
– volume: 12
  start-page: 80
  year: 2015
  ident: B25
  article-title: The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0068-7
– volume: 101
  start-page: 17849
  year: 2004
  ident: B54
  article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0403504101
– volume: 8
  start-page: 025020
  year: 2011
  ident: B40
  article-title: Sensorimotor rhythm-based brain–computer interface training: the impact on motor cortical responsiveness
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/8/2/025020
– volume: 6
  start-page: 39
  year: 2012
  ident: B2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
SSID ssj0062842
Score 2.280633
Snippet Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users'...
Motor imagery–based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users’...
Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users'...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 227
SubjectTerms Algorithms
BCI
Biomedical engineering
Brain
channel configuration
Computer applications
CSP
EEG
electrode number
Electrodes
Electroencephalography
Emulation
Implants
Internet
Learning
Mental task performance
Motor task performance
Neuroscience
Robotics
Signal processing
Stroke
Studies
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cCF1_IILMhICIlD1MZxEvuE2qULXKoeQNpb5Mdkt9KuU9ou0v57Zpw0bBHaC8fEk3iSsccznvE3jL03CowSRqcm000qc6dSBcKktnSmqmxufGlisYlqPlenp3rRb7ht-rTKnU6Mitq3jvbIR2Qq52jO5PLT6mdKVaMoutqX0LjL7hFKQh5T9xY7TVyi6o3RzpJOBqFp3oUp0SnToyYsA6F1ZzGVkmrK3FiWInr_v0zOvzMnbyxFJ4_-9yMes4e9Econ3ah5wu5AeMoOJwEd8Mtr_oHHtNC4337IVhNOuYbXvG04Gou8gzve0OWsK6Hjgc9jXRFuguef0Z-l9ZBPLs6w6-35JW8D7xBN-Wz2JZ3iuun59Pgbnw4QAXzx5_zCM_bjZPb9-Gval2lIndTjbWobNGPKzKOmLDKv3DjzstKNFNKDakqAJht7cJVBa847lzUKsgqprVUOlLX5c3YQ2gAvGbeFAC1MVVgJ0mmPzpjSNm8KYUBIaxI22kmpdj2GOZXSuKjRlyG51lGuNcm1jnJN2MfhiVWH33EL7ZQEP9AR8na80a7P6n4i195LWWgNDaAjmztpSkAtmXkByitdqIQd7URf9-oA-xjknrB3QzNOZIrOmADtFfFBEXB8KdK86EbZwAm2KNScImHV3vjbY3W_JSzPI1h4odBjlOLV7Wy9Zg_oP8SUpPKIHWzXV_CG3Xe_tsvN-m2cVb8BdrQtfA
  priority: 102
  providerName: ProQuest
Title A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance
URI https://www.ncbi.nlm.nih.gov/pubmed/29681792
https://www.proquest.com/docview/2306309934
https://www.proquest.com/docview/2029641044
https://pubmed.ncbi.nlm.nih.gov/PMC5897442
https://doaj.org/article/dd44599efe1043c4a6e0731d2e8d8958
Volume 12
WOSCitedRecordID wos000429368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdg48AFAeMjbFRGQkgcojaOE9vHZnSww6oIgVROkb-yVdqcqeuQ9t_v2U5DixBcuFhK_dI4fs_vI37-PYTeS24lJ1KkMhNtSnPNU26JTFWpJWMql6aUodgEm8_5YiHqrVJfPicswgPHiRsbQ2khhG0tBA65prK0IJWZIZYbLopwzBe8nk0wFXVwCUqXxE1JCMHEuHVL57G5s5A46SvIbBmhgNX_Jwfz9zzJLcNz8hQ96T1GPI0jfYYeWPccHUwdRMtXd_gDDjmc4eP4AbqeYp8YeIe7FoNnhyM28Y2_nMV6N8bieSgCgqUz-BMEn9544enlebdari-ucOdwhB_Fs9nntAIjZ3B1fIqr4Tw_rn8dNniBvp_Mvh1_SfuaCqmmYrJOVQs-R5kZUGtFZrieZIYy0VJCjeVtaW2bTYzVTILrZbTOWm4zBtRKcW25UvlLtOc6Z18jrApiBZGsUNRSLQxETlyovC2ItIQqmaDxZpIb3QOO-7oXlw0EHp4tTWBL49nSBLYk6ONwx3UE2_gLbeX5NtB5mOzwAwhP0wtP8y_hSdDRhutNv3bhGbnHIQO_jSbo3dANq85vpUhnu1s_Dr9dDX8KNK-ikAwjgR4Oao4kiO2Iz85Qd3vc8iIgexccwjtK3vyPdztEj_1shSyj8gjtrVe39i16pH-ulzerEXrIFnyE9qvZvP46CosH2jNS-5ZBu1-fntU_7gGhzSN9
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8cBuXwAAjARIPURvHSewHhNqtY9W2qg9DGk_BsZ2t0paUtgP1T_EbOXYurAjtbQ88JnYSO_l8LjnH5wN4K7mRnErhy0DkPgsV97mh0s9iJZMkC6WOpSObSMZjfnIiJhvwq9kLY9MqG5noBLUulf1H3rWmcojmTMg-zb77ljXKRlcbCo0KFgdm9RNdtsXH0S5-33eU7g2Pd_b9mlXAV0z0ln6Wo9aNA40LOwo0V71As0TkjDJteB4bkwc9bVQi0fjQSgU5N0GCvbOMK8OzLMT73oJNhmDnHdicjI4mXxvZH6Owd_HV2O5FQmegCoyiGyi6eTEtbH3wwCVvWhabK4rQ8QX8y8j9O1fzivLbu_-_vbYHcK82s0m_WhcPYcMUj2CrX8hlebEi74lLfHURhS2Y9YnNplyRMidoDpOqoPPCHg4rkiBtyNgxpxBZaLKLHrvV-KR_fopTXZ5dkLIgVc1WMhx-9gdoGWgy2BmRQVsEgUz-7NB4DF9uZO5PoFOUhXkGJIuoEVQmUcYMU0Kju8lFFuYRlYayTHrQbVCRqrpKuyULOU_RW7M4Sh2OUouj1OHIgw_tFbOqQsk1fQcWaG0_W1vcnSjnp2ktqlKtGYuEMLlBVz1UTMYG9UCgqeGai4h7sN1ALa0FHj6jxZkHb9pmFFU2_iQLU17acdgYP94U-zytUN2OBFs46gbqQbKG97WhrrcU0zNXDj3i6BMz-vz6Yb2GO_vHR4fp4Wh88ALu2nfiErDibegs55fmJdxWP5bTxfxVvaYJfLvp9fAb5MaROg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXbmMQGGAkQOIhauM4if2AULu2UA1VfQBpb8HXrdKWlDYD9a_x6zh2LqwI7W0PPLZ2Uzv5zi3n-DsIvRbMCEYED0XEbUhjxUJmiAhlqkSWyVjoVPhmE9lsxo6P-XwH_WrPwriyylYnekWtS-XekfecqxyDOxPTnm3KIuajyYfl99B1kHKZ1radRg2RI7P5CeHb-v10BM_6DSGT8ZfDT2HTYSBUlPerUFqwwGmkQciTSDPVjzTNuKWEasNsaoyN-tqoTIAjopWKLDNRBrOlZMowKWO47g10M3Ok5b5scN5agRTUvs-0pu5UEoQFdYoUAkLes8WicEzhkS_jdP1sLplE3zngX-7u31Wbl8zg5N7_fAPvo7uN840HtbQ8QDumeIj2BoWoyvMNfot9OazPM-yh5QC7GssNLi0GJxnXNM9r93Fctw7SBs98PxUsCo1HEMc7PwAPzk5gq9XpOS4LXDO54vH4YzgEf0Hj4eEUDztqBDz_c27jEfp6LXvfR7tFWZgnCMuEGE5ElkhqqOIaglDGZWwTIgyhUgSo1yIkVw13u2shcpZDDOcwlXtM5Q5TucdUgN51v1jWvCVXzB060HXzHOO4_6JcneSNAsu1pjTh3FgDAXysqEgNWIdIE8M04wkL0EELu7xRg_AfHeYC9KobBgXmslKiMOWFW4fL_MNFYc7jGuHdSmCEgcUgAcq2sL-11O2RYnHqSdITBpEyJU-vXtZLdBuEIP88nR09Q3fcLfFVWekB2q1WF-Y5uqV-VIv16oUXboy-Xbcw_AZz5ph5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+the+Effects+of+Electrode+Number+and+Decoding+Algorithm+on+Online+EEG-Based+BCI+Behavioral+Performance&rft.jtitle=Frontiers+in+neuroscience&rft.au=Jianjun+Meng&rft.au=Bradley+J.+Edelman&rft.au=Jaron+Olsoe&rft.au=Gabriel+Jacobs&rft.date=2018-04-06&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-453X&rft.volume=12&rft_id=info:doi/10.3389%2Ffnins.2018.00227&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dd44599efe1043c4a6e0731d2e8d8958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon