Contact kinematics of patient-specific instrumentation versus conventional instrumentation for total knee arthroplasty

The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. The study was a prospective rando...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The knee Jg. 27; H. 5; S. 1501 - 1509
Hauptverfasser: Broberg, Jordan S., Naudie, Douglas D.R., Howard, James L., Vasarhelyi, Edward M., McCalden, Richard W., Teeter, Matthew G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.10.2020
Elsevier Limited
Schlagworte:
ISSN:0968-0160, 1873-5800, 1873-5800
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated. There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant. We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.
AbstractList The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated. There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant. We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.
BackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.MethodsThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.ResultsThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.ConclusionsWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.
AbstractBackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. MethodsThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated. ResultsThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant. ConclusionsWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.
The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.BACKGROUNDThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.METHODSThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.RESULTSThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.CONCLUSIONSWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.
Author Naudie, Douglas D.R.
Broberg, Jordan S.
Vasarhelyi, Edward M.
Teeter, Matthew G.
Howard, James L.
McCalden, Richard W.
Author_xml – sequence: 1
  givenname: Jordan S.
  surname: Broberg
  fullname: Broberg, Jordan S.
  email: jbroberg@uwo.ca
  organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
– sequence: 2
  givenname: Douglas D.R.
  surname: Naudie
  fullname: Naudie, Douglas D.R.
  organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
– sequence: 3
  givenname: James L.
  surname: Howard
  fullname: Howard, James L.
  organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada
– sequence: 4
  givenname: Edward M.
  surname: Vasarhelyi
  fullname: Vasarhelyi, Edward M.
  organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada
– sequence: 5
  givenname: Richard W.
  surname: McCalden
  fullname: McCalden, Richard W.
  organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada
– sequence: 6
  givenname: Matthew G.
  surname: Teeter
  fullname: Teeter, Matthew G.
  organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33010767$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhoOsuLOrf8CDNHjx0m0l_ZUWEWTQVVjwoJ5DOl3BzHQnbZIemH9vmtndw4jrISRUPW8leauuyIV1Fgl5SaGgQJu3u2JvEQsGDApoC-jYE7KhvC3zmgNckA10Dc8TCZfkKoQdADRdVT8jl2UJFNqm3ZDD1tkoVcz2xuIko1Ehczqb0wltzMOMymijMmND9MuUYinjbHZAH5aQKWcPKZYicvyL0c5n0cWUWd-ZSR9_eTePMsTjc_JUyzHgi7v9mvz8_OnH9kt---3m6_bjba6qDmIuG6jT87UeoJS6qbjua-xVOWheU6VpN6Q_gWzKtChH1be9bhuQWCqmec_La_LmVHf27veCIYrJBIXjKC26JQhWVbxKTnRlQl-foTu3-PSvlap5V7Omool6dUct_YSDmL2ZpD-Ke0cTwE-A8i4Ej1ooc_IjemlGQUGszRM7sZoi1uYJaEVqXpKyM-l99UdF708iTDYeDHoRVGqdwsF4VFEMzjwu_3AmV6OxRslxj0cMDxZQEZgA8X0dqXWiGJTA2ma17d2_C_zv9j_xU95d
CitedBy_id crossref_primary_10_1002_jor_25518
crossref_primary_10_1016_j_arth_2023_01_051
crossref_primary_10_1007_s00402_022_04698_6
crossref_primary_10_1016_j_arth_2024_03_040
crossref_primary_10_1016_j_clinbiomech_2022_105824
Cites_doi 10.1016/j.knee.2017.04.005
10.1016/j.jbiomech.2004.02.042
10.1016/j.knee.2015.08.006
10.1302/0301-620X.98B1.36370
10.1016/j.clinbiomech.2010.03.013
10.1007/s11999-012-2387-3
10.1097/01.blo.0000148777.98244.84
10.1016/j.arth.2015.01.046
10.1007/s11999-009-1112-3
10.1007/s00167-015-3687-4
10.2106/JBJS.16.00496
10.1016/S0021-9290(01)00028-8
10.1097/00003086-200107000-00023
10.1016/j.clinbiomech.2019.05.029
10.1302/0301-620X.93B9.26573
10.1016/j.arth.2019.02.026
10.1007/s00167-017-4792-3
10.2106/JBJS.16.01083
10.1016/j.gaitpost.2014.02.016
10.1016/j.aott.2017.02.001
10.1016/j.arth.2016.12.054
10.1016/j.arth.2019.05.037
10.1080/17453670510041574
10.1007/s11999-009-1119-9
10.3928/01477447-20160509-14
10.1097/01.blo.0000092986.12414.b5
10.1080/17453674.2016.1193799
10.1016/j.surge.2017.06.002
10.1016/j.arth.2019.03.018
10.1007/s00264-016-3356-3
10.1016/j.arth.2017.09.064
10.1016/j.arth.2016.03.047
10.1016/S0140-6736(18)32344-4
10.1016/j.gaitpost.2012.03.022
10.1016/j.jbiomech.2014.02.031
10.1097/00003086-200111000-00050
10.1007/s00264-012-1584-8
10.1007/s11999-013-3257-3
10.1097/00003086-200111000-00015
10.1097/00003086-199811000-00009
10.1007/s00167-017-4637-0
ContentType Journal Article
Copyright 2020
Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier Limited Oct 2020
Copyright_xml – notice: 2020
– notice: Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Limited Oct 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
NAPCQ
7X8
DOI 10.1016/j.knee.2020.07.092
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-5800
EndPage 1509
ExternalDocumentID 33010767
10_1016_j_knee_2020_07_092
S0968016020302763
1_s2_0_S0968016020302763
Genre Randomized Controlled Trial
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5RE
5VS
6PF
7-5
71M
8FE
8FH
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LK8
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
SV3
T5K
UHS
UPT
WOW
WUQ
YQT
Z5R
~G-
~HD
3V.
7RV
7X7
8FI
AACTN
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
GUQSH
HCIFZ
M1P
M2O
M7P
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c490t-a605160ffd03af648fb5ebc3df851cf19d0000a630a618ecb7bf760ae3c2f8b83
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600605600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-0160
1873-5800
IngestDate Sun Sep 28 07:44:19 EDT 2025
Tue Oct 07 06:31:37 EDT 2025
Wed Feb 19 02:27:52 EST 2025
Sat Nov 29 07:08:52 EST 2025
Tue Nov 18 22:27:10 EST 2025
Fri Feb 23 02:46:24 EST 2024
Tue Feb 25 19:54:30 EST 2025
Tue Oct 14 19:27:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Radiostereometric analysis
Patient-specific instrumentation
Total knee arthroplasty
Contact kinematics
Language English
License Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-a605160ffd03af648fb5ebc3df851cf19d0000a630a618ecb7bf760ae3c2f8b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 33010767
PQID 2458952641
PQPubID 1216385
PageCount 9
ParticipantIDs proquest_miscellaneous_2448407693
proquest_journals_2458952641
pubmed_primary_33010767
crossref_citationtrail_10_1016_j_knee_2020_07_092
crossref_primary_10_1016_j_knee_2020_07_092
elsevier_sciencedirect_doi_10_1016_j_knee_2020_07_092
elsevier_clinicalkeyesjournals_1_s2_0_S0968016020302763
elsevier_clinicalkey_doi_10_1016_j_knee_2020_07_092
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle The knee
PublicationTitleAlternate Knee
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Vertullo, Lewis, Lorimer, Graves (bb0120) 2017; 99
Lee (bb0030) 2016; 98–B
Valstar, de Jong, Vrooman, Rozing, Reiber (bb0100) 2001; 34
Kosse, Heesterbeek, Schimmel, van Hellemondt, Wymenga, Defoort (bb0070) 2018; 26
Huijbregts, Khan, Sorensen, Fick, Haebich (bb0015) 2016; 87
Harman, Schmitt, Rössing, Banks, Sharf, Viceconti (bb0145) 2010; 25
Zingde, Leszko, Sharma, Mahfouz, Komistek, Dennis (bb0110) 2014; 472
Harman, Banks, Hodge (bb0140) 2001; 392
Broberg, Ndoja, MacDonald, Lanting, Teeter (bb0095) 2019
Lützner, Kirschner, Günther, Harman (bb0135) 2012; 36
Mihalko, Lowell, Higgs, Kurtz (bb0195) 2016; 39
Li, Yang, Liao, Wang, Zou, Pan (bb0060) 2019
Dennis, Komistek, Colwell, Ranawat, Scott, Thornhill (bb0085) 1998; 356
Asano, Akagi, Tanaka, Tamura, Nakamura (bb0170) 2001; 388
Teeter, Perry, Yuan, Howard, Lanting (bb0155) 2018; 33
Predescu, Prescura, Olaru, Savin, Botez, Deleanu (bb0055) 2017; 41
Wolterbeek, Garling, Linden, Nelissen, Valstar (bb0160) 2012; 36
Bourne, Chesworth, Davis, Mahomed, Charron, Met (bb0005) 2010; 468
Goyal, Tripathy (bb0025) 2016; 31
Dennis, Komistek, Mahfouz, Walker, Tucker (bb0190) 2004; 428
Clément, Hagemeister, Aissaoui, de Guise (bb0205) 2014; 40
Nakamura, Ph, Ito, Ph, Yoshitomi, Ph (bb0215) 2015; 30
Dennis, Mahfouz, Komistek, Hoff (bb0175) 2005; 38
Kuriyama, Ishikawa, Nakamura, Furu (bb0165) 2016; 24
Prins, Kaptein, Banks, Stoel, Nelissen, Valstar (bb0185) 2014; 47
Alcelik, Blomfield, Öztürk, Soni, Charity, Acornley (bb0020) 2017; 51
Bonner, Eardley, Patterson, Gregg (bb0010) 2011; 93
Morcos, Lanting, Webster, Howard, Bryant, Teeter (bb0090) 2019
Randelli, Menon, Pasqualotto, Zanini, Compagnoni, Cucchi (bb0065) 2019; 34
Dennis, Komistek, Mahfouz, Haas, Stiehl (bb0080) 2003; 416
Thienpont, Schwab, Fennema (bb0045) 2017; 99
Price, Alvand, Troelsen, Katz, Hooper, Gray (bb0125) 2018; 392
Teeter, Perry, Yuan, Howard, Lanting (bb0105) 2017; 32
Kamenaga, Takayama, Ishida, Muratsu, Hayashi (bb0210) 2019; 68
Angerame, Holst, Jennings, Komistek, Dennis (bb0075) 2019
Valstar, Gill, Ryd, Flivik, Börlin, Kärrholm (bb0220) 2005; 76
D’Lima, Hermida, Chen, Colwell (bb0150) 2001; 392
Schotanus, Thijs, Heijmans, Vos, Kort (bb0040) 2018; 26
Dhurve, Scholes, Sherif, Shaikh, Weng, Levin (bb0130) 2017; 24
Cooke, Sled, Scudamore (bb0115) 2007; 34
Dennis, Komistek, Kim, Sharma (bb0180) 2010; 468
Paterson, Teeter, Macdonald, Mccalden, Naudie (bb0200) 2013; 471
Mannan, Smith (bb0035) 2016; 23
Wu, Xiang, Schotanus, Liu, Chen, Huang (bb0050) 2017; 15
Harman (10.1016/j.knee.2020.07.092_bb0140) 2001; 392
Dennis (10.1016/j.knee.2020.07.092_bb0175) 2005; 38
Dennis (10.1016/j.knee.2020.07.092_bb0080) 2003; 416
Kamenaga (10.1016/j.knee.2020.07.092_bb0210) 2019; 68
Mihalko (10.1016/j.knee.2020.07.092_bb0195) 2016; 39
Dennis (10.1016/j.knee.2020.07.092_bb0180) 2010; 468
Dennis (10.1016/j.knee.2020.07.092_bb0085) 1998; 356
Lützner (10.1016/j.knee.2020.07.092_bb0135) 2012; 36
Teeter (10.1016/j.knee.2020.07.092_bb0105) 2017; 32
Dhurve (10.1016/j.knee.2020.07.092_bb0130) 2017; 24
Valstar (10.1016/j.knee.2020.07.092_bb0100) 2001; 34
Prins (10.1016/j.knee.2020.07.092_bb0185) 2014; 47
Lee (10.1016/j.knee.2020.07.092_bb0030) 2016; 98–B
Schotanus (10.1016/j.knee.2020.07.092_bb0040) 2018; 26
Kuriyama (10.1016/j.knee.2020.07.092_bb0165) 2016; 24
Clément (10.1016/j.knee.2020.07.092_bb0205) 2014; 40
Predescu (10.1016/j.knee.2020.07.092_bb0055) 2017; 41
Thienpont (10.1016/j.knee.2020.07.092_bb0045) 2017; 99
Vertullo (10.1016/j.knee.2020.07.092_bb0120) 2017; 99
Alcelik (10.1016/j.knee.2020.07.092_bb0020) 2017; 51
Huijbregts (10.1016/j.knee.2020.07.092_bb0015) 2016; 87
Cooke (10.1016/j.knee.2020.07.092_bb0115) 2007; 34
Zingde (10.1016/j.knee.2020.07.092_bb0110) 2014; 472
Li (10.1016/j.knee.2020.07.092_bb0060) 2019
Morcos (10.1016/j.knee.2020.07.092_bb0090) 2019
Broberg (10.1016/j.knee.2020.07.092_bb0095) 2019
Price (10.1016/j.knee.2020.07.092_bb0125) 2018; 392
Wolterbeek (10.1016/j.knee.2020.07.092_bb0160) 2012; 36
Bonner (10.1016/j.knee.2020.07.092_bb0010) 2011; 93
Angerame (10.1016/j.knee.2020.07.092_bb0075) 2019
Goyal (10.1016/j.knee.2020.07.092_bb0025) 2016; 31
Harman (10.1016/j.knee.2020.07.092_bb0145) 2010; 25
Bourne (10.1016/j.knee.2020.07.092_bb0005) 2010; 468
Wu (10.1016/j.knee.2020.07.092_bb0050) 2017; 15
Valstar (10.1016/j.knee.2020.07.092_bb0220) 2005; 76
Paterson (10.1016/j.knee.2020.07.092_bb0200) 2013; 471
Nakamura (10.1016/j.knee.2020.07.092_bb0215) 2015; 30
Mannan (10.1016/j.knee.2020.07.092_bb0035) 2016; 23
Randelli (10.1016/j.knee.2020.07.092_bb0065) 2019; 34
D’Lima (10.1016/j.knee.2020.07.092_bb0150) 2001; 392
Dennis (10.1016/j.knee.2020.07.092_bb0190) 2004; 428
Asano (10.1016/j.knee.2020.07.092_bb0170) 2001; 388
Kosse (10.1016/j.knee.2020.07.092_bb0070) 2018; 26
Teeter (10.1016/j.knee.2020.07.092_bb0155) 2018; 33
References_xml – volume: 34
  year: 2019
  ident: bb0065
  article-title: Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: a prospective, randomized, controlled trial
  publication-title: J Arthroplast
– volume: 99
  start-page: 1129
  year: 2017
  end-page: 1139
  ident: bb0120
  article-title: The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the Australian Orthopaedic Association National Joint Replacement Registry
  publication-title: J Bone Jt Surg Am
– volume: 36
  start-page: 394
  year: 2012
  end-page: 398
  ident: bb0160
  article-title: Integrated assessment techniques for linking kinematics, kinetics and muscle activation to early migration: a pilot study
  publication-title: Gait Posture
– volume: 76
  start-page: 563
  year: 2005
  end-page: 572
  ident: bb0220
  article-title: Guidelines for standardization of radiostereometry (RSA) of implants
  publication-title: Acta Orthop
– volume: 98–B
  start-page: 78
  year: 2016
  end-page: 80
  ident: bb0030
  article-title: Patient-specific cutting blocks: of unproven value
  publication-title: Bone Jt J
– volume: 34
  start-page: 715
  year: 2001
  end-page: 722
  ident: bb0100
  article-title: Model-based Roentgen stereophotogrammetry of orthopaedic implants
  publication-title: J Biomech
– volume: 26
  start-page: 1792
  year: 2018
  end-page: 1799
  ident: bb0070
  article-title: Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial
  publication-title: Knee Surg Sport Traumatol Arthrosc
– volume: 31
  start-page: 2173
  year: 2016
  end-page: 2180
  ident: bb0025
  article-title: Does patient-specific instrumentations improve short-term functional outcomes after total knee arthroplasty? A systematic review and meta-analysis
  publication-title: J Arthroplasty
– volume: 38
  start-page: 241
  year: 2005
  end-page: 253
  ident: bb0175
  article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics
  publication-title: J Biomech
– volume: 356
  start-page: 47
  year: 1998
  end-page: 57
  ident: bb0085
  article-title: In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis
  publication-title: Clin Orthop Relat Res
– volume: 388
  start-page: 157
  year: 2001
  end-page: 166
  ident: bb0170
  article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique
  publication-title: Clin Orthop Relat Res
– volume: 33
  start-page: 740
  year: 2018
  end-page: 745
  ident: bb0155
  article-title: Contact kinematics correlates to tibial component migration following single radius posterior stabilized knee replacement
  publication-title: J Arthroplasty
– volume: 36
  start-page: 1841
  year: 2012
  end-page: 1847
  ident: bb0135
  article-title: Patients with no functional improvement after total knee arthroplasty show different kinematics
  publication-title: Int Orthop
– year: 2019
  ident: bb0095
  article-title: Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up
  publication-title: J Arthroplast
– volume: 25
  start-page: 570
  year: 2010
  end-page: 575
  ident: bb0145
  article-title: Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation
  publication-title: Clin Biomech (Bristol Avon)
– volume: 392
  start-page: 383
  year: 2001
  end-page: 393
  ident: bb0140
  article-title: Polyethylene damage and knee kinematics after total knee arthroplasty
  publication-title: Clin Orthop Relat R
– volume: 41
  start-page: 1361
  year: 2017
  end-page: 1367
  ident: bb0055
  article-title: Patient specific instrumentation versus conventional knee arthroplasty: comparative study
  publication-title: Int Orthop
– volume: 468
  start-page: 102
  year: 2010
  end-page: 107
  ident: bb0180
  article-title: Gap balancing versus measured resection technique for total knee arthroplasty
  publication-title: Clin Orthop Relat Res
– volume: 39
  start-page: S45
  year: 2016
  end-page: S49
  ident: bb0195
  article-title: Total knee post-cam design variations and their effects on kinematics and wear patterns
  publication-title: Orthopedics
– volume: 468
  start-page: 57
  year: 2010
  end-page: 63
  ident: bb0005
  article-title: Patient satisfaction after total knee arthroplasty who is satisfied and who is not?
  publication-title: Clin Orthop Relat Res
– volume: 416
  start-page: 37
  year: 2003
  end-page: 57
  ident: bb0080
  article-title: Multicenter determination of in vivo kinematics after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
– volume: 392
  start-page: 124
  year: 2001
  end-page: 130
  ident: bb0150
  article-title: Polyethylene wear and variations in knee kinematics
  publication-title: Clin Orthop Relat Res
– volume: 392
  start-page: 1672
  year: 2018
  end-page: 1682
  ident: bb0125
  article-title: Knee replacement
  publication-title: Lancet
– volume: 30
  start-page: 1237
  year: 2015
  end-page: 1242
  ident: bb0215
  article-title: Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy
  publication-title: J Arthroplasty
– volume: 99
  start-page: 521
  year: 2017
  end-page: 530
  ident: bb0045
  article-title: Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis
  publication-title: J Bone Jt Surg Am
– year: 2019
  ident: bb0075
  article-title: Total knee arthroplasty kinematics
  publication-title: J Arthroplasty
– volume: 32
  start-page: 1834
  year: 2017
  end-page: 1838
  ident: bb0105
  article-title: Contact kinematic differences between gap balanced vs measured resection techniques for single radius posterior-stabilized total knee arthroplasty
  publication-title: J Arthroplasty
– volume: 26
  start-page: 2659
  year: 2018
  end-page: 2668
  ident: bb0040
  article-title: Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty
  publication-title: Knee Surg Sport Traumatol Arthrosc
– volume: 51
  start-page: 215
  year: 2017
  end-page: 222
  ident: bb0020
  article-title: A comparison of short term radiological alignment outcomes of the patient specific and standard instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis
  publication-title: Acta Orthop Traumatol Turc
– volume: 47
  start-page: 1682
  year: 2014
  end-page: 1688
  ident: bb0185
  article-title: Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data
  publication-title: J Biomech
– volume: 24
  start-page: 2517
  year: 2016
  end-page: 2524
  ident: bb0165
  article-title: No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty: a computer simulation study
  publication-title: Knee Surg Sport Traumatol Arthrosc
– volume: 24
  start-page: 856
  year: 2017
  end-page: 862
  ident: bb0130
  article-title: Multifactorial analysis of dissatisfaction after primary total knee replacement
  publication-title: Knee
– volume: 428
  start-page: 180
  year: 2004
  end-page: 189
  ident: bb0190
  article-title: A multicenter analysis of axial femorotibial rotation after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
– start-page: 1
  year: 2019
  end-page: 12
  ident: bb0060
  article-title: Fewer femoral rotational outliers produced with CT- than with MRI-based patient-specific instrumentation in total knee arthroplasty
  publication-title: Knee Surg Sport Traumatol Arthrosc
– volume: 472
  start-page: 254
  year: 2014
  end-page: 262
  ident: bb0110
  article-title: In vivo determination of cam-post engagement in fixed and mobile-bearing TKA
  publication-title: Clin Orthop Relat Res
– volume: 93
  start-page: 1217
  year: 2011
  end-page: 1222
  ident: bb0010
  article-title: The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years
  publication-title: J Bone Jt Surg Br
– volume: 34
  start-page: 1796
  year: 2007
  end-page: 1801
  ident: bb0115
  article-title: Frontal plane knee alignment: a call for standardized measurement
  publication-title: J Rheumatol
– volume: 15
  start-page: 336
  year: 2017
  end-page: 348
  ident: bb0050
  article-title: CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: a systematic review and meta-analysis
  publication-title: Surgeon
– volume: 40
  start-page: 94
  year: 2014
  end-page: 100
  ident: bb0205
  article-title: Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs
  publication-title: Gait Posture
– volume: 23
  start-page: 186
  year: 2016
  end-page: 190
  ident: bb0035
  article-title: Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis
  publication-title: Knee
– year: 2019
  ident: bb0090
  article-title: Effect of medial soft tissue releases during posterior-stabilized total knee arthroplasty on contact kinematics and patient-reported outcomes
  publication-title: J Arthroplasty
– volume: 471
  start-page: 56
  year: 2013
  end-page: 63
  ident: bb0200
  article-title: The 2012 Mark Coventry Award a retrieval analysis of high flexion versus posterior-stabilized tibial inserts
  publication-title: Clin Orthop Relat Res
– volume: 87
  start-page: 386
  year: 2016
  end-page: 394
  ident: bb0015
  article-title: Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty
  publication-title: Acta Orthop
– volume: 68
  start-page: 16
  year: 2019
  end-page: 22
  ident: bb0210
  article-title: Clinical biomechanics medial knee stability at flexion increases tibial internal rotation and knee flexion angle after posterior-stabilized total knee arthroplasty
  publication-title: Clin Biomech
– volume: 24
  start-page: 856
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0130
  article-title: Multifactorial analysis of dissatisfaction after primary total knee replacement
  publication-title: Knee
  doi: 10.1016/j.knee.2017.04.005
– volume: 38
  start-page: 241
  year: 2005
  ident: 10.1016/j.knee.2020.07.092_bb0175
  article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.02.042
– volume: 23
  start-page: 186
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0035
  article-title: Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis
  publication-title: Knee
  doi: 10.1016/j.knee.2015.08.006
– volume: 98–B
  start-page: 78
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0030
  article-title: Patient-specific cutting blocks: of unproven value
  publication-title: Bone Jt J
  doi: 10.1302/0301-620X.98B1.36370
– volume: 25
  start-page: 570
  year: 2010
  ident: 10.1016/j.knee.2020.07.092_bb0145
  article-title: Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation
  publication-title: Clin Biomech (Bristol Avon)
  doi: 10.1016/j.clinbiomech.2010.03.013
– volume: 471
  start-page: 56
  year: 2013
  ident: 10.1016/j.knee.2020.07.092_bb0200
  article-title: The 2012 Mark Coventry Award a retrieval analysis of high flexion versus posterior-stabilized tibial inserts
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-012-2387-3
– volume: 428
  start-page: 180
  year: 2004
  ident: 10.1016/j.knee.2020.07.092_bb0190
  article-title: A multicenter analysis of axial femorotibial rotation after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/01.blo.0000148777.98244.84
– volume: 30
  start-page: 1237
  year: 2015
  ident: 10.1016/j.knee.2020.07.092_bb0215
  article-title: Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2015.01.046
– volume: 468
  start-page: 102
  year: 2010
  ident: 10.1016/j.knee.2020.07.092_bb0180
  article-title: Gap balancing versus measured resection technique for total knee arthroplasty
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-009-1112-3
– start-page: 1
  year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0060
  article-title: Fewer femoral rotational outliers produced with CT- than with MRI-based patient-specific instrumentation in total knee arthroplasty
  publication-title: Knee Surg Sport Traumatol Arthrosc
– volume: 24
  start-page: 2517
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0165
  article-title: No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty: a computer simulation study
  publication-title: Knee Surg Sport Traumatol Arthrosc
  doi: 10.1007/s00167-015-3687-4
– year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0095
  article-title: Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up
  publication-title: J Arthroplast
– volume: 99
  start-page: 521
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0045
  article-title: Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis
  publication-title: J Bone Jt Surg Am
  doi: 10.2106/JBJS.16.00496
– volume: 34
  start-page: 715
  year: 2001
  ident: 10.1016/j.knee.2020.07.092_bb0100
  article-title: Model-based Roentgen stereophotogrammetry of orthopaedic implants
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00028-8
– volume: 388
  start-page: 157
  year: 2001
  ident: 10.1016/j.knee.2020.07.092_bb0170
  article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-200107000-00023
– volume: 68
  start-page: 16
  year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0210
  article-title: Clinical biomechanics medial knee stability at flexion increases tibial internal rotation and knee flexion angle after posterior-stabilized total knee arthroplasty
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2019.05.029
– volume: 93
  start-page: 1217
  year: 2011
  ident: 10.1016/j.knee.2020.07.092_bb0010
  article-title: The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years
  publication-title: J Bone Jt Surg Br
  doi: 10.1302/0301-620X.93B9.26573
– year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0090
  article-title: Effect of medial soft tissue releases during posterior-stabilized total knee arthroplasty on contact kinematics and patient-reported outcomes
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2019.02.026
– volume: 26
  start-page: 1792
  year: 2018
  ident: 10.1016/j.knee.2020.07.092_bb0070
  article-title: Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial
  publication-title: Knee Surg Sport Traumatol Arthrosc
  doi: 10.1007/s00167-017-4792-3
– volume: 99
  start-page: 1129
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0120
  article-title: The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the Australian Orthopaedic Association National Joint Replacement Registry
  publication-title: J Bone Jt Surg Am
  doi: 10.2106/JBJS.16.01083
– volume: 40
  start-page: 94
  year: 2014
  ident: 10.1016/j.knee.2020.07.092_bb0205
  article-title: Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.02.016
– volume: 51
  start-page: 215
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0020
  article-title: A comparison of short term radiological alignment outcomes of the patient specific and standard instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis
  publication-title: Acta Orthop Traumatol Turc
  doi: 10.1016/j.aott.2017.02.001
– volume: 32
  start-page: 1834
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0105
  article-title: Contact kinematic differences between gap balanced vs measured resection techniques for single radius posterior-stabilized total knee arthroplasty
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.12.054
– year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0075
  article-title: Total knee arthroplasty kinematics
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2019.05.037
– volume: 76
  start-page: 563
  year: 2005
  ident: 10.1016/j.knee.2020.07.092_bb0220
  article-title: Guidelines for standardization of radiostereometry (RSA) of implants
  publication-title: Acta Orthop
  doi: 10.1080/17453670510041574
– volume: 468
  start-page: 57
  year: 2010
  ident: 10.1016/j.knee.2020.07.092_bb0005
  article-title: Patient satisfaction after total knee arthroplasty who is satisfied and who is not?
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-009-1119-9
– volume: 39
  start-page: S45
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0195
  article-title: Total knee post-cam design variations and their effects on kinematics and wear patterns
  publication-title: Orthopedics
  doi: 10.3928/01477447-20160509-14
– volume: 416
  start-page: 37
  year: 2003
  ident: 10.1016/j.knee.2020.07.092_bb0080
  article-title: Multicenter determination of in vivo kinematics after total knee arthroplasty
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/01.blo.0000092986.12414.b5
– volume: 34
  start-page: 1796
  year: 2007
  ident: 10.1016/j.knee.2020.07.092_bb0115
  article-title: Frontal plane knee alignment: a call for standardized measurement
  publication-title: J Rheumatol
– volume: 87
  start-page: 386
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0015
  article-title: Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2016.1193799
– volume: 15
  start-page: 336
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0050
  article-title: CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: a systematic review and meta-analysis
  publication-title: Surgeon
  doi: 10.1016/j.surge.2017.06.002
– volume: 34
  year: 2019
  ident: 10.1016/j.knee.2020.07.092_bb0065
  article-title: Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: a prospective, randomized, controlled trial
  publication-title: J Arthroplast
  doi: 10.1016/j.arth.2019.03.018
– volume: 41
  start-page: 1361
  year: 2017
  ident: 10.1016/j.knee.2020.07.092_bb0055
  article-title: Patient specific instrumentation versus conventional knee arthroplasty: comparative study
  publication-title: Int Orthop
  doi: 10.1007/s00264-016-3356-3
– volume: 33
  start-page: 740
  year: 2018
  ident: 10.1016/j.knee.2020.07.092_bb0155
  article-title: Contact kinematics correlates to tibial component migration following single radius posterior stabilized knee replacement
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2017.09.064
– volume: 31
  start-page: 2173
  year: 2016
  ident: 10.1016/j.knee.2020.07.092_bb0025
  article-title: Does patient-specific instrumentations improve short-term functional outcomes after total knee arthroplasty? A systematic review and meta-analysis
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.03.047
– volume: 392
  start-page: 1672
  year: 2018
  ident: 10.1016/j.knee.2020.07.092_bb0125
  article-title: Knee replacement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32344-4
– volume: 36
  start-page: 394
  year: 2012
  ident: 10.1016/j.knee.2020.07.092_bb0160
  article-title: Integrated assessment techniques for linking kinematics, kinetics and muscle activation to early migration: a pilot study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.022
– volume: 47
  start-page: 1682
  year: 2014
  ident: 10.1016/j.knee.2020.07.092_bb0185
  article-title: Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.02.031
– volume: 392
  start-page: 383
  year: 2001
  ident: 10.1016/j.knee.2020.07.092_bb0140
  article-title: Polyethylene damage and knee kinematics after total knee arthroplasty
  publication-title: Clin Orthop Relat R
  doi: 10.1097/00003086-200111000-00050
– volume: 36
  start-page: 1841
  year: 2012
  ident: 10.1016/j.knee.2020.07.092_bb0135
  article-title: Patients with no functional improvement after total knee arthroplasty show different kinematics
  publication-title: Int Orthop
  doi: 10.1007/s00264-012-1584-8
– volume: 472
  start-page: 254
  year: 2014
  ident: 10.1016/j.knee.2020.07.092_bb0110
  article-title: In vivo determination of cam-post engagement in fixed and mobile-bearing TKA
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-013-3257-3
– volume: 392
  start-page: 124
  year: 2001
  ident: 10.1016/j.knee.2020.07.092_bb0150
  article-title: Polyethylene wear and variations in knee kinematics
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-200111000-00015
– volume: 356
  start-page: 47
  year: 1998
  ident: 10.1016/j.knee.2020.07.092_bb0085
  article-title: In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-199811000-00009
– volume: 26
  start-page: 2659
  year: 2018
  ident: 10.1016/j.knee.2020.07.092_bb0040
  article-title: Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty
  publication-title: Knee Surg Sport Traumatol Arthrosc
  doi: 10.1007/s00167-017-4637-0
SSID ssj0006945
Score 2.2913885
Snippet The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to...
AbstractBackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI)...
BackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1501
SubjectTerms Aged
Ankle
Arthritis
Arthroplasty (knee)
Arthroplasty, Replacement, Knee - instrumentation
Arthroplasty, Replacement, Knee - methods
Biomechanical Phenomena - physiology
Contact kinematics
Female
Humans
Joint replacement surgery
Joint surgery
Kinematics
Knee
Knee Joint - diagnostic imaging
Knee Joint - physiopathology
Knee Joint - surgery
Magnetic Resonance Imaging
Male
Orthopedics
Osteoarthritis
Patient satisfaction
Patient-specific instrumentation
Polyethylene
Printing, Three-Dimensional
Prospective Studies
Radiostereometric Analysis
Software
Surgeons
Total knee arthroplasty
Title Contact kinematics of patient-specific instrumentation versus conventional instrumentation for total knee arthroplasty
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0968016020302763
https://www.clinicalkey.es/playcontent/1-s2.0-S0968016020302763
https://dx.doi.org/10.1016/j.knee.2020.07.092
https://www.ncbi.nlm.nih.gov/pubmed/33010767
https://www.proquest.com/docview/2458952641
https://www.proquest.com/docview/2448407693
Volume 27
WOSCitedRecordID wos000600605600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-5800
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006945
  issn: 0968-0160
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jQdeEDA-CmMyEtrLlCqpk9h5rFAnmKaCRIf6ZjmJLdhKWpau2v4y_j3uYidLu63AAw-NqsTOh--Xy539uztC3gWB8sM0YF7Io9QDhcc8wUTm6TwC5cd5HvlpVWyCj0ZiMkk-dzq_6liY5ZQXhbi6Sub_VdSwD4SNobP_IO7mpLAD_oPQYQtih-1fCR7zTWHg4znYj1U-1oqs4fKnehhZiewgJKEvMHFC4eiGSM-4LFdZ6OttKkriDMMnzwutMT8SFlkA-3uxsjiM0MMGLVe_ZpEdg6-LGqWZg1ZIY2xZ8q2lJ8vobai8h8009VdVqotvenpdMRFs2Wk3q-vmL8BZrZlwblKtDqy5HdCVxMizs-UGetrqZ8GZFwnfbytwm1zAATVqaWMwdoM7PxN2xuKsh2PRw5uqErjaonyrOblHn-TR6cmJHA8n44P5Tw_LleGyvqvdskV2-jxKQJ3uDD4OJ8eNERAnVX3s5hlcvJalFq5f9j6b6D6fp7J9xo_JI-e00IEF2xPS0cVTsjso1GL245oe0IpGXK3P7JKlwx-9wR-dGbqOP7qGLWrxR9v4u9UG8Ecr_FF8NtrG3zNyejQcv__gueIeXhYm_sJT4EfDuBiT-0yZOBQmjXSasdyAD5CZIMnRlFIxg18gdJby1PDYV5plfSNSwZ6T7WJW6JeECp6xlPvcGJWFLDWpjlKm8jAx4P2rOOuSoB5embnM91iAZSpriuOZxNuWKBLpcwki6ZLDps_c5n3Z2JrVUpN1RDN8gyXgbWMvflcvXTptUspAln3pyy8II0RR30eaQcy6JGp6OkvZWsB_vOJeDSnZXKQfRiKJwDEKuuRtcxi-Mrh0qAo9u8Q2oQh9rJvaJS8sFJthYWAjwCH-avPJX5OHN6__HtkG_Og35EG2XHwvL_bJFp-IffcW_QZTTANy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contact+kinematics+of+patient-specific+instrumentation+versus+conventional+instrumentation+for+total+knee+arthroplasty&rft.jtitle=The+knee&rft.au=Broberg%2C+Jordan+S&rft.au=Naudie%2C+Douglas+DR&rft.au=Howard%2C+James+L&rft.au=Vasarhelyi%2C+Edward+M&rft.date=2020-10-01&rft.pub=Elsevier+Limited&rft.issn=0968-0160&rft.eissn=1873-5800&rft.volume=27&rft.issue=5&rft.spage=1501&rft_id=info:doi/10.1016%2Fj.knee.2020.07.092&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09680160%2Fcov200h.gif