Contact kinematics of patient-specific instrumentation versus conventional instrumentation for total knee arthroplasty
The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. The study was a prospective rando...
Gespeichert in:
| Veröffentlicht in: | The knee Jg. 27; H. 5; S. 1501 - 1509 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.10.2020
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 0968-0160, 1873-5800, 1873-5800 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.
The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.
There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.
We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments. |
|---|---|
| AbstractList | The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.
The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.
There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.
We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments. BackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.MethodsThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.ResultsThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.ConclusionsWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments. AbstractBackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics. MethodsThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated. ResultsThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant. ConclusionsWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments. The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.BACKGROUNDThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to conventional instrumentation (CI). We hypothesized that use of PSI would not significantly alter contact kinematics.The study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.METHODSThe study was a prospective randomized controlled trial, with equal allocation of fifty patients to PSI and CI groups. At two years post-operation, patients underwent weight-bearing stereo X-ray examinations at 0°, 20°, 40°, 60°, 80°, and 100° of flexion. The shortest tibiofemoral distance on each condyle determined the contact location. Magnitude of the shortest distance was measured and condylar separation was analyzed using thresholds of 0.5 and 0.75 mm. Kinematic measurements derived from the shortest distance included anteroposterior (AP) translation, excursion, axial rotation, and paradoxical anterior motion. Pivot position and cam/post contact were also investigated.There were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.RESULTSThere were no differences (p > 0.05) in medial and lateral AP contact locations, excursions, and magnitude of anterior motion, or in axial rotation, pivot patterns, frequency of cam/post engagement, frequency of medial anterior motion, and condylar separation at a 0.75 mm threshold. Significant differences were found in frequency of lateral anterior motion (p = 0.048) and condylar separation at a 0.5 mm threshold (p = 0.010). Both groups displayed typical kinematics for a fixed-bearing posterior-stabilized implant.We found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments.CONCLUSIONSWe found no major differences in knee kinematics between PSI and CI groups, which suggest that PSI does not provide a significant kinematic advantage over conventional instruments. |
| Author | Naudie, Douglas D.R. Broberg, Jordan S. Vasarhelyi, Edward M. Teeter, Matthew G. Howard, James L. McCalden, Richard W. |
| Author_xml | – sequence: 1 givenname: Jordan S. surname: Broberg fullname: Broberg, Jordan S. email: jbroberg@uwo.ca organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada – sequence: 2 givenname: Douglas D.R. surname: Naudie fullname: Naudie, Douglas D.R. organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada – sequence: 3 givenname: James L. surname: Howard fullname: Howard, James L. organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada – sequence: 4 givenname: Edward M. surname: Vasarhelyi fullname: Vasarhelyi, Edward M. organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada – sequence: 5 givenname: Richard W. surname: McCalden fullname: McCalden, Richard W. organization: Division of Orthopaedic Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University and London Health Sciences Centre, 339 Windermere Road, London, ON N6A 5A5, Canada – sequence: 6 givenname: Matthew G. surname: Teeter fullname: Teeter, Matthew G. organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33010767$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk2LFDEQhoOsuLOrf8CDNHjx0m0l_ZUWEWTQVVjwoJ5DOl3BzHQnbZIemH9vmtndw4jrISRUPW8leauuyIV1Fgl5SaGgQJu3u2JvEQsGDApoC-jYE7KhvC3zmgNckA10Dc8TCZfkKoQdADRdVT8jl2UJFNqm3ZDD1tkoVcz2xuIko1Ehczqb0wltzMOMymijMmND9MuUYinjbHZAH5aQKWcPKZYicvyL0c5n0cWUWd-ZSR9_eTePMsTjc_JUyzHgi7v9mvz8_OnH9kt---3m6_bjba6qDmIuG6jT87UeoJS6qbjua-xVOWheU6VpN6Q_gWzKtChH1be9bhuQWCqmec_La_LmVHf27veCIYrJBIXjKC26JQhWVbxKTnRlQl-foTu3-PSvlap5V7Omool6dUct_YSDmL2ZpD-Ke0cTwE-A8i4Ej1ooc_IjemlGQUGszRM7sZoi1uYJaEVqXpKyM-l99UdF708iTDYeDHoRVGqdwsF4VFEMzjwu_3AmV6OxRslxj0cMDxZQEZgA8X0dqXWiGJTA2ma17d2_C_zv9j_xU95d |
| CitedBy_id | crossref_primary_10_1002_jor_25518 crossref_primary_10_1016_j_arth_2023_01_051 crossref_primary_10_1007_s00402_022_04698_6 crossref_primary_10_1016_j_arth_2024_03_040 crossref_primary_10_1016_j_clinbiomech_2022_105824 |
| Cites_doi | 10.1016/j.knee.2017.04.005 10.1016/j.jbiomech.2004.02.042 10.1016/j.knee.2015.08.006 10.1302/0301-620X.98B1.36370 10.1016/j.clinbiomech.2010.03.013 10.1007/s11999-012-2387-3 10.1097/01.blo.0000148777.98244.84 10.1016/j.arth.2015.01.046 10.1007/s11999-009-1112-3 10.1007/s00167-015-3687-4 10.2106/JBJS.16.00496 10.1016/S0021-9290(01)00028-8 10.1097/00003086-200107000-00023 10.1016/j.clinbiomech.2019.05.029 10.1302/0301-620X.93B9.26573 10.1016/j.arth.2019.02.026 10.1007/s00167-017-4792-3 10.2106/JBJS.16.01083 10.1016/j.gaitpost.2014.02.016 10.1016/j.aott.2017.02.001 10.1016/j.arth.2016.12.054 10.1016/j.arth.2019.05.037 10.1080/17453670510041574 10.1007/s11999-009-1119-9 10.3928/01477447-20160509-14 10.1097/01.blo.0000092986.12414.b5 10.1080/17453674.2016.1193799 10.1016/j.surge.2017.06.002 10.1016/j.arth.2019.03.018 10.1007/s00264-016-3356-3 10.1016/j.arth.2017.09.064 10.1016/j.arth.2016.03.047 10.1016/S0140-6736(18)32344-4 10.1016/j.gaitpost.2012.03.022 10.1016/j.jbiomech.2014.02.031 10.1097/00003086-200111000-00050 10.1007/s00264-012-1584-8 10.1007/s11999-013-3257-3 10.1097/00003086-200111000-00015 10.1097/00003086-199811000-00009 10.1007/s00167-017-4637-0 |
| ContentType | Journal Article |
| Copyright | 2020 Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved. Copyright Elsevier Limited Oct 2020 |
| Copyright_xml | – notice: 2020 – notice: Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Limited Oct 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. NAPCQ 7X8 |
| DOI | 10.1016/j.knee.2020.07.092 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-5800 |
| EndPage | 1509 |
| ExternalDocumentID | 33010767 10_1016_j_knee_2020_07_092 S0968016020302763 1_s2_0_S0968016020302763 |
| Genre | Randomized Controlled Trial Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5RE 5VS 6PF 7-5 71M 8FE 8FH 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM LK8 M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ SV3 T5K UHS UPT WOW WUQ YQT Z5R ~G- ~HD 3V. 7RV 7X7 8FI AACTN AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ M1P M2O M7P AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP K9. NAPCQ 7X8 |
| ID | FETCH-LOGICAL-c490t-a605160ffd03af648fb5ebc3df851cf19d0000a630a618ecb7bf760ae3c2f8b83 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600605600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-0160 1873-5800 |
| IngestDate | Sun Sep 28 07:44:19 EDT 2025 Tue Oct 07 06:31:37 EDT 2025 Wed Feb 19 02:27:52 EST 2025 Sat Nov 29 07:08:52 EST 2025 Tue Nov 18 22:27:10 EST 2025 Fri Feb 23 02:46:24 EST 2024 Tue Feb 25 19:54:30 EST 2025 Tue Oct 14 19:27:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Radiostereometric analysis Patient-specific instrumentation Total knee arthroplasty Contact kinematics |
| Language | English |
| License | Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c490t-a605160ffd03af648fb5ebc3df851cf19d0000a630a618ecb7bf760ae3c2f8b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| PMID | 33010767 |
| PQID | 2458952641 |
| PQPubID | 1216385 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2448407693 proquest_journals_2458952641 pubmed_primary_33010767 crossref_citationtrail_10_1016_j_knee_2020_07_092 crossref_primary_10_1016_j_knee_2020_07_092 elsevier_sciencedirect_doi_10_1016_j_knee_2020_07_092 elsevier_clinicalkeyesjournals_1_s2_0_S0968016020302763 elsevier_clinicalkey_doi_10_1016_j_knee_2020_07_092 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | The knee |
| PublicationTitleAlternate | Knee |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Limited |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
| References | Vertullo, Lewis, Lorimer, Graves (bb0120) 2017; 99 Lee (bb0030) 2016; 98–B Valstar, de Jong, Vrooman, Rozing, Reiber (bb0100) 2001; 34 Kosse, Heesterbeek, Schimmel, van Hellemondt, Wymenga, Defoort (bb0070) 2018; 26 Huijbregts, Khan, Sorensen, Fick, Haebich (bb0015) 2016; 87 Harman, Schmitt, Rössing, Banks, Sharf, Viceconti (bb0145) 2010; 25 Zingde, Leszko, Sharma, Mahfouz, Komistek, Dennis (bb0110) 2014; 472 Harman, Banks, Hodge (bb0140) 2001; 392 Broberg, Ndoja, MacDonald, Lanting, Teeter (bb0095) 2019 Lützner, Kirschner, Günther, Harman (bb0135) 2012; 36 Mihalko, Lowell, Higgs, Kurtz (bb0195) 2016; 39 Li, Yang, Liao, Wang, Zou, Pan (bb0060) 2019 Dennis, Komistek, Colwell, Ranawat, Scott, Thornhill (bb0085) 1998; 356 Asano, Akagi, Tanaka, Tamura, Nakamura (bb0170) 2001; 388 Teeter, Perry, Yuan, Howard, Lanting (bb0155) 2018; 33 Predescu, Prescura, Olaru, Savin, Botez, Deleanu (bb0055) 2017; 41 Wolterbeek, Garling, Linden, Nelissen, Valstar (bb0160) 2012; 36 Bourne, Chesworth, Davis, Mahomed, Charron, Met (bb0005) 2010; 468 Goyal, Tripathy (bb0025) 2016; 31 Dennis, Komistek, Mahfouz, Walker, Tucker (bb0190) 2004; 428 Clément, Hagemeister, Aissaoui, de Guise (bb0205) 2014; 40 Nakamura, Ph, Ito, Ph, Yoshitomi, Ph (bb0215) 2015; 30 Dennis, Mahfouz, Komistek, Hoff (bb0175) 2005; 38 Kuriyama, Ishikawa, Nakamura, Furu (bb0165) 2016; 24 Prins, Kaptein, Banks, Stoel, Nelissen, Valstar (bb0185) 2014; 47 Alcelik, Blomfield, Öztürk, Soni, Charity, Acornley (bb0020) 2017; 51 Bonner, Eardley, Patterson, Gregg (bb0010) 2011; 93 Morcos, Lanting, Webster, Howard, Bryant, Teeter (bb0090) 2019 Randelli, Menon, Pasqualotto, Zanini, Compagnoni, Cucchi (bb0065) 2019; 34 Dennis, Komistek, Mahfouz, Haas, Stiehl (bb0080) 2003; 416 Thienpont, Schwab, Fennema (bb0045) 2017; 99 Price, Alvand, Troelsen, Katz, Hooper, Gray (bb0125) 2018; 392 Teeter, Perry, Yuan, Howard, Lanting (bb0105) 2017; 32 Kamenaga, Takayama, Ishida, Muratsu, Hayashi (bb0210) 2019; 68 Angerame, Holst, Jennings, Komistek, Dennis (bb0075) 2019 Valstar, Gill, Ryd, Flivik, Börlin, Kärrholm (bb0220) 2005; 76 D’Lima, Hermida, Chen, Colwell (bb0150) 2001; 392 Schotanus, Thijs, Heijmans, Vos, Kort (bb0040) 2018; 26 Dhurve, Scholes, Sherif, Shaikh, Weng, Levin (bb0130) 2017; 24 Cooke, Sled, Scudamore (bb0115) 2007; 34 Dennis, Komistek, Kim, Sharma (bb0180) 2010; 468 Paterson, Teeter, Macdonald, Mccalden, Naudie (bb0200) 2013; 471 Mannan, Smith (bb0035) 2016; 23 Wu, Xiang, Schotanus, Liu, Chen, Huang (bb0050) 2017; 15 Harman (10.1016/j.knee.2020.07.092_bb0140) 2001; 392 Dennis (10.1016/j.knee.2020.07.092_bb0175) 2005; 38 Dennis (10.1016/j.knee.2020.07.092_bb0080) 2003; 416 Kamenaga (10.1016/j.knee.2020.07.092_bb0210) 2019; 68 Mihalko (10.1016/j.knee.2020.07.092_bb0195) 2016; 39 Dennis (10.1016/j.knee.2020.07.092_bb0180) 2010; 468 Dennis (10.1016/j.knee.2020.07.092_bb0085) 1998; 356 Lützner (10.1016/j.knee.2020.07.092_bb0135) 2012; 36 Teeter (10.1016/j.knee.2020.07.092_bb0105) 2017; 32 Dhurve (10.1016/j.knee.2020.07.092_bb0130) 2017; 24 Valstar (10.1016/j.knee.2020.07.092_bb0100) 2001; 34 Prins (10.1016/j.knee.2020.07.092_bb0185) 2014; 47 Lee (10.1016/j.knee.2020.07.092_bb0030) 2016; 98–B Schotanus (10.1016/j.knee.2020.07.092_bb0040) 2018; 26 Kuriyama (10.1016/j.knee.2020.07.092_bb0165) 2016; 24 Clément (10.1016/j.knee.2020.07.092_bb0205) 2014; 40 Predescu (10.1016/j.knee.2020.07.092_bb0055) 2017; 41 Thienpont (10.1016/j.knee.2020.07.092_bb0045) 2017; 99 Vertullo (10.1016/j.knee.2020.07.092_bb0120) 2017; 99 Alcelik (10.1016/j.knee.2020.07.092_bb0020) 2017; 51 Huijbregts (10.1016/j.knee.2020.07.092_bb0015) 2016; 87 Cooke (10.1016/j.knee.2020.07.092_bb0115) 2007; 34 Zingde (10.1016/j.knee.2020.07.092_bb0110) 2014; 472 Li (10.1016/j.knee.2020.07.092_bb0060) 2019 Morcos (10.1016/j.knee.2020.07.092_bb0090) 2019 Broberg (10.1016/j.knee.2020.07.092_bb0095) 2019 Price (10.1016/j.knee.2020.07.092_bb0125) 2018; 392 Wolterbeek (10.1016/j.knee.2020.07.092_bb0160) 2012; 36 Bonner (10.1016/j.knee.2020.07.092_bb0010) 2011; 93 Angerame (10.1016/j.knee.2020.07.092_bb0075) 2019 Goyal (10.1016/j.knee.2020.07.092_bb0025) 2016; 31 Harman (10.1016/j.knee.2020.07.092_bb0145) 2010; 25 Bourne (10.1016/j.knee.2020.07.092_bb0005) 2010; 468 Wu (10.1016/j.knee.2020.07.092_bb0050) 2017; 15 Valstar (10.1016/j.knee.2020.07.092_bb0220) 2005; 76 Paterson (10.1016/j.knee.2020.07.092_bb0200) 2013; 471 Nakamura (10.1016/j.knee.2020.07.092_bb0215) 2015; 30 Mannan (10.1016/j.knee.2020.07.092_bb0035) 2016; 23 Randelli (10.1016/j.knee.2020.07.092_bb0065) 2019; 34 D’Lima (10.1016/j.knee.2020.07.092_bb0150) 2001; 392 Dennis (10.1016/j.knee.2020.07.092_bb0190) 2004; 428 Asano (10.1016/j.knee.2020.07.092_bb0170) 2001; 388 Kosse (10.1016/j.knee.2020.07.092_bb0070) 2018; 26 Teeter (10.1016/j.knee.2020.07.092_bb0155) 2018; 33 |
| References_xml | – volume: 34 year: 2019 ident: bb0065 article-title: Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: a prospective, randomized, controlled trial publication-title: J Arthroplast – volume: 99 start-page: 1129 year: 2017 end-page: 1139 ident: bb0120 article-title: The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the Australian Orthopaedic Association National Joint Replacement Registry publication-title: J Bone Jt Surg Am – volume: 36 start-page: 394 year: 2012 end-page: 398 ident: bb0160 article-title: Integrated assessment techniques for linking kinematics, kinetics and muscle activation to early migration: a pilot study publication-title: Gait Posture – volume: 76 start-page: 563 year: 2005 end-page: 572 ident: bb0220 article-title: Guidelines for standardization of radiostereometry (RSA) of implants publication-title: Acta Orthop – volume: 98–B start-page: 78 year: 2016 end-page: 80 ident: bb0030 article-title: Patient-specific cutting blocks: of unproven value publication-title: Bone Jt J – volume: 34 start-page: 715 year: 2001 end-page: 722 ident: bb0100 article-title: Model-based Roentgen stereophotogrammetry of orthopaedic implants publication-title: J Biomech – volume: 26 start-page: 1792 year: 2018 end-page: 1799 ident: bb0070 article-title: Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial publication-title: Knee Surg Sport Traumatol Arthrosc – volume: 31 start-page: 2173 year: 2016 end-page: 2180 ident: bb0025 article-title: Does patient-specific instrumentations improve short-term functional outcomes after total knee arthroplasty? A systematic review and meta-analysis publication-title: J Arthroplasty – volume: 38 start-page: 241 year: 2005 end-page: 253 ident: bb0175 article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics publication-title: J Biomech – volume: 356 start-page: 47 year: 1998 end-page: 57 ident: bb0085 article-title: In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis publication-title: Clin Orthop Relat Res – volume: 388 start-page: 157 year: 2001 end-page: 166 ident: bb0170 article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique publication-title: Clin Orthop Relat Res – volume: 33 start-page: 740 year: 2018 end-page: 745 ident: bb0155 article-title: Contact kinematics correlates to tibial component migration following single radius posterior stabilized knee replacement publication-title: J Arthroplasty – volume: 36 start-page: 1841 year: 2012 end-page: 1847 ident: bb0135 article-title: Patients with no functional improvement after total knee arthroplasty show different kinematics publication-title: Int Orthop – year: 2019 ident: bb0095 article-title: Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up publication-title: J Arthroplast – volume: 25 start-page: 570 year: 2010 end-page: 575 ident: bb0145 article-title: Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation publication-title: Clin Biomech (Bristol Avon) – volume: 392 start-page: 383 year: 2001 end-page: 393 ident: bb0140 article-title: Polyethylene damage and knee kinematics after total knee arthroplasty publication-title: Clin Orthop Relat R – volume: 41 start-page: 1361 year: 2017 end-page: 1367 ident: bb0055 article-title: Patient specific instrumentation versus conventional knee arthroplasty: comparative study publication-title: Int Orthop – volume: 468 start-page: 102 year: 2010 end-page: 107 ident: bb0180 article-title: Gap balancing versus measured resection technique for total knee arthroplasty publication-title: Clin Orthop Relat Res – volume: 39 start-page: S45 year: 2016 end-page: S49 ident: bb0195 article-title: Total knee post-cam design variations and their effects on kinematics and wear patterns publication-title: Orthopedics – volume: 468 start-page: 57 year: 2010 end-page: 63 ident: bb0005 article-title: Patient satisfaction after total knee arthroplasty who is satisfied and who is not? publication-title: Clin Orthop Relat Res – volume: 416 start-page: 37 year: 2003 end-page: 57 ident: bb0080 article-title: Multicenter determination of in vivo kinematics after total knee arthroplasty publication-title: Clin Orthop Relat Res – volume: 392 start-page: 124 year: 2001 end-page: 130 ident: bb0150 article-title: Polyethylene wear and variations in knee kinematics publication-title: Clin Orthop Relat Res – volume: 392 start-page: 1672 year: 2018 end-page: 1682 ident: bb0125 article-title: Knee replacement publication-title: Lancet – volume: 30 start-page: 1237 year: 2015 end-page: 1242 ident: bb0215 article-title: Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy publication-title: J Arthroplasty – volume: 99 start-page: 521 year: 2017 end-page: 530 ident: bb0045 article-title: Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis publication-title: J Bone Jt Surg Am – year: 2019 ident: bb0075 article-title: Total knee arthroplasty kinematics publication-title: J Arthroplasty – volume: 32 start-page: 1834 year: 2017 end-page: 1838 ident: bb0105 article-title: Contact kinematic differences between gap balanced vs measured resection techniques for single radius posterior-stabilized total knee arthroplasty publication-title: J Arthroplasty – volume: 26 start-page: 2659 year: 2018 end-page: 2668 ident: bb0040 article-title: Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty publication-title: Knee Surg Sport Traumatol Arthrosc – volume: 51 start-page: 215 year: 2017 end-page: 222 ident: bb0020 article-title: A comparison of short term radiological alignment outcomes of the patient specific and standard instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis publication-title: Acta Orthop Traumatol Turc – volume: 47 start-page: 1682 year: 2014 end-page: 1688 ident: bb0185 article-title: Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data publication-title: J Biomech – volume: 24 start-page: 2517 year: 2016 end-page: 2524 ident: bb0165 article-title: No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty: a computer simulation study publication-title: Knee Surg Sport Traumatol Arthrosc – volume: 24 start-page: 856 year: 2017 end-page: 862 ident: bb0130 article-title: Multifactorial analysis of dissatisfaction after primary total knee replacement publication-title: Knee – volume: 428 start-page: 180 year: 2004 end-page: 189 ident: bb0190 article-title: A multicenter analysis of axial femorotibial rotation after total knee arthroplasty publication-title: Clin Orthop Relat Res – start-page: 1 year: 2019 end-page: 12 ident: bb0060 article-title: Fewer femoral rotational outliers produced with CT- than with MRI-based patient-specific instrumentation in total knee arthroplasty publication-title: Knee Surg Sport Traumatol Arthrosc – volume: 472 start-page: 254 year: 2014 end-page: 262 ident: bb0110 article-title: In vivo determination of cam-post engagement in fixed and mobile-bearing TKA publication-title: Clin Orthop Relat Res – volume: 93 start-page: 1217 year: 2011 end-page: 1222 ident: bb0010 article-title: The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years publication-title: J Bone Jt Surg Br – volume: 34 start-page: 1796 year: 2007 end-page: 1801 ident: bb0115 article-title: Frontal plane knee alignment: a call for standardized measurement publication-title: J Rheumatol – volume: 15 start-page: 336 year: 2017 end-page: 348 ident: bb0050 article-title: CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: a systematic review and meta-analysis publication-title: Surgeon – volume: 40 start-page: 94 year: 2014 end-page: 100 ident: bb0205 article-title: Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs publication-title: Gait Posture – volume: 23 start-page: 186 year: 2016 end-page: 190 ident: bb0035 article-title: Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis publication-title: Knee – year: 2019 ident: bb0090 article-title: Effect of medial soft tissue releases during posterior-stabilized total knee arthroplasty on contact kinematics and patient-reported outcomes publication-title: J Arthroplasty – volume: 471 start-page: 56 year: 2013 end-page: 63 ident: bb0200 article-title: The 2012 Mark Coventry Award a retrieval analysis of high flexion versus posterior-stabilized tibial inserts publication-title: Clin Orthop Relat Res – volume: 87 start-page: 386 year: 2016 end-page: 394 ident: bb0015 article-title: Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty publication-title: Acta Orthop – volume: 68 start-page: 16 year: 2019 end-page: 22 ident: bb0210 article-title: Clinical biomechanics medial knee stability at flexion increases tibial internal rotation and knee flexion angle after posterior-stabilized total knee arthroplasty publication-title: Clin Biomech – volume: 24 start-page: 856 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0130 article-title: Multifactorial analysis of dissatisfaction after primary total knee replacement publication-title: Knee doi: 10.1016/j.knee.2017.04.005 – volume: 38 start-page: 241 year: 2005 ident: 10.1016/j.knee.2020.07.092_bb0175 article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.02.042 – volume: 23 start-page: 186 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0035 article-title: Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis publication-title: Knee doi: 10.1016/j.knee.2015.08.006 – volume: 98–B start-page: 78 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0030 article-title: Patient-specific cutting blocks: of unproven value publication-title: Bone Jt J doi: 10.1302/0301-620X.98B1.36370 – volume: 25 start-page: 570 year: 2010 ident: 10.1016/j.knee.2020.07.092_bb0145 article-title: Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation publication-title: Clin Biomech (Bristol Avon) doi: 10.1016/j.clinbiomech.2010.03.013 – volume: 471 start-page: 56 year: 2013 ident: 10.1016/j.knee.2020.07.092_bb0200 article-title: The 2012 Mark Coventry Award a retrieval analysis of high flexion versus posterior-stabilized tibial inserts publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-012-2387-3 – volume: 428 start-page: 180 year: 2004 ident: 10.1016/j.knee.2020.07.092_bb0190 article-title: A multicenter analysis of axial femorotibial rotation after total knee arthroplasty publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000148777.98244.84 – volume: 30 start-page: 1237 year: 2015 ident: 10.1016/j.knee.2020.07.092_bb0215 article-title: Analysis of the flexion gap on in vivo knee kinematics using fluoroscopy publication-title: J Arthroplasty doi: 10.1016/j.arth.2015.01.046 – volume: 468 start-page: 102 year: 2010 ident: 10.1016/j.knee.2020.07.092_bb0180 article-title: Gap balancing versus measured resection technique for total knee arthroplasty publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-009-1112-3 – start-page: 1 year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0060 article-title: Fewer femoral rotational outliers produced with CT- than with MRI-based patient-specific instrumentation in total knee arthroplasty publication-title: Knee Surg Sport Traumatol Arthrosc – volume: 24 start-page: 2517 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0165 article-title: No condylar lift-off occurs because of excessive lateral soft tissue laxity in neutrally aligned total knee arthroplasty: a computer simulation study publication-title: Knee Surg Sport Traumatol Arthrosc doi: 10.1007/s00167-015-3687-4 – year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0095 article-title: Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up publication-title: J Arthroplast – volume: 99 start-page: 521 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0045 article-title: Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis publication-title: J Bone Jt Surg Am doi: 10.2106/JBJS.16.00496 – volume: 34 start-page: 715 year: 2001 ident: 10.1016/j.knee.2020.07.092_bb0100 article-title: Model-based Roentgen stereophotogrammetry of orthopaedic implants publication-title: J Biomech doi: 10.1016/S0021-9290(01)00028-8 – volume: 388 start-page: 157 year: 2001 ident: 10.1016/j.knee.2020.07.092_bb0170 article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-200107000-00023 – volume: 68 start-page: 16 year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0210 article-title: Clinical biomechanics medial knee stability at flexion increases tibial internal rotation and knee flexion angle after posterior-stabilized total knee arthroplasty publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2019.05.029 – volume: 93 start-page: 1217 year: 2011 ident: 10.1016/j.knee.2020.07.092_bb0010 article-title: The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years publication-title: J Bone Jt Surg Br doi: 10.1302/0301-620X.93B9.26573 – year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0090 article-title: Effect of medial soft tissue releases during posterior-stabilized total knee arthroplasty on contact kinematics and patient-reported outcomes publication-title: J Arthroplasty doi: 10.1016/j.arth.2019.02.026 – volume: 26 start-page: 1792 year: 2018 ident: 10.1016/j.knee.2020.07.092_bb0070 article-title: Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial publication-title: Knee Surg Sport Traumatol Arthrosc doi: 10.1007/s00167-017-4792-3 – volume: 99 start-page: 1129 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0120 article-title: The effect on long-term survivorship of surgeon preference for posterior-stabilized or minimally stabilized total knee replacement: an analysis of 63,416 prostheses from the Australian Orthopaedic Association National Joint Replacement Registry publication-title: J Bone Jt Surg Am doi: 10.2106/JBJS.16.01083 – volume: 40 start-page: 94 year: 2014 ident: 10.1016/j.knee.2020.07.092_bb0205 article-title: Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.02.016 – volume: 51 start-page: 215 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0020 article-title: A comparison of short term radiological alignment outcomes of the patient specific and standard instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis publication-title: Acta Orthop Traumatol Turc doi: 10.1016/j.aott.2017.02.001 – volume: 32 start-page: 1834 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0105 article-title: Contact kinematic differences between gap balanced vs measured resection techniques for single radius posterior-stabilized total knee arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.12.054 – year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0075 article-title: Total knee arthroplasty kinematics publication-title: J Arthroplasty doi: 10.1016/j.arth.2019.05.037 – volume: 76 start-page: 563 year: 2005 ident: 10.1016/j.knee.2020.07.092_bb0220 article-title: Guidelines for standardization of radiostereometry (RSA) of implants publication-title: Acta Orthop doi: 10.1080/17453670510041574 – volume: 468 start-page: 57 year: 2010 ident: 10.1016/j.knee.2020.07.092_bb0005 article-title: Patient satisfaction after total knee arthroplasty who is satisfied and who is not? publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-009-1119-9 – volume: 39 start-page: S45 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0195 article-title: Total knee post-cam design variations and their effects on kinematics and wear patterns publication-title: Orthopedics doi: 10.3928/01477447-20160509-14 – volume: 416 start-page: 37 year: 2003 ident: 10.1016/j.knee.2020.07.092_bb0080 article-title: Multicenter determination of in vivo kinematics after total knee arthroplasty publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000092986.12414.b5 – volume: 34 start-page: 1796 year: 2007 ident: 10.1016/j.knee.2020.07.092_bb0115 article-title: Frontal plane knee alignment: a call for standardized measurement publication-title: J Rheumatol – volume: 87 start-page: 386 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0015 article-title: Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty publication-title: Acta Orthop doi: 10.1080/17453674.2016.1193799 – volume: 15 start-page: 336 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0050 article-title: CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: a systematic review and meta-analysis publication-title: Surgeon doi: 10.1016/j.surge.2017.06.002 – volume: 34 year: 2019 ident: 10.1016/j.knee.2020.07.092_bb0065 article-title: Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: a prospective, randomized, controlled trial publication-title: J Arthroplast doi: 10.1016/j.arth.2019.03.018 – volume: 41 start-page: 1361 year: 2017 ident: 10.1016/j.knee.2020.07.092_bb0055 article-title: Patient specific instrumentation versus conventional knee arthroplasty: comparative study publication-title: Int Orthop doi: 10.1007/s00264-016-3356-3 – volume: 33 start-page: 740 year: 2018 ident: 10.1016/j.knee.2020.07.092_bb0155 article-title: Contact kinematics correlates to tibial component migration following single radius posterior stabilized knee replacement publication-title: J Arthroplasty doi: 10.1016/j.arth.2017.09.064 – volume: 31 start-page: 2173 year: 2016 ident: 10.1016/j.knee.2020.07.092_bb0025 article-title: Does patient-specific instrumentations improve short-term functional outcomes after total knee arthroplasty? A systematic review and meta-analysis publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.03.047 – volume: 392 start-page: 1672 year: 2018 ident: 10.1016/j.knee.2020.07.092_bb0125 article-title: Knee replacement publication-title: Lancet doi: 10.1016/S0140-6736(18)32344-4 – volume: 36 start-page: 394 year: 2012 ident: 10.1016/j.knee.2020.07.092_bb0160 article-title: Integrated assessment techniques for linking kinematics, kinetics and muscle activation to early migration: a pilot study publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.022 – volume: 47 start-page: 1682 year: 2014 ident: 10.1016/j.knee.2020.07.092_bb0185 article-title: Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.02.031 – volume: 392 start-page: 383 year: 2001 ident: 10.1016/j.knee.2020.07.092_bb0140 article-title: Polyethylene damage and knee kinematics after total knee arthroplasty publication-title: Clin Orthop Relat R doi: 10.1097/00003086-200111000-00050 – volume: 36 start-page: 1841 year: 2012 ident: 10.1016/j.knee.2020.07.092_bb0135 article-title: Patients with no functional improvement after total knee arthroplasty show different kinematics publication-title: Int Orthop doi: 10.1007/s00264-012-1584-8 – volume: 472 start-page: 254 year: 2014 ident: 10.1016/j.knee.2020.07.092_bb0110 article-title: In vivo determination of cam-post engagement in fixed and mobile-bearing TKA publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-013-3257-3 – volume: 392 start-page: 124 year: 2001 ident: 10.1016/j.knee.2020.07.092_bb0150 article-title: Polyethylene wear and variations in knee kinematics publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-200111000-00015 – volume: 356 start-page: 47 year: 1998 ident: 10.1016/j.knee.2020.07.092_bb0085 article-title: In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199811000-00009 – volume: 26 start-page: 2659 year: 2018 ident: 10.1016/j.knee.2020.07.092_bb0040 article-title: Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty publication-title: Knee Surg Sport Traumatol Arthrosc doi: 10.1007/s00167-017-4637-0 |
| SSID | ssj0006945 |
| Score | 2.2913885 |
| Snippet | The goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to... AbstractBackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI)... BackgroundThe goal was to evaluate the joint contact kinematics of total knee arthroplasties implanted using patient-specific instrumentation (PSI) compared to... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1501 |
| SubjectTerms | Aged Ankle Arthritis Arthroplasty (knee) Arthroplasty, Replacement, Knee - instrumentation Arthroplasty, Replacement, Knee - methods Biomechanical Phenomena - physiology Contact kinematics Female Humans Joint replacement surgery Joint surgery Kinematics Knee Knee Joint - diagnostic imaging Knee Joint - physiopathology Knee Joint - surgery Magnetic Resonance Imaging Male Orthopedics Osteoarthritis Patient satisfaction Patient-specific instrumentation Polyethylene Printing, Three-Dimensional Prospective Studies Radiostereometric Analysis Software Surgeons Total knee arthroplasty |
| Title | Contact kinematics of patient-specific instrumentation versus conventional instrumentation for total knee arthroplasty |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0968016020302763 https://www.clinicalkey.es/playcontent/1-s2.0-S0968016020302763 https://dx.doi.org/10.1016/j.knee.2020.07.092 https://www.ncbi.nlm.nih.gov/pubmed/33010767 https://www.proquest.com/docview/2458952641 https://www.proquest.com/docview/2448407693 |
| Volume | 27 |
| WOSCitedRecordID | wos000600605600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-5800 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006945 issn: 0968-0160 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jQdeEDA-CmMyEtrLlCqpk9h5rFAnmKaCRIf6ZjmJLdhKWpau2v4y_j3uYidLu63AAw-NqsTOh--Xy539uztC3gWB8sM0YF7Io9QDhcc8wUTm6TwC5cd5HvlpVWyCj0ZiMkk-dzq_6liY5ZQXhbi6Sub_VdSwD4SNobP_IO7mpLAD_oPQYQtih-1fCR7zTWHg4znYj1U-1oqs4fKnehhZiewgJKEvMHFC4eiGSM-4LFdZ6OttKkriDMMnzwutMT8SFlkA-3uxsjiM0MMGLVe_ZpEdg6-LGqWZg1ZIY2xZ8q2lJ8vobai8h8009VdVqotvenpdMRFs2Wk3q-vmL8BZrZlwblKtDqy5HdCVxMizs-UGetrqZ8GZFwnfbytwm1zAATVqaWMwdoM7PxN2xuKsh2PRw5uqErjaonyrOblHn-TR6cmJHA8n44P5Tw_LleGyvqvdskV2-jxKQJ3uDD4OJ8eNERAnVX3s5hlcvJalFq5f9j6b6D6fp7J9xo_JI-e00IEF2xPS0cVTsjso1GL245oe0IpGXK3P7JKlwx-9wR-dGbqOP7qGLWrxR9v4u9UG8Ecr_FF8NtrG3zNyejQcv__gueIeXhYm_sJT4EfDuBiT-0yZOBQmjXSasdyAD5CZIMnRlFIxg18gdJby1PDYV5plfSNSwZ6T7WJW6JeECp6xlPvcGJWFLDWpjlKm8jAx4P2rOOuSoB5embnM91iAZSpriuOZxNuWKBLpcwki6ZLDps_c5n3Z2JrVUpN1RDN8gyXgbWMvflcvXTptUspAln3pyy8II0RR30eaQcy6JGp6OkvZWsB_vOJeDSnZXKQfRiKJwDEKuuRtcxi-Mrh0qAo9u8Q2oQh9rJvaJS8sFJthYWAjwCH-avPJX5OHN6__HtkG_Og35EG2XHwvL_bJFp-IffcW_QZTTANy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contact+kinematics+of+patient-specific+instrumentation+versus+conventional+instrumentation+for+total+knee+arthroplasty&rft.jtitle=The+knee&rft.au=Broberg%2C+Jordan+S&rft.au=Naudie%2C+Douglas+DR&rft.au=Howard%2C+James+L&rft.au=Vasarhelyi%2C+Edward+M&rft.date=2020-10-01&rft.pub=Elsevier+Limited&rft.issn=0968-0160&rft.eissn=1873-5800&rft.volume=27&rft.issue=5&rft.spage=1501&rft_id=info:doi/10.1016%2Fj.knee.2020.07.092&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09680160%2Fcov200h.gif |