Improved training of neural networks for the nonlinear active control of sound and vibration

Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 10; číslo 2; s. 391 - 401
Hlavní autoři: Bouchard, M., Paillard, B., Chon Tan Le Dinh
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.1999
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.
AbstractList Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.
Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers
Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.
Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.
Author Paillard, B.
Chon Tan Le Dinh
Bouchard, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Bouchard
  fullname: Bouchard, M.
  organization: Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont., Canada
– sequence: 2
  givenname: B.
  surname: Paillard
  fullname: Paillard, B.
– sequence: 3
  surname: Chon Tan Le Dinh
  fullname: Chon Tan Le Dinh
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1736093$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18252535$$D View this record in MEDLINE/PubMed
BookMark eNqFkstrVDEUxrOo2Icu3LqQLERxMW0eN6-lFB-Fgpt2J4RM7olG7yQ1yR3xvzfXGSuUYknCWeT3fYfzOEYHKSdA6Bklp5QSc6bYqRJESH2AjigZxMowpg7Rca3fCKGDIPIxOqSaCSa4OEKfLzY3JW9hxK24mGL6gnPACebiph7az1y-Vxxywe0r4J5riglcwc63uAXsc2olT4um5jmN2PW3jeviWszpCXoU3FTh6T6eoOv3767OP64uP324OH97ufKDIW2lR-pHPoQhMDJIE0B43o92XDgJjK-BmCCU9ibINaMjkcwLkJ44ERjzmp-g1zvfXsqPGWqzm1g9TJNLkOdqDTX9MvowqThnTGvJO_nqvyTTAxmUIQ-DihDG1eL4Yg_O6w2M9qbEjSu_7N9hdODlHnDVuykUl3ys_zjFJTGLz9kO8yXXWiBYH9uffi8jnCwldtkEq5jdbUJXvLmjuPW8h32-YyMA3HL7z9_LX7wN
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_asoc_2013_10_025
crossref_primary_10_1016_j_ymssp_2020_106703
crossref_primary_10_1109_TIM_2007_899911
crossref_primary_10_3390_app122010248
crossref_primary_10_1016_j_asoc_2014_06_007
crossref_primary_10_1121_1_4731227
crossref_primary_10_1016_j_conengprac_2004_04_009
crossref_primary_10_1109_89_861382
crossref_primary_10_1121_10_0037087
crossref_primary_10_1016_j_sigpro_2020_107929
crossref_primary_10_1115_1_1424296
crossref_primary_10_1109_TCSI_2004_829241
crossref_primary_10_1016_j_jsv_2006_03_020
crossref_primary_10_1016_j_asoc_2007_10_017
crossref_primary_10_1016_j_jsv_2013_09_006
crossref_primary_10_2478_v10168_010_0018_0
crossref_primary_10_1109_TCSI_2004_842429
crossref_primary_10_1016_j_ymssp_2011_09_012
crossref_primary_10_1016_j_ymssp_2012_06_020
crossref_primary_10_1016_j_apacoust_2018_01_021
crossref_primary_10_1017_ATSIP_2012_4
crossref_primary_10_1109_72_896802
crossref_primary_10_1088_1538_3873_aa70df
crossref_primary_10_1016_j_apacoust_2013_05_010
crossref_primary_10_1016_j_jsv_2011_05_024
crossref_primary_10_1016_j_sigpro_2012_08_013
crossref_primary_10_1177_0142331214527602
crossref_primary_10_1016_j_neucom_2013_05_007
crossref_primary_10_1016_j_neucom_2020_11_036
crossref_primary_10_1243_09544062JMES567
crossref_primary_10_1109_TCSI_2016_2572091
crossref_primary_10_1016_j_jsv_2007_04_007
crossref_primary_10_1016_j_eswa_2008_06_062
crossref_primary_10_1007_s11071_014_1706_5
crossref_primary_10_1016_j_neunet_2021_03_037
crossref_primary_10_1016_j_jsv_2011_12_030
crossref_primary_10_1109_TSA_2003_822741
crossref_primary_10_1002__SICI_1098_111X_200005_15_5_365__AID_INT1_3_0_CO_2_P
crossref_primary_10_1002_tee_21778
crossref_primary_10_1109_TASL_2009_2025798
crossref_primary_10_1002_acs_2452
crossref_primary_10_1016_j_engappai_2017_12_009
crossref_primary_10_4028_www_scientific_net_AMM_513_517_4106
crossref_primary_10_1016_j_cnsns_2014_10_011
crossref_primary_10_1109_TSA_2005_858543
crossref_primary_10_1016_j_apacoust_2005_06_003
crossref_primary_10_1016_S0888_613X_02_00147_0
crossref_primary_10_20965_jaciii_2011_p0854
crossref_primary_10_1080_00207170802227191
crossref_primary_10_1016_j_apacoust_2007_06_008
crossref_primary_10_1016_j_apacoust_2016_01_001
crossref_primary_10_1016_j_sigpro_2009_09_001
crossref_primary_10_1016_j_apacoust_2017_10_023
crossref_primary_10_1016_j_neucom_2025_130637
crossref_primary_10_1016_j_dsp_2009_11_006
crossref_primary_10_1088_0964_1726_22_7_075031
crossref_primary_10_1016_j_asoc_2016_01_011
crossref_primary_10_1109_TCSI_2006_887636
crossref_primary_10_1016_j_apacoust_2023_109422
crossref_primary_10_1155_2007_41679
crossref_primary_10_1177_0263092316628260
crossref_primary_10_1109_78_934136
crossref_primary_10_1016_j_sigpro_2024_109525
crossref_primary_10_1109_TSP_2005_861755
crossref_primary_10_3390_agriculture15151655
crossref_primary_10_1016_j_sigpro_2016_05_014
crossref_primary_10_1016_j_apacoust_2018_04_020
crossref_primary_10_1016_S0022_460X_03_00742_9
crossref_primary_10_1016_j_apacoust_2022_108914
crossref_primary_10_1177_1461348419872305
crossref_primary_10_1016_j_conengprac_2012_11_007
Cites_doi 10.1109/ICASSP.1996.544227
10.1121/1.409957
10.1109/79.248551
10.1121/1.417204
10.1016/0003-682X(95)00014-Z
10.1016/S0893-6080(05)80139-X
10.1109/TASSP.1987.1165165
10.1109/IJCNN.1990.137629
10.1109/ASPAA.1995.482948
10.1109/72.392246
10.1121/1.400508
10.1016/S0967-0661(97)84370-5
10.1109/TASSP.1987.1165044
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright_xml – notice: 1999 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/72.750568
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
MEDLINE - Academic

PubMed
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EndPage 401
ExternalDocumentID 18252535
1736093
10_1109_72_750568
750568
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c490t-8d1cd34f4f20469fe5c3c3c8a35a6e23be09f578c9f6b21d062c5e6c0a5f22c83
IEDL.DBID RIE
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079154400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Thu Sep 04 20:51:00 EDT 2025
Thu Sep 04 19:55:56 EDT 2025
Fri Sep 05 05:57:26 EDT 2025
Fri Sep 05 06:21:21 EDT 2025
Thu Apr 03 06:58:34 EDT 2025
Mon Jul 21 09:15:56 EDT 2025
Tue Nov 18 22:32:16 EST 2025
Sat Nov 29 03:59:14 EST 2025
Tue Aug 26 21:00:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Backpropagation
Least squares problem
Non linear control
Vibration control
Neural network
Sound source
Learning algorithm
Recursive algorithm
Active control
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-8d1cd34f4f20469fe5c3c3c8a35a6e23be09f578c9f6b21d062c5e6c0a5f22c83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18252535
PQID 27002373
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_733228863
proquest_miscellaneous_28404790
proquest_miscellaneous_919919218
crossref_primary_10_1109_72_750568
ieee_primary_750568
proquest_miscellaneous_27002373
pubmed_primary_18252535
pascalfrancis_primary_1736093
crossref_citationtrail_10_1109_72_750568
PublicationCentury 1900
PublicationDate 1999-03-01
PublicationDateYYYYMMDD 1999-03-01
PublicationDate_xml – month: 03
  year: 1999
  text: 1999-03-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 1999
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref24
ref12
tokhi (ref3) 1992
ref23
ref11
ref21
kim (ref14) 1994; 95
haykin (ref20) 1994
ref1
ref17
kuo (ref6) 1996
fuller (ref5) 1996
ref16
ref19
haykin (ref8) 1996
ref18
widrow (ref7) 1985
ref9
nelson (ref2) 1992
douglas (ref15) 1997
berkman (ref4) 1997; 31
shen (ref10) 1993
bouchard (ref22) 1997
References_xml – ident: ref24
  doi: 10.1109/ICASSP.1996.544227
– volume: 95
  start-page: 3379
  year: 1994
  ident: ref14
  article-title: constraint filtered-$x$ and filtered-$u$ least-mean-square algorithms for the active control of noise in ducts
  publication-title: J Acoust Soc Amer
  doi: 10.1121/1.409957
– year: 1992
  ident: ref3
  publication-title: Active Noise Control
– ident: ref1
  doi: 10.1109/79.248551
– ident: ref11
  doi: 10.1121/1.417204
– ident: ref13
  doi: 10.1016/0003-682X(95)00014-Z
– year: 1985
  ident: ref7
  publication-title: Adaptive Signal Processing
– ident: ref21
  doi: 10.1016/S0893-6080(05)80139-X
– start-page: 755
  year: 1993
  ident: ref10
  article-title: frequency-domain adaptive algorithms for multichannel active sound control
  publication-title: Proc 2nd Conf Recent Advances in Active Control of Sound and Vibrations
– ident: ref17
  doi: 10.1109/TASSP.1987.1165165
– year: 1992
  ident: ref2
  publication-title: Active Control of Sound
– ident: ref23
  doi: 10.1109/IJCNN.1990.137629
– year: 1997
  ident: ref22
  publication-title: De&#x00B4 veloppement et Validation d Algorithmes a&#x0060 Convergence Rapide Pour l Apprentissage de Re&#x00B4 seaux de Neurones Utilise&#x00B4 s en Contro&#x2218 le Actif Nonline&#x00B4 aire
– start-page: 399
  year: 1997
  ident: ref15
  article-title: fast, exact filtered-$x$ lms and lms algorithms for multichannel active noise control
  publication-title: Proc ICASSP-97
– year: 1996
  ident: ref5
  publication-title: Active Control of Vibration
– ident: ref12
  doi: 10.1109/ASPAA.1995.482948
– year: 1996
  ident: ref6
  publication-title: Active Noise Control Systems&#x2014 Algorithms and DSP Implementations
– ident: ref18
  doi: 10.1109/72.392246
– ident: ref16
  doi: 10.1121/1.400508
– ident: ref19
  doi: 10.1016/S0967-0661(97)84370-5
– volume: 31
  start-page: 80
  year: 1997
  ident: ref4
  article-title: perspectives on active noise and vibration control
  publication-title: Sound and Vibration
– year: 1996
  ident: ref8
  publication-title: Adaptive Filter Theory
– ident: ref9
  doi: 10.1109/TASSP.1987.1165044
– year: 1994
  ident: ref20
  publication-title: Neural Networks A Comprehensive Foundation
SSID ssj0014506
Score 1.4637434
Snippet Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical...
Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 391
SubjectTerms Acoustic sensors
Active control
Actuators
Algorithms
Applied sciences
Backpropagation algorithms
Control systems
Controllers
Ducts
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Interference
Neural networks
Nonlinear control systems
Nonlinearity
Sensor systems
Sound
Training
Vibration control
Title Improved training of neural networks for the nonlinear active control of sound and vibration
URI https://ieeexplore.ieee.org/document/750568
https://www.ncbi.nlm.nih.gov/pubmed/18252535
https://www.proquest.com/docview/27002373
https://www.proquest.com/docview/28404790
https://www.proquest.com/docview/733228863
https://www.proquest.com/docview/919919218
Volume 10
WOSCitedRecordID wos000079154400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt2cP2sG7XrU23dqaUsZe0Pjv-eixjZU-lDyvcQyE4jg2DLVcud4X995Xt5LpCbzBCIASZ2JYVSZb8E8CpNRSZ6V3pGZfooEhbNszTstGoOwN1U0lDKjahrq70bGauB5ztdBbGe5-Sz_xZfEyx_HbuVnGr7FxFda23YVspmY9qrQMGlUhlNNG5EKVhTA0gQlNqzhU7yw2fqJ5USyVmQtoeJyPkKhabzcykbi53_6ujb-D1YFWSi7wM3sKW7yawd9GhR_37D_lMUp5n2kCfwO5YyIEMcj2BV3-hEu7Bbd5o8C0Z60eQeSAR-BI_0eW08Z6gsUvQeCRdxtqwC2LTr5MMye-xTR9rNhGL9330yuMaeAc3l99-fP1eDkUYSlcZuix1O3Utr0IVWHSlgxeO46UtF1YigxtPTUCxdybIhk1bKpkTXjpqRWDMaf4edrAn_gAIl02oXKBoIjSVE6gIVeC2jSYPGplVW8CXkT-1GxDK40B_1clToaZWrM5TW8DJmvQuw3I8RzSJrFkTjG-PnvD8sb3ikhpewKdxDdQoajF-Yjs_X_V1jNEzrv5Fge5ypQwtgGygUBz_oFpLvpnExGw0g6ZXAft5CT52Ef15Jrg4fHZkH-BlBpWIGXIfYWe5WPkjeOHulz_7xTFKzUwfJ6l5ADxAFh0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0CtYHq1c_Vq0NIuLLtrl8bh6LWCrWw4cKfRCWbDaBgu6V27uC_72TZPdqoSfIsrAsEzbJTHZ-k5nMALyzhiIzvSs94woNFGXLhnlaNhXqzkDdVNGQik3o2aw6Pzffhjzb6SyM9z4Fn_mD-Jh8-e3creJW2aGO6rq6C_ekEIzmw1prl4GQqZAmmheyNIzpIY3QlJpDzQ5y0xvKJ1VTibGQtsfpCLmOxWagmRTO8c5_dfUxPBpwJTnKgvAE7vhuArtHHdrUv36T9yRFeqYt9AnsjKUcyLCyJ_Dwr7yEu_AjbzX4lowVJMg8kJj6Ej_R5cDxniDcJQgfSZezbdgFsennSYbw99imj1WbiMX7KtrlUQqewvfjT2cfT8qhDEPphKHLsmqnruUiiMCiMR28dByvynJpFbK48dQEXPjOBNWwaUsVc9IrR60MjLmKP4Mt7Il_AYSrJggXKIKERjiJqlAHbtsIehBmiraADyN_ajfkKI8D_VknW4WaWrM6T20Bb9eklzkxx21Ek8iaNcH4du8Gz6_ba66o4QXsjzJQ42KLHhTb-fmqr6OXnnH9Lwo0mIU2tACygUJz_IdWleKbSUyMRzMIvgp4nkXwuoto0TPJ5ctbR7YPD07Ovp7Wp59nX17Bdk4xEePlXsPWcrHye3DfXS0v-sWbtHb-ADsZGHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+training+of+neural+networks+for+the+nonlinear+active+control+of+sound+and+vibration&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=BOUCHARD%2C+M&rft.au=PAILLARD%2C+B&rft.au=CHON+TAN+LE+DINH&rft.date=1999-03-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=10&rft.issue=2&rft.spage=391&rft.epage=401&rft_id=info:doi/10.1109%2F72.750568&rft.externalDBID=n%2Fa&rft.externalDocID=1736093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon