Improved training of neural networks for the nonlinear active control of sound and vibration
Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 10; číslo 2; s. 391 - 401 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.03.1999
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1045-9227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. |
|---|---|
| AbstractList | Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed and/or lower computational loads. Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. |
| Author | Paillard, B. Chon Tan Le Dinh Bouchard, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Bouchard fullname: Bouchard, M. organization: Sch. of Inf. Technol. & Eng., Ottawa Univ., Ont., Canada – sequence: 2 givenname: B. surname: Paillard fullname: Paillard, B. – sequence: 3 surname: Chon Tan Le Dinh fullname: Chon Tan Le Dinh |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1736093$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18252535$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstrVDEUxrOo2Icu3LqQLERxMW0eN6-lFB-Fgpt2J4RM7olG7yQ1yR3xvzfXGSuUYknCWeT3fYfzOEYHKSdA6Bklp5QSc6bYqRJESH2AjigZxMowpg7Rca3fCKGDIPIxOqSaCSa4OEKfLzY3JW9hxK24mGL6gnPACebiph7az1y-Vxxywe0r4J5riglcwc63uAXsc2olT4um5jmN2PW3jeviWszpCXoU3FTh6T6eoOv3767OP64uP324OH97ufKDIW2lR-pHPoQhMDJIE0B43o92XDgJjK-BmCCU9ibINaMjkcwLkJ44ERjzmp-g1zvfXsqPGWqzm1g9TJNLkOdqDTX9MvowqThnTGvJO_nqvyTTAxmUIQ-DihDG1eL4Yg_O6w2M9qbEjSu_7N9hdODlHnDVuykUl3ys_zjFJTGLz9kO8yXXWiBYH9uffi8jnCwldtkEq5jdbUJXvLmjuPW8h32-YyMA3HL7z9_LX7wN |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2013_10_025 crossref_primary_10_1016_j_ymssp_2020_106703 crossref_primary_10_1109_TIM_2007_899911 crossref_primary_10_3390_app122010248 crossref_primary_10_1016_j_asoc_2014_06_007 crossref_primary_10_1121_1_4731227 crossref_primary_10_1016_j_conengprac_2004_04_009 crossref_primary_10_1109_89_861382 crossref_primary_10_1121_10_0037087 crossref_primary_10_1016_j_sigpro_2020_107929 crossref_primary_10_1115_1_1424296 crossref_primary_10_1109_TCSI_2004_829241 crossref_primary_10_1016_j_jsv_2006_03_020 crossref_primary_10_1016_j_asoc_2007_10_017 crossref_primary_10_1016_j_jsv_2013_09_006 crossref_primary_10_2478_v10168_010_0018_0 crossref_primary_10_1109_TCSI_2004_842429 crossref_primary_10_1016_j_ymssp_2011_09_012 crossref_primary_10_1016_j_ymssp_2012_06_020 crossref_primary_10_1016_j_apacoust_2018_01_021 crossref_primary_10_1017_ATSIP_2012_4 crossref_primary_10_1109_72_896802 crossref_primary_10_1088_1538_3873_aa70df crossref_primary_10_1016_j_apacoust_2013_05_010 crossref_primary_10_1016_j_jsv_2011_05_024 crossref_primary_10_1016_j_sigpro_2012_08_013 crossref_primary_10_1177_0142331214527602 crossref_primary_10_1016_j_neucom_2013_05_007 crossref_primary_10_1016_j_neucom_2020_11_036 crossref_primary_10_1243_09544062JMES567 crossref_primary_10_1109_TCSI_2016_2572091 crossref_primary_10_1016_j_jsv_2007_04_007 crossref_primary_10_1016_j_eswa_2008_06_062 crossref_primary_10_1007_s11071_014_1706_5 crossref_primary_10_1016_j_neunet_2021_03_037 crossref_primary_10_1016_j_jsv_2011_12_030 crossref_primary_10_1109_TSA_2003_822741 crossref_primary_10_1002__SICI_1098_111X_200005_15_5_365__AID_INT1_3_0_CO_2_P crossref_primary_10_1002_tee_21778 crossref_primary_10_1109_TASL_2009_2025798 crossref_primary_10_1002_acs_2452 crossref_primary_10_1016_j_engappai_2017_12_009 crossref_primary_10_4028_www_scientific_net_AMM_513_517_4106 crossref_primary_10_1016_j_cnsns_2014_10_011 crossref_primary_10_1109_TSA_2005_858543 crossref_primary_10_1016_j_apacoust_2005_06_003 crossref_primary_10_1016_S0888_613X_02_00147_0 crossref_primary_10_20965_jaciii_2011_p0854 crossref_primary_10_1080_00207170802227191 crossref_primary_10_1016_j_apacoust_2007_06_008 crossref_primary_10_1016_j_apacoust_2016_01_001 crossref_primary_10_1016_j_sigpro_2009_09_001 crossref_primary_10_1016_j_apacoust_2017_10_023 crossref_primary_10_1016_j_neucom_2025_130637 crossref_primary_10_1016_j_dsp_2009_11_006 crossref_primary_10_1088_0964_1726_22_7_075031 crossref_primary_10_1016_j_asoc_2016_01_011 crossref_primary_10_1109_TCSI_2006_887636 crossref_primary_10_1016_j_apacoust_2023_109422 crossref_primary_10_1155_2007_41679 crossref_primary_10_1177_0263092316628260 crossref_primary_10_1109_78_934136 crossref_primary_10_1016_j_sigpro_2024_109525 crossref_primary_10_1109_TSP_2005_861755 crossref_primary_10_3390_agriculture15151655 crossref_primary_10_1016_j_sigpro_2016_05_014 crossref_primary_10_1016_j_apacoust_2018_04_020 crossref_primary_10_1016_S0022_460X_03_00742_9 crossref_primary_10_1016_j_apacoust_2022_108914 crossref_primary_10_1177_1461348419872305 crossref_primary_10_1016_j_conengprac_2012_11_007 |
| Cites_doi | 10.1109/ICASSP.1996.544227 10.1121/1.409957 10.1109/79.248551 10.1121/1.417204 10.1016/0003-682X(95)00014-Z 10.1016/S0893-6080(05)80139-X 10.1109/TASSP.1987.1165165 10.1109/IJCNN.1990.137629 10.1109/ASPAA.1995.482948 10.1109/72.392246 10.1121/1.400508 10.1016/S0967-0661(97)84370-5 10.1109/TASSP.1987.1165044 |
| ContentType | Journal Article |
| Copyright | 1999 INIST-CNRS |
| Copyright_xml | – notice: 1999 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
| DOI | 10.1109/72.750568 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database MEDLINE - Academic PubMed Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EndPage | 401 |
| ExternalDocumentID | 18252535 1736093 10_1109_72_750568 750568 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7SP F28 FR3 |
| ID | FETCH-LOGICAL-c490t-8d1cd34f4f20469fe5c3c3c8a35a6e23be09f578c9f6b21d062c5e6c0a5f22c83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079154400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Thu Sep 04 20:51:00 EDT 2025 Thu Sep 04 19:55:56 EDT 2025 Fri Sep 05 05:57:26 EDT 2025 Fri Sep 05 06:21:21 EDT 2025 Thu Apr 03 06:58:34 EDT 2025 Mon Jul 21 09:15:56 EDT 2025 Tue Nov 18 22:32:16 EST 2025 Sat Nov 29 03:59:14 EST 2025 Tue Aug 26 21:00:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Keywords | Backpropagation Least squares problem Non linear control Vibration control Neural network Sound source Learning algorithm Recursive algorithm Active control |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-8d1cd34f4f20469fe5c3c3c8a35a6e23be09f578c9f6b21d062c5e6c0a5f22c83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18252535 |
| PQID | 27002373 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_733228863 proquest_miscellaneous_28404790 proquest_miscellaneous_919919218 crossref_primary_10_1109_72_750568 ieee_primary_750568 proquest_miscellaneous_27002373 pubmed_primary_18252535 pascalfrancis_primary_1736093 crossref_citationtrail_10_1109_72_750568 |
| PublicationCentury | 1900 |
| PublicationDate | 1999-03-01 |
| PublicationDateYYYYMMDD | 1999-03-01 |
| PublicationDate_xml | – month: 03 year: 1999 text: 1999-03-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 1999 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref24 ref12 tokhi (ref3) 1992 ref23 ref11 ref21 kim (ref14) 1994; 95 haykin (ref20) 1994 ref1 ref17 kuo (ref6) 1996 fuller (ref5) 1996 ref16 ref19 haykin (ref8) 1996 ref18 widrow (ref7) 1985 ref9 nelson (ref2) 1992 douglas (ref15) 1997 berkman (ref4) 1997; 31 shen (ref10) 1993 bouchard (ref22) 1997 |
| References_xml | – ident: ref24 doi: 10.1109/ICASSP.1996.544227 – volume: 95 start-page: 3379 year: 1994 ident: ref14 article-title: constraint filtered-$x$ and filtered-$u$ least-mean-square algorithms for the active control of noise in ducts publication-title: J Acoust Soc Amer doi: 10.1121/1.409957 – year: 1992 ident: ref3 publication-title: Active Noise Control – ident: ref1 doi: 10.1109/79.248551 – ident: ref11 doi: 10.1121/1.417204 – ident: ref13 doi: 10.1016/0003-682X(95)00014-Z – year: 1985 ident: ref7 publication-title: Adaptive Signal Processing – ident: ref21 doi: 10.1016/S0893-6080(05)80139-X – start-page: 755 year: 1993 ident: ref10 article-title: frequency-domain adaptive algorithms for multichannel active sound control publication-title: Proc 2nd Conf Recent Advances in Active Control of Sound and Vibrations – ident: ref17 doi: 10.1109/TASSP.1987.1165165 – year: 1992 ident: ref2 publication-title: Active Control of Sound – ident: ref23 doi: 10.1109/IJCNN.1990.137629 – year: 1997 ident: ref22 publication-title: De´ veloppement et Validation d Algorithmes a` Convergence Rapide Pour l Apprentissage de Re´ seaux de Neurones Utilise´ s en Contro∘ le Actif Nonline´ aire – start-page: 399 year: 1997 ident: ref15 article-title: fast, exact filtered-$x$ lms and lms algorithms for multichannel active noise control publication-title: Proc ICASSP-97 – year: 1996 ident: ref5 publication-title: Active Control of Vibration – ident: ref12 doi: 10.1109/ASPAA.1995.482948 – year: 1996 ident: ref6 publication-title: Active Noise Control Systems— Algorithms and DSP Implementations – ident: ref18 doi: 10.1109/72.392246 – ident: ref16 doi: 10.1121/1.400508 – ident: ref19 doi: 10.1016/S0967-0661(97)84370-5 – volume: 31 start-page: 80 year: 1997 ident: ref4 article-title: perspectives on active noise and vibration control publication-title: Sound and Vibration – year: 1996 ident: ref8 publication-title: Adaptive Filter Theory – ident: ref9 doi: 10.1109/TASSP.1987.1165044 – year: 1994 ident: ref20 publication-title: Neural Networks A Comprehensive Foundation |
| SSID | ssj0014506 |
| Score | 1.4637434 |
| Snippet | Active control of sound and vibration has been the subject of a lot of research, and examples of applications are now numerous. However, few practical... Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 391 |
| SubjectTerms | Acoustic sensors Active control Actuators Algorithms Applied sciences Backpropagation algorithms Control systems Controllers Ducts Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Interference Neural networks Nonlinear control systems Nonlinearity Sensor systems Sound Training Vibration control |
| Title | Improved training of neural networks for the nonlinear active control of sound and vibration |
| URI | https://ieeexplore.ieee.org/document/750568 https://www.ncbi.nlm.nih.gov/pubmed/18252535 https://www.proquest.com/docview/27002373 https://www.proquest.com/docview/28404790 https://www.proquest.com/docview/733228863 https://www.proquest.com/docview/919919218 |
| Volume | 10 |
| WOSCitedRecordID | wos000079154400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt2cP2sG7XrU23dqaUsZe0Pjv-eixjZU-lDyvcQyE4jg2DLVcud4X995Xt5LpCbzBCIASZ2JYVSZb8E8CpNRSZ6V3pGZfooEhbNszTstGoOwN1U0lDKjahrq70bGauB5ztdBbGe5-Sz_xZfEyx_HbuVnGr7FxFda23YVspmY9qrQMGlUhlNNG5EKVhTA0gQlNqzhU7yw2fqJ5USyVmQtoeJyPkKhabzcykbi53_6ujb-D1YFWSi7wM3sKW7yawd9GhR_37D_lMUp5n2kCfwO5YyIEMcj2BV3-hEu7Bbd5o8C0Z60eQeSAR-BI_0eW08Z6gsUvQeCRdxtqwC2LTr5MMye-xTR9rNhGL9330yuMaeAc3l99-fP1eDkUYSlcZuix1O3Utr0IVWHSlgxeO46UtF1YigxtPTUCxdybIhk1bKpkTXjpqRWDMaf4edrAn_gAIl02oXKBoIjSVE6gIVeC2jSYPGplVW8CXkT-1GxDK40B_1clToaZWrM5TW8DJmvQuw3I8RzSJrFkTjG-PnvD8sb3ikhpewKdxDdQoajF-Yjs_X_V1jNEzrv5Fge5ypQwtgGygUBz_oFpLvpnExGw0g6ZXAft5CT52Ef15Jrg4fHZkH-BlBpWIGXIfYWe5WPkjeOHulz_7xTFKzUwfJ6l5ADxAFh0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0CtYHq1c_Vq0NIuLLtrl8bh6LWCrWw4cKfRCWbDaBgu6V27uC_72TZPdqoSfIsrAsEzbJTHZ-k5nMALyzhiIzvSs94woNFGXLhnlaNhXqzkDdVNGQik3o2aw6Pzffhjzb6SyM9z4Fn_mD-Jh8-e3creJW2aGO6rq6C_ekEIzmw1prl4GQqZAmmheyNIzpIY3QlJpDzQ5y0xvKJ1VTibGQtsfpCLmOxWagmRTO8c5_dfUxPBpwJTnKgvAE7vhuArtHHdrUv36T9yRFeqYt9AnsjKUcyLCyJ_Dwr7yEu_AjbzX4lowVJMg8kJj6Ej_R5cDxniDcJQgfSZezbdgFsennSYbw99imj1WbiMX7KtrlUQqewvfjT2cfT8qhDEPphKHLsmqnruUiiMCiMR28dByvynJpFbK48dQEXPjOBNWwaUsVc9IrR60MjLmKP4Mt7Il_AYSrJggXKIKERjiJqlAHbtsIehBmiraADyN_ajfkKI8D_VknW4WaWrM6T20Bb9eklzkxx21Ek8iaNcH4du8Gz6_ba66o4QXsjzJQ42KLHhTb-fmqr6OXnnH9Lwo0mIU2tACygUJz_IdWleKbSUyMRzMIvgp4nkXwuoto0TPJ5ctbR7YPD07Ovp7Wp59nX17Bdk4xEePlXsPWcrHye3DfXS0v-sWbtHb-ADsZGHw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+training+of+neural+networks+for+the+nonlinear+active+control+of+sound+and+vibration&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=BOUCHARD%2C+M&rft.au=PAILLARD%2C+B&rft.au=CHON+TAN+LE+DINH&rft.date=1999-03-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=10&rft.issue=2&rft.spage=391&rft.epage=401&rft_id=info:doi/10.1109%2F72.750568&rft.externalDBID=n%2Fa&rft.externalDocID=1736093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |