Proteostasis During Cerebral Ischemia
Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles...
Uložené v:
| Vydané v: | Frontiers in neuroscience Ročník 13; s. 637 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Research Foundation
19.06.2019
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1662-453X, 1662-4548, 1662-453X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation. |
|---|---|
| AbstractList | Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding and transport; and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in proteostasis’ regulation: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however their overactivation in time or intensity often leads to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. Better comprehension of autophagy and ER stress will allow therapeutic strategies for stroke both at the acute phase and during recovery. The interest of this review is to summarize the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. In addition, we discuss the interest to study proteostasis as a single pathway rather than studying either ER stress or autophagy in stroke. Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation. Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation. |
| Author | Vivien, Denis Thiebaut, Audrey M. Hedou, Elodie Roussel, Benoit D. Marciniak, Stefan J. |
| AuthorAffiliation | 2 Cambridge Institute for Medical Research, University of Cambridge , Cambridge , United Kingdom 4 Department of Clinical Research, University of Caen Normandy , Caen , France 1 INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy , Caen , France 3 Department of Medicine, Addenbrooke’s Hospital, University of Cambridge , Cambridge , United Kingdom |
| AuthorAffiliation_xml | – name: 4 Department of Clinical Research, University of Caen Normandy , Caen , France – name: 2 Cambridge Institute for Medical Research, University of Cambridge , Cambridge , United Kingdom – name: 3 Department of Medicine, Addenbrooke’s Hospital, University of Cambridge , Cambridge , United Kingdom – name: 1 INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy , Caen , France |
| Author_xml | – sequence: 1 givenname: Audrey M. surname: Thiebaut fullname: Thiebaut, Audrey M. – sequence: 2 givenname: Elodie surname: Hedou fullname: Hedou, Elodie – sequence: 3 givenname: Stefan J. surname: Marciniak fullname: Marciniak, Stefan J. – sequence: 4 givenname: Denis surname: Vivien fullname: Vivien, Denis – sequence: 5 givenname: Benoit D. surname: Roussel fullname: Roussel, Benoit D. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31275110$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kclrGzEYxUVJaJb23lMxlEIvdrUvl0JwlxgC6aGF3sSnZRyZ8SiVZgr97yvbSUkCAYG293486Z2hoyEPEaE3BC8Y0-ZjN6ShLigmZoGxZOoFOiVS0jkX7NfRg_UJOqt10yRUc_oSnTBClSAEn6L330seY64j1FRnn6eShvVsGUt0BfrZqvqbuE3wCh130Nf4-m4-Rz-_fvmxvJxfXX9bLS-u5p4bPM61iZIaB4B5F4KRDFSHMXgCGoNQjnnljBC0I5yQQLnGwTDJhAjS80AZO0erAzdk2NjbkrZQ_toMye4PcllbKGPyfbQUOHdMGRY7xrWKjghgWrStpk4E11ifDqzbyW1j8HEY25MeQR_fDOnGrvMfK4XhnMgG-HAHKPn3FOtot6n62PcwxDxVS6lgVFNlSJO-eyLd5KkM7assZVgR0YZuqrcPE_2Pct9GE8iDwJdca4md9WmEMeVdwNRbgu2udruv3e5qt_vamxE_Md6zn7X8AyiTrv0 |
| CitedBy_id | crossref_primary_10_1016_j_neures_2023_05_005 crossref_primary_10_1016_j_redox_2025_103700 crossref_primary_10_1007_s12035_021_02554_z crossref_primary_10_1080_15548627_2021_1973339 crossref_primary_10_1038_s41598_021_92529_w crossref_primary_10_1038_s41598_022_10772_1 crossref_primary_10_3389_fncel_2023_1189980 crossref_primary_10_1016_j_lfs_2023_121814 crossref_primary_10_1159_000521803 crossref_primary_10_4103_NRR_NRR_D_24_00044 crossref_primary_10_1016_j_nbd_2024_106583 crossref_primary_10_3389_fphar_2023_1220862 crossref_primary_10_1007_s11064_023_03900_4 crossref_primary_10_4103_1673_5374_330612 crossref_primary_10_1016_j_neuropharm_2022_109277 crossref_primary_10_1016_j_prostaglandins_2023_106760 crossref_primary_10_1016_j_brainres_2023_148742 crossref_primary_10_1074_jbc_REV120_010218 crossref_primary_10_3390_ijms23052814 crossref_primary_10_1007_s11064_024_04286_7 crossref_primary_10_1016_j_expneurol_2025_115307 crossref_primary_10_1016_j_isci_2025_112569 crossref_primary_10_1007_s12975_022_01090_9 crossref_primary_10_1186_s13287_020_01834_0 crossref_primary_10_1007_s00401_020_02215_w crossref_primary_10_1016_j_ab_2021_114387 crossref_primary_10_1016_j_abb_2025_110426 crossref_primary_10_1016_j_arr_2025_102842 crossref_primary_10_1016_j_ijbiomac_2020_12_124 crossref_primary_10_3389_fncel_2021_704334 crossref_primary_10_1016_j_niox_2023_03_003 crossref_primary_10_3390_life14091158 crossref_primary_10_1016_j_ibneur_2023_05_004 crossref_primary_10_3390_ijms26010309 crossref_primary_10_3389_fnins_2022_1040182 |
| Cites_doi | 10.1371/journal.pone.0183680 10.1016/j.neuroscience.2013.03.045 10.1038/sj.cdd.4401365 10.1016/j.neulet.2004.06.061 10.1016/s0006-8993(99)01504-8 10.1038/415092a 10.1016/j.neulet.2010.05.064 10.1016/j.tins.2003.08.008 10.1016/j.neuroscience.2017.10.038 10.1038/sj.cdd.4401984 10.1083/jcb.200508099 10.1038/nchembio711 10.1016/j.bbrc.2017.05.099 10.1016/j.nbd.2008.07.022 10.1126/science.1129631 10.1016/s1097-2765(03)00105-9 10.1016/j.neuroscience.2007.04.017 10.1124/jpet.104.069088 10.1371/journal.pone.0006068 10.1016/j.brainres.2014.01.017 10.1074/jbc.M805920200 10.1016/j.bbr.2011.08.035 10.1111/j.1755-5949.2012.00295.x 10.1046/j.1471-4159.2001.00462.x 10.4161/auto.6.3.11261 10.1038/jcbfm.2008.14 10.1038/sj.jcbfm.9600005 10.1097/01.wcb.0000077641.41248.ea 10.1097/01.wcb.0000056064.25434.ca 10.1038/cddis.2017.71 10.1038/emboj.2010.74 10.1016/j.brainres.2017.05.019 10.1038/16729 10.1016/j.neuint.2009.01.010 10.4161/auto.29203 10.1128/MCB.02070-07 10.1111/j.1471-4159.2007.04866.x 10.1016/j.neuroscience.2013.04.054 10.1038/cdd.2017.35 10.1152/physrev.00015.2006 10.1016/j.cell.2005.07.002 10.1038/nrd3802 10.3390/cells8010018 10.1016/j.expneurol.2014.03.002 10.4161/auto.6.8.13427 10.1016/s0143416002001884 10.4161/auto.8.1.18274 10.4161/auto.5.2.7639 10.1128/MCB.05668-11 10.4161/auto.8.1.18217 10.7554/eLife.26109 10.1089/ars.2010.3359 10.1158/1078-0432.CCR-13-1106 10.1016/s0169-328x(98)00276-9 10.1054/ceca.1999.0042 10.2353/ajpath.2009.090463 10.1213/01.ane.0000287663.81050.38 10.1002/2211-5463.12301 10.3389/fnins.2018.00405 10.3389/fnins.2017.00177 10.1111/bph.12655 10.1007/s12975-014-0354-x 10.4161/auto.6.4.11737 10.1083/jcb.201202061 10.1002/glia.20242 10.1186/s12929-018-0453-1 10.1016/j.ceca.2010.01.003 10.1002/ana.21714 10.1186/2045-8118-12-4 10.1016/j.neuint.2018.12.018 10.1126/science.1101902 10.1046/j.1471-4159.1996.67052005.x 10.1007/bf00691287 10.1056/NEJMoa0804656 10.1371/journal.pone.0096509 10.1016/j.brainres.2004.11.058 10.1523/jneurosci.15-02-01001.1995 10.1016/j.cell.2012.11.001 10.1074/jbc.275.2.992 10.1111/jnc.13277 10.1016/j.tins.2008.09.006 10.4161/auto.6412 10.1016/j.biopha.2017.03.039 10.1007/s12640-017-9861-3 10.1038/aps.2009.79 10.1089/ARS.2009.2568 10.1038/s41419-019-1523-3 10.1038/nm.2293 10.1523/JNEUROSCI.2286-08.2008 10.1016/s1474-4422(12)70238-7 10.1080/15548627.2015.1132134 10.1523/jneurosci.4289-06.2007 10.2353/ajpath.2008.070876 10.1159/000486224 10.4161/auto.25132 10.1074/jbc.273.7.3963 10.1186/s12967-015-0726-3 10.1089/rej.2017.1999 10.1111/j.1471-4159.2004.02555.x 10.1097/NEN.0b013e31821352bd 10.1111/j.1471-4159.2010.06905.x 10.1111/jpi.12395 10.1371/journal.pone.0051735 10.1101/gad.1250704 10.1038/ncb2757 10.1038/nm.1851 10.1016/j.neuropharm.2008.01.005 10.1016/j.molcel.2008.06.001 10.4161/auto.32136 10.1042/bj3020335 10.1007/s12640-009-9110-5 10.1016/s1534-5807(03)00022-4 10.1016/s0166-2236(99)01401-0 10.4161/auto.18673 10.1679/aohc.64.233 10.1016/j.brainres.2016.08.035 10.1007/s10495-011-0678-x 10.1038/nm.3097 10.1038/onc.2010.191 10.3171/2017.1.FOCUS16522 10.1097/00004647-200304000-00009 10.1083/jcb.26.3.885 10.1371/journal.pone.0137146 10.1146/annurev-cellbio-092910-154005 10.1016/S1474-4422(18)30323-5 10.1111/j.1471-4159.2005.03276.x 10.1016/j.nbd.2007.08.005 10.1006/exnr.2002.8002 10.1038/embor.2008.246 10.1046/j.1471-4159.2001.00387.x 10.1093/nar/gkt563 10.1056/NEJMoa1411587 10.1152/jn.00015.2004 10.1002/cbin.10299 10.1046/j.1460-9568.2002.02025.x 10.1016/j.brainres.2005.04.058 10.1097/00004647-199901000-00001 10.4161/auto.6.6.12573 10.1016/j.brainres.2006.02.095 10.1046/j.1471-4159.1996.67062390.x 10.1186/2040-7378-6-8 10.4103/1673-5374.135329 10.4161/auto.28264 10.1016/j.freeradbiomed.2017.04.005 10.1074/jbc.M110.149252 10.1073/pnas.0505801102 10.1080/15548627.2015.1100356 10.1017/s031716710001218x 10.1128/MCB.00397-14 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel. 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel. 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnins.2019.00637 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_2a44b3793ef3487eb15a3853ef82b5db PMC6594416 31275110 10_3389_fnins_2019_00637 |
| Genre | Journal Article Review |
| GeographicLocations | United Kingdom--UK France |
| GeographicLocations_xml | – name: United Kingdom--UK – name: France |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R009120/1 – fundername: Medical Research Council grantid: G1002610 – fundername: Institut National de la Santé et de la Recherche Médicale |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D ACXDI C1A NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-89e629baa04fdd963a7f00ac1a80a57b3c7b9552f1411d2480d936355d6c4d233 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Nov 04 01:56:25 EST 2025 Sun Aug 24 04:05:43 EDT 2025 Fri Jul 25 11:52:17 EDT 2025 Mon Jul 21 06:02:57 EDT 2025 Tue Nov 18 20:26:18 EST 2025 Sat Nov 29 02:14:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ER stress mTOR autophagy proteostasis stroke |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-89e629baa04fdd963a7f00ac1a80a57b3c7b9552f1411d2480d936355d6c4d233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Mathias Gelderblom, University Medical Center Hamburg-Eppendorf, Germany This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience These authors have contributed equally to this work Reviewed by: Pedro Domingos, Institute of Chemical and Biological Technology, New University of Lisbon, Portugal; Maria Xilouri, Biomedical Research Foundation of the Academy of Athens, Greece |
| OpenAccessLink | https://doaj.org/article/2a44b3793ef3487eb15a3853ef82b5db |
| PMID | 31275110 |
| PQID | 2307157158 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a44b3793ef3487eb15a3853ef82b5db pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594416 proquest_miscellaneous_2253282791 proquest_journals_2307157158 pubmed_primary_31275110 crossref_citationtrail_10_3389_fnins_2019_00637 crossref_primary_10_3389_fnins_2019_00637 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-19 |
| PublicationDateYYYYMMDD | 2019-06-19 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2019 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Liu (B69) 2013; 15 Owen (B93) 2005; 94 Carloni (B14) 2014; 255 Wang (B124) 2011; 70 Urbanek (B123) 2014; 17 Arsham (B2) 2009; 29 Boutouja (B8) 2019; 2 Mahameed (B73) 2019; 1 Li (B65) 2014; 5 Hollien (B50) 2006; 7 Rubinsztein (B109) 2012; 11 Hacke (B44) 2008; 25 Paschen (B97) 1999; 19 Ni (B89) 2018; 10 Meares (B78) 2011; 31 Zhang (B144) 2010; 2 McCaig (B77) 2005; 9 Paschen (B98) 2004; 90 Pattingre (B99) 2009; 30 Iwata (B53) 2005; 13 Guo (B42) 2017; 15 Mizushima (B82) 2011; 27 Li (B66) 2015; 14 Yamamoto (B137) 2012; 23 Zalckvar (B142) 2009; 10 Chen (B19) 2014; 15 Zundorf (B150) 2011; 1 Xing (B136) 2012; 8 Zhang (B146) 2013; 9 Gonzalez-Gronow (B41) 2009; 11 Puyal (B103) 2009; 66 Jiang (B55) 2017; 7 Wang (B127) 2014; 10 Thiebaut (B120) 2018; 17 Lopez-Atalaya (B71) 2008; 28 Louessard (B72) 2017; 24 Boyce (B9) 2005; 11 Engelhardt (B31) 2015; 17 Zhang (B143) 2008; 14 Xin (B134) 2011; 38 Hayashi (B47) 2003; 23 Young (B141) 2007; 103 Paschen (B96) 2003; 23 Kouroku (B59) 2007; 14 Calfon (B13) 2002; 3 Kumar (B61) 2001; 77 Doutheil (B29); 25 Goldenberg-Cohen (B40) 2012; 17 Imai (B51) 2002; 15 Noda (B91) 1998; 13 Parsons (B95) 1999; 10 Xie (B133) 2016; 12 Schneeloch (B113) 2004; 16 Li (B67) 2013; 6 Doyle (B30) 2008; 55 Nedergaard (B88) 2003; 26 Weidberg (B131) 2010; 2 Mengesdorf (B79) 2002; 177 Berkhemer (B7) 2015; 1 Pengyue (B101) 2017; 90 Gabryel (B35) 2014; 38 Carloni (B16) 2010; 6 Benavides (B6) 2005; 52 Sheng (B115) 2010; 6 Doutheil (B28); 8 Yoshida (B140) 2003; 4 Harding (B45) 1999; 21 Wen (B132) 2008; 4 Misra (B81) 2012; 7 Zhou (B149) 2011; 17 Hillary (B49) 2018; 25 Xing (B135) 2004; 92 Kumar (B62) 2003; 23 Marciniak (B75) 2006; 86 Rami (B106) 2008; 29 Jiang (B54) 2014; 171 Russell (B110) 2013; 15 Bandyopadhyay (B3) 2008; 28 Zheng (B148) 2009; 30 Dietrich (B26) 1989; 78 Hayashi (B48) 2005; 25 Li (B64) 2005; 28 Nitatori (B90) 1995; 15 Qin (B105) 2010; 6 Wei (B130) 2008; 20 Petiot (B102) 2000; 14 Wei (B129) 1996; 67 Klionsky (B57) 2016; 12 Michalak (B80) 2002; 32 Gade (B36) 2014; 34 Althausen (B1) 2001; 78 B’Chir (B5) 2013; 41 Chauhan (B18) 2011; 1 Itakura (B52) 2012; 7 Burda (B12) 1994; 302 Marciniak (B76) 2004; 15 Feng (B33) 2017; 62 Degterev (B25) 2005; 1 Lei (B63) 2017; 12 Fu (B34) 2016; 1 Nakka (B86) 2010; 17 Rzymski (B112) 2010; 5 Osada (B92) 2009; 54 Szydlowska (B118) 2010; 47 Def Webster (B23) 1965; 1 Myeku (B84) 2011; 24 (B87) 1995; 14 Sokka (B117) 2007; 24 Buckley (B10) 2014; 6 Fang (B32) 2015; 135 Rissanen (B107) 2006; 4 Krick (B60) 2009; 5 Tian (B121) 2010; 6 Uchiyama (B122) 2001; 64 Wang (B128) 2018 Ginet (B39) 2014; 10 Gwak (B43) 2008; 106 Tajiri (B119) 2004; 11 Liu (B70) 2018; 21 Yang (B138) 2014; 9 Roussel (B108) 2013; 12 Papadakis (B94) 2013; 19 Bull (B11) 2008; 17 Harding (B46) 2003; 11 Koike (B58) 2008; 172 Liu (B68) 2010; 115 Marciniak (B74) 2006; 16 Pattingre (B100) 2005; 23 DeGracia (B24) 1996; 67 Wang (B126) 2012; 8 Sheng (B114) 2012; 8 Gao (B37) 2015; 10 Qi (B104) 2004; 311 Dirnagl (B27) 1999; 22 Carloni (B15) 2008; 32 Shi (B116) 2012; 18 Cui (B21) 2013; 29 Wang (B125) 2018; 45 Bao (B4) 2017; 1 Yepes (B139) 2009; 32 Zhang (B145) 2018; 12 Morimoto (B83) 2007; 29 Casas (B17) 2017; 11 Ryan (B111) 2018; 34 Dai (B22) 2017; 108 Crespillo-Casado (B20) 2017; 27 Ginet (B38) 2009; 175 Zhang (B147) 2014; 1 Karsy (B56) 2017; 42 Nah (B85) 2017; 25 |
| References_xml | – volume: 12 year: 2017 ident: B63 article-title: CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. publication-title: PLoS One doi: 10.1371/journal.pone.0183680 – volume: 6 start-page: 16 year: 2013 ident: B67 article-title: The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.03.045 – volume: 11 start-page: 403 year: 2004 ident: B119 article-title: Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401365 – volume: 16 start-page: 37 year: 2004 ident: B113 article-title: Spreading depression activates unfolded protein response. publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2004.06.061 – volume: 14 start-page: 1581 year: 1995 ident: B87 article-title: Tissue plasminogen activator for acute ischemic stroke. publication-title: N. Engl. J. Med. – volume: 10 start-page: 32 year: 1999 ident: B95 article-title: Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg(2+)/Ca(2+) ATPase. publication-title: Brain Res. doi: 10.1016/s0006-8993(99)01504-8 – volume: 3 start-page: 92 year: 2002 ident: B13 article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. publication-title: Nature doi: 10.1038/415092a – volume: 2 start-page: 215 year: 2010 ident: B144 article-title: Exacerbation of ischemia-induced amyloid-beta generation by diabetes is associated with autophagy activation in mice brain. publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.05.064 – volume: 26 start-page: 523 year: 2003 ident: B88 article-title: New roles for astrocytes: redefining the functional architecture of the brain. publication-title: Trends Neurosci. doi: 10.1016/j.tins.2003.08.008 – volume: 10 start-page: 60 year: 2018 ident: B89 article-title: RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.10.038 – volume: 14 start-page: 230 year: 2007 ident: B59 article-title: ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401984 – volume: 16 start-page: 201 year: 2006 ident: B74 article-title: Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. publication-title: J. Cell Biol. doi: 10.1083/jcb.200508099 – volume: 1 start-page: 112 year: 2005 ident: B25 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio711 – volume: 15 start-page: 48 year: 2017 ident: B42 article-title: Autophagy-related gene microarray and bioinformatics analysis for ischemic stroke detection. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.05.099 – volume: 32 start-page: 329 year: 2008 ident: B15 article-title: Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.07.022 – volume: 7 start-page: 104 year: 2006 ident: B50 article-title: ay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. publication-title: Science doi: 10.1126/science.1129631 – volume: 11 start-page: 619 year: 2003 ident: B46 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. publication-title: Mol. Cell doi: 10.1016/s1097-2765(03)00105-9 – volume: 29 start-page: 957 year: 2007 ident: B83 article-title: Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2007.04.017 – volume: 311 start-page: 388 year: 2004 ident: B104 article-title: Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction. publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.104.069088 – volume: 29 year: 2009 ident: B2 article-title: A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. publication-title: PLoS One doi: 10.1371/journal.pone.0006068 – volume: 17 start-page: 1 year: 2014 ident: B123 article-title: Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation. publication-title: Brain Res. doi: 10.1016/j.brainres.2014.01.017 – volume: 30 start-page: 2719 year: 2009 ident: B99 article-title: Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805920200 – volume: 1 start-page: 603 year: 2011 ident: B18 article-title: Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2011.08.035 – volume: 18 start-page: 250 year: 2012 ident: B116 article-title: Excessive autophagy contributes to neuron death in cerebral ischemia. publication-title: CNS Neurosci. Thera. doi: 10.1111/j.1755-5949.2012.00295.x – volume: 78 start-page: 779 year: 2001 ident: B1 article-title: Changes in the phosphorylation of initiation factor eIF-2alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2001.00462.x – volume: 6 start-page: 366 year: 2010 ident: B16 article-title: Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. publication-title: Autophagy doi: 10.4161/auto.6.3.11261 – volume: 28 start-page: 1212 year: 2008 ident: B71 article-title: Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2008.14 – volume: 25 start-page: 41 year: 2005 ident: B48 article-title: Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600005 – volume: 23 start-page: 949 year: 2003 ident: B47 article-title: Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.wcb.0000077641.41248.ea – volume: 23 start-page: 462 year: 2003 ident: B62 article-title: Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.wcb.0000056064.25434.ca – volume: 25 year: 2017 ident: B85 article-title: Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.71 – volume: 2 start-page: 1792 year: 2010 ident: B131 article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. publication-title: EMBO J. doi: 10.1038/emboj.2010.74 – volume: 1 start-page: 65 year: 2017 ident: B4 article-title: Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury. publication-title: Brain Res. doi: 10.1016/j.brainres.2017.05.019 – volume: 21 start-page: 271 year: 1999 ident: B45 article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. publication-title: Nature doi: 10.1038/16729 – volume: 54 start-page: 403 year: 2009 ident: B92 article-title: Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia. publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2009.01.010 – volume: 10 start-page: 1535 year: 2014 ident: B127 article-title: ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. publication-title: Autophagy doi: 10.4161/auto.29203 – volume: 28 start-page: 5747 year: 2008 ident: B3 article-title: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02070-07 – volume: 103 start-page: 1302 year: 2007 ident: B141 article-title: Neuroprotection and stroke: time for a compromise. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04866.x – volume: 29 start-page: 117 year: 2013 ident: B21 article-title: Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-kappaB/p53 signaling pathway. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.04.054 – volume: 24 start-page: 1518 year: 2017 ident: B72 article-title: Activation of cell surface GRP78 reases endoplasmic reticulum stress and neuronal death. publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.35 – volume: 86 start-page: 1133 year: 2006 ident: B75 article-title: Endoplasmic reticulum stress signaling in disease. publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2006 – volume: 23 start-page: 927 year: 2005 ident: B100 article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. publication-title: Cell doi: 10.1016/j.cell.2005.07.002 – volume: 11 start-page: 709 year: 2012 ident: B109 article-title: Autophagy modulation as a potential therapeutic target for diverse diseases. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3802 – volume: 2 year: 2019 ident: B8 article-title: mTOR: a cellular regulator interface in health and disease. publication-title: Cells doi: 10.3390/cells8010018 – volume: 255 start-page: 103 year: 2014 ident: B14 article-title: Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2014.03.002 – volume: 6 start-page: 1107 year: 2010 ident: B121 article-title: In vivo imaging of autophagy in a mouse stroke model. publication-title: Autophagy doi: 10.4161/auto.6.8.13427 – volume: 32 start-page: 269 year: 2002 ident: B80 article-title: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. publication-title: Cell Calcium doi: 10.1016/s0143416002001884 – volume: 8 start-page: 77 year: 2012 ident: B126 article-title: Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. publication-title: Autophagy doi: 10.4161/auto.8.1.18274 – volume: 5 start-page: 270 year: 2009 ident: B60 article-title: Piecemeal microautophagy of the nucleus: genetic and morphological traits. publication-title: Autophagy doi: 10.4161/auto.5.2.7639 – volume: 31 start-page: 4286 year: 2011 ident: B78 article-title: IRE1-dependent activation of AMPK in response to nitric oxide. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05668-11 – volume: 8 start-page: 63 year: 2012 ident: B136 article-title: Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. publication-title: Autophagy doi: 10.4161/auto.8.1.18217 – volume: 27 year: 2017 ident: B20 article-title: PPP1R15A-mediated dephosphorylation of eIF2alpha is unaffected by Sephin1 or Guanabenz. publication-title: eLife doi: 10.7554/eLife.26109 – volume: 1 start-page: 1275 year: 2011 ident: B150 article-title: Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3359 – volume: 15 start-page: 6802 year: 2013 ident: B69 article-title: Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1106 – volume: 8 start-page: 225 ident: B28 article-title: Activation of MYD116 (gadd34) expression following transient forebrain ischemia of rat: implications for a role of disturbances of endoplasmic reticulum calcium homeostasis. publication-title: Brain Res. Mol. Brain Res. doi: 10.1016/s0169-328x(98)00276-9 – volume: 25 start-page: 419 ident: B29 article-title: Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump. publication-title: Cell Calcium doi: 10.1054/ceca.1999.0042 – volume: 175 start-page: 1962 year: 2009 ident: B38 article-title: Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.090463 – volume: 106 start-page: 227 year: 2008 ident: B43 article-title: The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain. publication-title: Anesth. Analog. doi: 10.1213/01.ane.0000287663.81050.38 – volume: 7 start-page: 1686 year: 2017 ident: B55 article-title: Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats. publication-title: FEBS Open Biol. doi: 10.1002/2211-5463.12301 – volume: 12 year: 2018 ident: B145 article-title: HMG-CoA Reductase Inhibitors Relieve Endoplasmic Reticulum Stress by Autophagy Inhibition in Rats With Permanent Brain Ischemia. publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00405 – volume: 11 year: 2017 ident: B17 article-title: GRP78 at the Centre of the Stage in Cancer and Neuroprotection. publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00177 – volume: 171 start-page: 3146 year: 2014 ident: B54 article-title: Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12655 – volume: 5 start-page: 618 year: 2014 ident: B65 article-title: Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. publication-title: Transl. Stroke Res. doi: 10.1007/s12975-014-0354-x – volume: 6 start-page: 482 year: 2010 ident: B115 article-title: Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. publication-title: Autophagy doi: 10.4161/auto.6.4.11737 – volume: 23 start-page: 219 year: 2012 ident: B137 article-title: Atg9 vesicles are an important membrane source during early steps of autophagosome formation. publication-title: J. Cell Biol. doi: 10.1083/jcb.201202061 – volume: 52 start-page: 261 year: 2005 ident: B6 article-title: CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. publication-title: Glia doi: 10.1002/glia.20242 – volume: 25 year: 2018 ident: B49 article-title: A lifetime of stress: ATF6 in development and homeostasis. publication-title: J. Biomed. Sci. doi: 10.1186/s12929-018-0453-1 – volume: 47 start-page: 122 year: 2010 ident: B118 article-title: Calcium, ischemia and excitotoxicity. publication-title: Cell Calcium doi: 10.1016/j.ceca.2010.01.003 – volume: 66 start-page: 378 year: 2009 ident: B103 article-title: Postischemic treatment of neonatal cerebral ischemia should target autophagy. publication-title: Ann. Neurol. doi: 10.1002/ana.21714 – volume: 17 year: 2015 ident: B31 article-title: Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-12-4 – year: 2018 ident: B128 article-title: Impaired capacity to restore proteostasis in the aged brain after ischemia: implications for translational brain ischemia research. publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2018.12.018 – volume: 11 start-page: 935 year: 2005 ident: B9 article-title: A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. publication-title: Science doi: 10.1126/science.1101902 – volume: 67 start-page: 2005 year: 1996 ident: B24 article-title: Global brain ischemia and reperfusion: modifications in eukaryotic initiation factors associated with inhibition of translation initiation. publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1996.67052005.x – volume: 78 start-page: 605 year: 1989 ident: B26 article-title: Morphological consequences of early reperfusion following thrombotic or mechanical occlusion of the rat middle cerebral artery. publication-title: Acta Neuropathol. doi: 10.1007/bf00691287 – volume: 25 start-page: 1317 year: 2008 ident: B44 article-title: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0804656 – volume: 9 year: 2014 ident: B138 article-title: Hypoxia Induces autophagic cell death through hypoxia-inducible factor 1alpha in microglia. publication-title: PLoS One doi: 10.1371/journal.pone.0096509 – volume: 9 start-page: 51 year: 2005 ident: B77 article-title: Evolution of GADD34 expression after focal cerebral ischaemia. publication-title: Brain Res. doi: 10.1016/j.brainres.2004.11.058 – volume: 15 start-page: 1001 year: 1995 ident: B90 article-title: Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. publication-title: J. Neurosci. doi: 10.1523/jneurosci.15-02-01001.1995 – volume: 7 start-page: 1256 year: 2012 ident: B52 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 14 start-page: 992 year: 2000 ident: B102 article-title: Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.2.992 – volume: 135 start-page: 431 year: 2015 ident: B32 article-title: Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats. publication-title: J. Neurochem. doi: 10.1111/jnc.13277 – volume: 32 start-page: 48 year: 2009 ident: B139 article-title: Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. publication-title: Trends Neurosci. doi: 10.1016/j.tins.2008.09.006 – volume: 4 start-page: 762 year: 2008 ident: B132 article-title: Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. publication-title: Autophagy doi: 10.4161/auto.6412 – volume: 90 start-page: 69 year: 2017 ident: B101 article-title: Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.03.039 – volume: 34 start-page: 79 year: 2018 ident: B111 article-title: Temporal pattern and crosstalk of necroptosis markers with autophagy and apoptosis associated proteins in ischemic hippocampus. publication-title: Neurotox Res. doi: 10.1007/s12640-017-9861-3 – volume: 30 start-page: 919 year: 2009 ident: B148 article-title: RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2009.79 – volume: 11 start-page: 2299 year: 2009 ident: B41 article-title: GRP78: a multifunctional receptor on the cell surface. publication-title: Antioxid. Redox Signal. doi: 10.1089/ARS.2009.2568 – volume: 1 year: 2019 ident: B73 article-title: The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1523-3 – volume: 17 start-page: 356 year: 2011 ident: B149 article-title: Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. publication-title: Nat. Med. doi: 10.1038/nm.2293 – volume: 17 start-page: 9463 year: 2008 ident: B11 article-title: Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2286-08.2008 – volume: 12 start-page: 105 year: 2013 ident: B108 article-title: Endoplasmic reticulum dysfunction in neurological disease. publication-title: Lancet Neurol. doi: 10.1016/s1474-4422(12)70238-7 – volume: 12 start-page: 410 year: 2016 ident: B133 article-title: Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. publication-title: Autophagy doi: 10.1080/15548627.2015.1132134 – volume: 24 start-page: 901 year: 2007 ident: B117 article-title: Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. publication-title: J. Neurosci. doi: 10.1523/jneurosci.4289-06.2007 – volume: 172 start-page: 454 year: 2008 ident: B58 article-title: Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2008.070876 – volume: 45 start-page: 78 year: 2018 ident: B125 article-title: MicroRNA-9a-5p alleviates ischemia injury after focal cerebral ischemia of the rat by targeting ATG5-mediated autophagy. publication-title: Cell. Physiol. Biochem. doi: 10.1159/000486224 – volume: 9 start-page: 1321 year: 2013 ident: B146 article-title: Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. publication-title: Autophagy doi: 10.4161/auto.25132 – volume: 13 start-page: 3963 year: 1998 ident: B91 article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.3963 – volume: 14 year: 2015 ident: B66 article-title: Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. publication-title: J. Transl. Med. doi: 10.1186/s12967-015-0726-3 – volume: 21 start-page: 405 year: 2018 ident: B70 article-title: Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/ reperfusion injury. publication-title: Rejuvenation Res. doi: 10.1089/rej.2017.1999 – volume: 90 start-page: 694 year: 2004 ident: B98 article-title: GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02555.x – volume: 70 start-page: 314 year: 2011 ident: B124 article-title: Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e31821352bd – volume: 115 start-page: 68 year: 2010 ident: B68 article-title: Autophagy and protein aggregation after brain ischemia. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2010.06905.x – volume: 62 year: 2017 ident: B33 article-title: Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. publication-title: J. Pineal Res. doi: 10.1111/jpi.12395 – volume: 7 year: 2012 ident: B81 article-title: Receptor-recognized alpha(2)-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells. publication-title: PLoS One doi: 10.1371/journal.pone.0051735 – volume: 15 start-page: 3066 year: 2004 ident: B76 article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. publication-title: Genes Dev. doi: 10.1101/gad.1250704 – volume: 15 start-page: 741 year: 2013 ident: B110 article-title: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2757 – volume: 14 start-page: 959 year: 2008 ident: B143 article-title: Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. publication-title: Nat. Med. doi: 10.1038/nm.1851 – volume: 55 start-page: 310 year: 2008 ident: B30 article-title: Mechanisms of ischemic brain damage. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2008.01.005 – volume: 20 start-page: 678 year: 2008 ident: B130 article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.06.001 – volume: 1 start-page: 1801 year: 2014 ident: B147 article-title: Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. publication-title: Autophagy doi: 10.4161/auto.32136 – volume: 302 start-page: 335 year: 1994 ident: B12 article-title: Phosphorylation of the alpha subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat. publication-title: Biochem J. doi: 10.1042/bj3020335 – volume: 17 start-page: 189 year: 2010 ident: B86 article-title: Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. publication-title: Neurotox Res. doi: 10.1007/s12640-009-9110-5 – volume: 4 start-page: 265 year: 2003 ident: B140 article-title: A time-dependent phase shift in the mammalian unfolded protein response. publication-title: Dev. Cell doi: 10.1016/s1534-5807(03)00022-4 – volume: 22 start-page: 391 year: 1999 ident: B27 article-title: Pathobiology of ischaemic stroke: an integrated view. publication-title: Trends Neurosci. doi: 10.1016/s0166-2236(99)01401-0 – volume: 8 start-page: 310 year: 2012 ident: B114 article-title: Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. publication-title: Autophagy doi: 10.4161/auto.18673 – volume: 64 start-page: 233 year: 2001 ident: B122 article-title: Autophagic cell death and its execution by lysosomal cathepsins. publication-title: Arch. Histol. Cytol. doi: 10.1679/aohc.64.233 – volume: 1 start-page: 103 year: 2016 ident: B34 article-title: Inhibition of AMP-activated protein kinase alleviates focal cerebral ischemia injury in mice: interference with mTOR and autophagy. publication-title: Brain Res. doi: 10.1016/j.brainres.2016.08.035 – volume: 17 start-page: 278 year: 2012 ident: B40 article-title: Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis. publication-title: Apoptosis doi: 10.1007/s10495-011-0678-x – volume: 19 start-page: 351 year: 2013 ident: B94 article-title: Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. publication-title: Nat. Med. doi: 10.1038/nm.3097 – volume: 5 start-page: 4424 year: 2010 ident: B112 article-title: Regulation of autophagy by ATF4 in response to severe hypoxia. publication-title: Oncogene doi: 10.1038/onc.2010.191 – volume: 42 year: 2017 ident: B56 article-title: Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. publication-title: Neurosurg. Focus doi: 10.3171/2017.1.FOCUS16522 – volume: 23 start-page: 449 year: 2003 ident: B96 article-title: Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200304000-00009 – volume: 1 start-page: 885 year: 1965 ident: B23 article-title: Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation. publication-title: J. Cell Biol. doi: 10.1083/jcb.26.3.885 – volume: 10 year: 2015 ident: B37 article-title: Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy. publication-title: PLoS One doi: 10.1371/journal.pone.0137146 – volume: 27 start-page: 107 year: 2011 ident: B82 article-title: The role of Atg proteins in autophagosome formation. publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154005 – volume: 17 start-page: 1121 year: 2018 ident: B120 article-title: The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30323-5 – volume: 94 start-page: 1235 year: 2005 ident: B93 article-title: PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03276.x – volume: 29 start-page: 132 year: 2008 ident: B106 article-title: Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2007.08.005 – volume: 177 start-page: 538 year: 2002 ident: B79 article-title: Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. publication-title: Exp. Neurol. doi: 10.1006/exnr.2002.8002 – volume: 10 start-page: 285 year: 2009 ident: B142 article-title: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. publication-title: EMBO Rep. doi: 10.1038/embor.2008.246 – volume: 77 start-page: 1418 year: 2001 ident: B61 article-title: Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase. publication-title: PERK. J. Neurochem. doi: 10.1046/j.1471-4159.2001.00387.x – volume: 41 start-page: 7683 year: 2013 ident: B5 article-title: The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt563 – volume: 1 start-page: 11 year: 2015 ident: B7 article-title: A randomized trial of intraarterial treatment for acute ischemic stroke. publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1411587 – volume: 92 start-page: 2960 year: 2004 ident: B135 article-title: Caffeine releasable stores of Ca2+ show depletion prior to the final steps in delayed CA1 neuronal death. publication-title: J. Neurophysiol. doi: 10.1152/jn.00015.2004 – volume: 38 start-page: 1086 year: 2014 ident: B35 article-title: AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation. publication-title: Cell Biol. Int. doi: 10.1002/cbin.10299 – volume: 15 start-page: 1929 year: 2002 ident: B51 article-title: Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat. publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2002.02025.x – volume: 28 start-page: 59 year: 2005 ident: B64 article-title: The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. publication-title: Brain Res. doi: 10.1016/j.brainres.2005.04.058 – volume: 19 start-page: 1 year: 1999 ident: B97 article-title: Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199901000-00001 – volume: 6 start-page: 738 year: 2010 ident: B105 article-title: Autophagy was activated in injured astrocytes and mildly reased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. publication-title: Autophagy doi: 10.4161/auto.6.6.12573 – volume: 4 start-page: 60 year: 2006 ident: B107 article-title: Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke. publication-title: Brain Res. doi: 10.1016/j.brainres.2006.02.095 – volume: 67 start-page: 2390 year: 1996 ident: B129 article-title: Dantrolene is cytoprotective in two models of neuronal cell death. publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1996.67062390.x – volume: 6 year: 2014 ident: B10 article-title: Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. publication-title: Exp.Transl. Stroke Med. doi: 10.1186/2040-7378-6-8 – volume: 15 start-page: 1210 year: 2014 ident: B19 article-title: Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. publication-title: Neural Regener. Res. doi: 10.4103/1673-5374.135329 – volume: 10 start-page: 846 year: 2014 ident: B39 article-title: Involvement of autophagy in hypoxic-excitotoxic neuronal death. publication-title: Autophagy doi: 10.4161/auto.28264 – volume: 108 start-page: 345 year: 2017 ident: B22 article-title: Sirt3 confers protection against neuronal ischemia by inducing autophagy: involvement of the AMPK-mTOR pathway. publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2017.04.005 – volume: 24 start-page: 22426 year: 2011 ident: B84 article-title: Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.149252 – volume: 13 start-page: 13135 year: 2005 ident: B53 article-title: Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0505801102 – volume: 12 start-page: 1 year: 2016 ident: B57 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 38 start-page: 631 year: 2011 ident: B134 article-title: 2-methoxyestradiol attenuates autophagy activation after global ischemia. publication-title: Can. J. Neurol. Sci. doi: 10.1017/s031716710001218x – volume: 34 start-page: 4033 year: 2014 ident: B36 article-title: Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00397-14 |
| SSID | ssj0062842 |
| Score | 2.4059625 |
| SecondaryResourceType | review_article |
| Snippet | Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 637 |
| SubjectTerms | Apoptosis Autophagy Brain research Cell death Cell survival Diabetes Endoplasmic reticulum ER stress Homeostasis Hypoxia Ischemia Kinases mTOR Neurological disorders Neuroscience Phagocytosis Protein biosynthesis Protein folding Protein synthesis Protein transport Proteins proteostasis Stroke |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCFV3kECgoSIHGINn4mPqFSqEBC1R4A9RY5fkCkNim720r998x4s1EXoV6QVjlsHMXxeMbfeMbfALw2ISAIV2VR42JfSBZ1Qai4aFXkQvu2rtJZmB9fq6Oj-vjYzMcNt-WYVrmxiclQ-8HRHvmMEpaZwl_9_ux3QVWjKLo6ltC4CbeIJUGk1L35xhJrNL0p2qnpZBBC83WYEp0yM4t91xNbNyO6Sk1V0K8sS4m9_1-Q8-_MyStL0eG9__2I-3B3BKH5_nrWPIAboX8Iu_s9OuCnl_nbPKWFpv32XXgzJyaHAUHkslvmH9OpxvwgLCjgfJJ_Qec4nHb2EXw__PTt4HMx1lYonDTlqqhN0Ny01pYyeo9aaKtYltYxW5dWVa1wVWuU4pFJxjyXdemNIHDitZOeC_EYdvqhD08hNzE6RF08clzvq2CtM1I6nAAer0ywDGaboW3cSDxO9S9OGnRASBhNEkZDwmiSMDJ4Nz1xtibduKbtB5LW1I7ostMfw-JnM2pfw62UrUBTFKJADw3XJ2UFApUQa94q32awt5FXM-owvmMSVgavptuofRRSsX0YzrENVwKd1srgVz5ZT42pJ4K48xFdZVBtTZqtrm7f6btfieFbKxxCpp9d363ncIfGgRLXmNmDndXiPLyA2-5i1S0XL5Mq_AG-2g_E priority: 102 providerName: ProQuest |
| Title | Proteostasis During Cerebral Ischemia |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31275110 https://www.proquest.com/docview/2307157158 https://www.proquest.com/docview/2253282791 https://pubmed.ncbi.nlm.nih.gov/PMC6594416 https://doaj.org/article/2a44b3793ef3487eb15a3853ef82b5db |
| Volume | 13 |
| WOSCitedRecordID | wos000472045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M7P dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: PIMPY dateStart: 20071015 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-453X dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M2P dateStart: 20071015 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9RAFH5o68FLUeuP1LpEUMFD2MyvTObY1hYLdgmisp7CJJnBQJstu9tC__u-N8kuuyJ6EcIckgmZ-V7mve9lJt8AvDPOIQlXaZJjsE8k81lCrDiplOcia6pch39hfnzRk0k-nZpiY6svWhPWywP3wI25lbIS-BY5L5Bco2tRVmCMcT7nlWoq8r7IelbJVO-DM3S6vJ-UxBTMjH3XdqTNzUicMqM9zzeCUNDq_xPB_H2d5EbgOXsCewNjjI_6lj6FB657BvtHHWbLV3fxhzis4Qwfx_fhfUGyCzNkfIt2EX8KvyDGJ25Os8OX8Tlmsu6qtc_h-9npt5PPybARQlJLky6T3LiMm8raVPqmwSFjtU9TWzObp1bpStS6MkpxzyRjDZd52hhBTKLJatlwIV7ATjfr3CuIjfc1UiTuOQZn7aytjZQ1WqvBkgkWwXiFTFkPKuG0WcVlidkCYVkGLEvCsgxYRvBxfcd1r5Dxl7rHBPa6HmlbhxNo8XKwePkvi0dwuDJVOQw4fAb6KqbwyCN4u76MQ4XmP2znZjdYhyuBGaY22MuXvWXXLREkdI9UKAK9ZfOtpm5f6dpfQY47Uwghyw7-R99ew2NCi9aiMXMIO8v5jXsDj-rbZbuYj-ChnuYj2D0-nRRfR-GNx_KCF1RqLHeL84vi5z0CRQYP |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggSX8iiPQIEgUSQO0caOndgHhEpL1VWX1R4K6i04jg2R2qTd3YL6p_iNzDgPdRHqrQekaA-Jo3g9X2a-yYxnCHmjrAUSLuJIgrGPOHVphKw4KoRjSVoWMvN7Yb5OsulUHh-r2Rr53e-FwbTKXid6RV02Br-RjzBhmQo45Iez8wi7RmF0tW-h0cLi0F7-Apdt8X68B_LdZmz_09HuQdR1FYgMV_EyksqmTBVax9yVJeBPZy6OtaFaxlpkRWKyQgnBHOWUlozLuFQJmuUyNbxk-AEUVP4toBFM-lTBWa_5U1D1Prqa4k4kcAXasCg4gWrk6qrG6uAUy2Om2HX9ihn03QL-RXH_ztS8Yvr27_1vi3afbHQkO9xp34oHZM3WD8nmTq2Xzell-Db0aa8-nrBJtmdYqaIBkryoFuGe37UZ7to5BtRPwjE4__a00o_IlxuZ8GOyXje1fUpC5ZwBVskcAz6TWa2N4twAwEv4pQkNyKgXZW66wurY3-MkBwcLhZ974eco_NwLPyDvhjvO2qIi14z9iOgYxmE5cH-imX_PO-2SM815kYCqtS4BDxTsr9AJEDHrJCtEWQRkq8dH3ukoeMYAjoC8Hi6DdsGQka5tcwFjmEjAKc8U_MsnLRSHmSTYGwDYY0CyFZCuTHX1Sl398BXMUwFLSNNn10_rFblzcPR5kk_G08Pn5C6uCSbpMblF1pfzC_uC3DY_l9Vi_tK_hiH5dtMQ_gMvp2sm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBSEufJUPQwEjUSQOVrzrXdt7QKg0REStohwA9WbW612IVOwSp6D-NX4dM2s7ahDqrQekKId4LW_WzzNvPLNvAF4qa5GEyzjK0dlHgrk0IlYcldLxJK3KPPN7YT4fZbNZfnys5lvwe9gLQ2WVg030hrpqDL0jH1HBMpP4yUeuL4uYjydvT39E1EGKMq1DO40OIof2_BeGb-2b6Rjv9R7nk_cfDz5EfYeByAgVr6Jc2ZSrUutYuKpCLOrMxbE2TOexllmZmKxUUnLHBGMVF3lcqYRcdJUaUXF6GYrm_1pGouW-bHA-eIEUzb7PtKa0KwnDgi5FigGhGrl6UZNSOCOpzJQ6sF9wib5zwL_o7t9Vmxfc4OT2_7yAd-BWT77D_e5puQtbtr4HO_u1XjXfz8NXoS-H9XmGHdibk4JFg-S5XbTh2O_mDA_skhLtJ-G0NaS0oO_DpyuZ8APYrpvaPoJQOWeQbXLHkedkVmujhDAI_Aq_WcICGA23tTC94Dr1_TgpMPAiIBQeCAUBofBACOD1-ozTTmzkkrHvCCnrcSQT7n9oll-L3uoUXAtRJmiCrUswMkW_LHWCBM26nJeyKgPYHbBS9LYLr7EGSgAv1ofR6lAqSde2OcMxXCYYrGcK_-XDDpbrmSTUMwBZZQDZBmA3prp5pF5888rmqcQlZOnjy6f1HG4gcouj6ezwCdykJaHaPaZ2YXu1PLNP4br5uVq0y2f-iQzhy1Uj-A_lTHPj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteostasis+During+Cerebral+Ischemia&rft.jtitle=Frontiers+in+neuroscience&rft.au=Thiebaut%2C+Audrey+M&rft.au=Hedou%2C+Elodie&rft.au=Marciniak%2C+Stefan+J&rft.au=Vivien%2C+Denis&rft.date=2019-06-19&rft.issn=1662-4548&rft.volume=13&rft.spage=637&rft_id=info:doi/10.3389%2Ffnins.2019.00637&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |