Proteostasis During Cerebral Ischemia

Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in neuroscience Ročník 13; s. 637
Hlavní autori: Thiebaut, Audrey M., Hedou, Elodie, Marciniak, Stefan J., Vivien, Denis, Roussel, Benoit D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Research Foundation 19.06.2019
Frontiers Media S.A
Predmet:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.
AbstractList Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding and transport; and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in proteostasis’ regulation: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however their overactivation in time or intensity often leads to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. Better comprehension of autophagy and ER stress will allow therapeutic strategies for stroke both at the acute phase and during recovery. The interest of this review is to summarize the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. In addition, we discuss the interest to study proteostasis as a single pathway rather than studying either ER stress or autophagy in stroke.
Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.
Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.
Author Vivien, Denis
Thiebaut, Audrey M.
Hedou, Elodie
Roussel, Benoit D.
Marciniak, Stefan J.
AuthorAffiliation 2 Cambridge Institute for Medical Research, University of Cambridge , Cambridge , United Kingdom
4 Department of Clinical Research, University of Caen Normandy , Caen , France
1 INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy , Caen , France
3 Department of Medicine, Addenbrooke’s Hospital, University of Cambridge , Cambridge , United Kingdom
AuthorAffiliation_xml – name: 4 Department of Clinical Research, University of Caen Normandy , Caen , France
– name: 2 Cambridge Institute for Medical Research, University of Cambridge , Cambridge , United Kingdom
– name: 3 Department of Medicine, Addenbrooke’s Hospital, University of Cambridge , Cambridge , United Kingdom
– name: 1 INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy , Caen , France
Author_xml – sequence: 1
  givenname: Audrey M.
  surname: Thiebaut
  fullname: Thiebaut, Audrey M.
– sequence: 2
  givenname: Elodie
  surname: Hedou
  fullname: Hedou, Elodie
– sequence: 3
  givenname: Stefan J.
  surname: Marciniak
  fullname: Marciniak, Stefan J.
– sequence: 4
  givenname: Denis
  surname: Vivien
  fullname: Vivien, Denis
– sequence: 5
  givenname: Benoit D.
  surname: Roussel
  fullname: Roussel, Benoit D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31275110$$D View this record in MEDLINE/PubMed
BookMark eNp1kclrGzEYxUVJaJb23lMxlEIvdrUvl0JwlxgC6aGF3sSnZRyZ8SiVZgr97yvbSUkCAYG293486Z2hoyEPEaE3BC8Y0-ZjN6ShLigmZoGxZOoFOiVS0jkX7NfRg_UJOqt10yRUc_oSnTBClSAEn6L330seY64j1FRnn6eShvVsGUt0BfrZqvqbuE3wCh130Nf4-m4-Rz-_fvmxvJxfXX9bLS-u5p4bPM61iZIaB4B5F4KRDFSHMXgCGoNQjnnljBC0I5yQQLnGwTDJhAjS80AZO0erAzdk2NjbkrZQ_toMye4PcllbKGPyfbQUOHdMGRY7xrWKjghgWrStpk4E11ifDqzbyW1j8HEY25MeQR_fDOnGrvMfK4XhnMgG-HAHKPn3FOtot6n62PcwxDxVS6lgVFNlSJO-eyLd5KkM7assZVgR0YZuqrcPE_2Pct9GE8iDwJdca4md9WmEMeVdwNRbgu2udruv3e5qt_vamxE_Md6zn7X8AyiTrv0
CitedBy_id crossref_primary_10_1016_j_neures_2023_05_005
crossref_primary_10_1016_j_redox_2025_103700
crossref_primary_10_1007_s12035_021_02554_z
crossref_primary_10_1080_15548627_2021_1973339
crossref_primary_10_1038_s41598_021_92529_w
crossref_primary_10_1038_s41598_022_10772_1
crossref_primary_10_3389_fncel_2023_1189980
crossref_primary_10_1016_j_lfs_2023_121814
crossref_primary_10_1159_000521803
crossref_primary_10_4103_NRR_NRR_D_24_00044
crossref_primary_10_1016_j_nbd_2024_106583
crossref_primary_10_3389_fphar_2023_1220862
crossref_primary_10_1007_s11064_023_03900_4
crossref_primary_10_4103_1673_5374_330612
crossref_primary_10_1016_j_neuropharm_2022_109277
crossref_primary_10_1016_j_prostaglandins_2023_106760
crossref_primary_10_1016_j_brainres_2023_148742
crossref_primary_10_1074_jbc_REV120_010218
crossref_primary_10_3390_ijms23052814
crossref_primary_10_1007_s11064_024_04286_7
crossref_primary_10_1016_j_expneurol_2025_115307
crossref_primary_10_1016_j_isci_2025_112569
crossref_primary_10_1007_s12975_022_01090_9
crossref_primary_10_1186_s13287_020_01834_0
crossref_primary_10_1007_s00401_020_02215_w
crossref_primary_10_1016_j_ab_2021_114387
crossref_primary_10_1016_j_abb_2025_110426
crossref_primary_10_1016_j_arr_2025_102842
crossref_primary_10_1016_j_ijbiomac_2020_12_124
crossref_primary_10_3389_fncel_2021_704334
crossref_primary_10_1016_j_niox_2023_03_003
crossref_primary_10_3390_life14091158
crossref_primary_10_1016_j_ibneur_2023_05_004
crossref_primary_10_3390_ijms26010309
crossref_primary_10_3389_fnins_2022_1040182
Cites_doi 10.1371/journal.pone.0183680
10.1016/j.neuroscience.2013.03.045
10.1038/sj.cdd.4401365
10.1016/j.neulet.2004.06.061
10.1016/s0006-8993(99)01504-8
10.1038/415092a
10.1016/j.neulet.2010.05.064
10.1016/j.tins.2003.08.008
10.1016/j.neuroscience.2017.10.038
10.1038/sj.cdd.4401984
10.1083/jcb.200508099
10.1038/nchembio711
10.1016/j.bbrc.2017.05.099
10.1016/j.nbd.2008.07.022
10.1126/science.1129631
10.1016/s1097-2765(03)00105-9
10.1016/j.neuroscience.2007.04.017
10.1124/jpet.104.069088
10.1371/journal.pone.0006068
10.1016/j.brainres.2014.01.017
10.1074/jbc.M805920200
10.1016/j.bbr.2011.08.035
10.1111/j.1755-5949.2012.00295.x
10.1046/j.1471-4159.2001.00462.x
10.4161/auto.6.3.11261
10.1038/jcbfm.2008.14
10.1038/sj.jcbfm.9600005
10.1097/01.wcb.0000077641.41248.ea
10.1097/01.wcb.0000056064.25434.ca
10.1038/cddis.2017.71
10.1038/emboj.2010.74
10.1016/j.brainres.2017.05.019
10.1038/16729
10.1016/j.neuint.2009.01.010
10.4161/auto.29203
10.1128/MCB.02070-07
10.1111/j.1471-4159.2007.04866.x
10.1016/j.neuroscience.2013.04.054
10.1038/cdd.2017.35
10.1152/physrev.00015.2006
10.1016/j.cell.2005.07.002
10.1038/nrd3802
10.3390/cells8010018
10.1016/j.expneurol.2014.03.002
10.4161/auto.6.8.13427
10.1016/s0143416002001884
10.4161/auto.8.1.18274
10.4161/auto.5.2.7639
10.1128/MCB.05668-11
10.4161/auto.8.1.18217
10.7554/eLife.26109
10.1089/ars.2010.3359
10.1158/1078-0432.CCR-13-1106
10.1016/s0169-328x(98)00276-9
10.1054/ceca.1999.0042
10.2353/ajpath.2009.090463
10.1213/01.ane.0000287663.81050.38
10.1002/2211-5463.12301
10.3389/fnins.2018.00405
10.3389/fnins.2017.00177
10.1111/bph.12655
10.1007/s12975-014-0354-x
10.4161/auto.6.4.11737
10.1083/jcb.201202061
10.1002/glia.20242
10.1186/s12929-018-0453-1
10.1016/j.ceca.2010.01.003
10.1002/ana.21714
10.1186/2045-8118-12-4
10.1016/j.neuint.2018.12.018
10.1126/science.1101902
10.1046/j.1471-4159.1996.67052005.x
10.1007/bf00691287
10.1056/NEJMoa0804656
10.1371/journal.pone.0096509
10.1016/j.brainres.2004.11.058
10.1523/jneurosci.15-02-01001.1995
10.1016/j.cell.2012.11.001
10.1074/jbc.275.2.992
10.1111/jnc.13277
10.1016/j.tins.2008.09.006
10.4161/auto.6412
10.1016/j.biopha.2017.03.039
10.1007/s12640-017-9861-3
10.1038/aps.2009.79
10.1089/ARS.2009.2568
10.1038/s41419-019-1523-3
10.1038/nm.2293
10.1523/JNEUROSCI.2286-08.2008
10.1016/s1474-4422(12)70238-7
10.1080/15548627.2015.1132134
10.1523/jneurosci.4289-06.2007
10.2353/ajpath.2008.070876
10.1159/000486224
10.4161/auto.25132
10.1074/jbc.273.7.3963
10.1186/s12967-015-0726-3
10.1089/rej.2017.1999
10.1111/j.1471-4159.2004.02555.x
10.1097/NEN.0b013e31821352bd
10.1111/j.1471-4159.2010.06905.x
10.1111/jpi.12395
10.1371/journal.pone.0051735
10.1101/gad.1250704
10.1038/ncb2757
10.1038/nm.1851
10.1016/j.neuropharm.2008.01.005
10.1016/j.molcel.2008.06.001
10.4161/auto.32136
10.1042/bj3020335
10.1007/s12640-009-9110-5
10.1016/s1534-5807(03)00022-4
10.1016/s0166-2236(99)01401-0
10.4161/auto.18673
10.1679/aohc.64.233
10.1016/j.brainres.2016.08.035
10.1007/s10495-011-0678-x
10.1038/nm.3097
10.1038/onc.2010.191
10.3171/2017.1.FOCUS16522
10.1097/00004647-200304000-00009
10.1083/jcb.26.3.885
10.1371/journal.pone.0137146
10.1146/annurev-cellbio-092910-154005
10.1016/S1474-4422(18)30323-5
10.1111/j.1471-4159.2005.03276.x
10.1016/j.nbd.2007.08.005
10.1006/exnr.2002.8002
10.1038/embor.2008.246
10.1046/j.1471-4159.2001.00387.x
10.1093/nar/gkt563
10.1056/NEJMoa1411587
10.1152/jn.00015.2004
10.1002/cbin.10299
10.1046/j.1460-9568.2002.02025.x
10.1016/j.brainres.2005.04.058
10.1097/00004647-199901000-00001
10.4161/auto.6.6.12573
10.1016/j.brainres.2006.02.095
10.1046/j.1471-4159.1996.67062390.x
10.1186/2040-7378-6-8
10.4103/1673-5374.135329
10.4161/auto.28264
10.1016/j.freeradbiomed.2017.04.005
10.1074/jbc.M110.149252
10.1073/pnas.0505801102
10.1080/15548627.2015.1100356
10.1017/s031716710001218x
10.1128/MCB.00397-14
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel. 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel. 2019 Thiebaut, Hedou, Marciniak, Vivien and Roussel
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2019.00637
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_2a44b3793ef3487eb15a3853ef82b5db
PMC6594416
31275110
10_3389_fnins_2019_00637
Genre Journal Article
Review
GeographicLocations United Kingdom--UK
France
GeographicLocations_xml – name: United Kingdom--UK
– name: France
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/R009120/1
– fundername: Medical Research Council
  grantid: G1002610
– fundername: Institut National de la Santé et de la Recherche Médicale
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-89e629baa04fdd963a7f00ac1a80a57b3c7b9552f1411d2480d936355d6c4d233
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:52:36 EDT 2025
Tue Nov 04 01:56:25 EST 2025
Sun Aug 24 04:05:43 EDT 2025
Fri Jul 25 11:52:17 EDT 2025
Mon Jul 21 06:02:57 EDT 2025
Tue Nov 18 20:26:18 EST 2025
Sat Nov 29 02:14:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ER stress
mTOR
autophagy
proteostasis
stroke
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-89e629baa04fdd963a7f00ac1a80a57b3c7b9552f1411d2480d936355d6c4d233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Mathias Gelderblom, University Medical Center Hamburg-Eppendorf, Germany
This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience
These authors have contributed equally to this work
Reviewed by: Pedro Domingos, Institute of Chemical and Biological Technology, New University of Lisbon, Portugal; Maria Xilouri, Biomedical Research Foundation of the Academy of Athens, Greece
OpenAccessLink https://doaj.org/article/2a44b3793ef3487eb15a3853ef82b5db
PMID 31275110
PQID 2307157158
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_2a44b3793ef3487eb15a3853ef82b5db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594416
proquest_miscellaneous_2253282791
proquest_journals_2307157158
pubmed_primary_31275110
crossref_citationtrail_10_3389_fnins_2019_00637
crossref_primary_10_3389_fnins_2019_00637
PublicationCentury 2000
PublicationDate 2019-06-19
PublicationDateYYYYMMDD 2019-06-19
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Liu (B69) 2013; 15
Owen (B93) 2005; 94
Carloni (B14) 2014; 255
Wang (B124) 2011; 70
Urbanek (B123) 2014; 17
Arsham (B2) 2009; 29
Boutouja (B8) 2019; 2
Mahameed (B73) 2019; 1
Li (B65) 2014; 5
Hollien (B50) 2006; 7
Rubinsztein (B109) 2012; 11
Hacke (B44) 2008; 25
Paschen (B97) 1999; 19
Ni (B89) 2018; 10
Meares (B78) 2011; 31
Zhang (B144) 2010; 2
McCaig (B77) 2005; 9
Paschen (B98) 2004; 90
Pattingre (B99) 2009; 30
Iwata (B53) 2005; 13
Guo (B42) 2017; 15
Mizushima (B82) 2011; 27
Li (B66) 2015; 14
Yamamoto (B137) 2012; 23
Zalckvar (B142) 2009; 10
Chen (B19) 2014; 15
Zundorf (B150) 2011; 1
Xing (B136) 2012; 8
Zhang (B146) 2013; 9
Gonzalez-Gronow (B41) 2009; 11
Puyal (B103) 2009; 66
Jiang (B55) 2017; 7
Wang (B127) 2014; 10
Thiebaut (B120) 2018; 17
Lopez-Atalaya (B71) 2008; 28
Louessard (B72) 2017; 24
Boyce (B9) 2005; 11
Engelhardt (B31) 2015; 17
Zhang (B143) 2008; 14
Xin (B134) 2011; 38
Hayashi (B47) 2003; 23
Young (B141) 2007; 103
Paschen (B96) 2003; 23
Kouroku (B59) 2007; 14
Calfon (B13) 2002; 3
Kumar (B61) 2001; 77
Doutheil (B29); 25
Goldenberg-Cohen (B40) 2012; 17
Imai (B51) 2002; 15
Noda (B91) 1998; 13
Parsons (B95) 1999; 10
Xie (B133) 2016; 12
Schneeloch (B113) 2004; 16
Li (B67) 2013; 6
Doyle (B30) 2008; 55
Nedergaard (B88) 2003; 26
Weidberg (B131) 2010; 2
Mengesdorf (B79) 2002; 177
Berkhemer (B7) 2015; 1
Pengyue (B101) 2017; 90
Gabryel (B35) 2014; 38
Carloni (B16) 2010; 6
Benavides (B6) 2005; 52
Sheng (B115) 2010; 6
Doutheil (B28); 8
Yoshida (B140) 2003; 4
Harding (B45) 1999; 21
Wen (B132) 2008; 4
Misra (B81) 2012; 7
Zhou (B149) 2011; 17
Hillary (B49) 2018; 25
Xing (B135) 2004; 92
Kumar (B62) 2003; 23
Marciniak (B75) 2006; 86
Rami (B106) 2008; 29
Jiang (B54) 2014; 171
Russell (B110) 2013; 15
Bandyopadhyay (B3) 2008; 28
Zheng (B148) 2009; 30
Dietrich (B26) 1989; 78
Hayashi (B48) 2005; 25
Li (B64) 2005; 28
Nitatori (B90) 1995; 15
Qin (B105) 2010; 6
Wei (B130) 2008; 20
Petiot (B102) 2000; 14
Wei (B129) 1996; 67
Klionsky (B57) 2016; 12
Michalak (B80) 2002; 32
Gade (B36) 2014; 34
Althausen (B1) 2001; 78
B’Chir (B5) 2013; 41
Chauhan (B18) 2011; 1
Itakura (B52) 2012; 7
Burda (B12) 1994; 302
Marciniak (B76) 2004; 15
Feng (B33) 2017; 62
Degterev (B25) 2005; 1
Lei (B63) 2017; 12
Fu (B34) 2016; 1
Nakka (B86) 2010; 17
Rzymski (B112) 2010; 5
Osada (B92) 2009; 54
Szydlowska (B118) 2010; 47
Def Webster (B23) 1965; 1
Myeku (B84) 2011; 24
(B87) 1995; 14
Sokka (B117) 2007; 24
Buckley (B10) 2014; 6
Fang (B32) 2015; 135
Rissanen (B107) 2006; 4
Krick (B60) 2009; 5
Tian (B121) 2010; 6
Uchiyama (B122) 2001; 64
Wang (B128) 2018
Ginet (B39) 2014; 10
Gwak (B43) 2008; 106
Tajiri (B119) 2004; 11
Liu (B70) 2018; 21
Yang (B138) 2014; 9
Roussel (B108) 2013; 12
Papadakis (B94) 2013; 19
Bull (B11) 2008; 17
Harding (B46) 2003; 11
Koike (B58) 2008; 172
Liu (B68) 2010; 115
Marciniak (B74) 2006; 16
Pattingre (B100) 2005; 23
DeGracia (B24) 1996; 67
Wang (B126) 2012; 8
Sheng (B114) 2012; 8
Gao (B37) 2015; 10
Qi (B104) 2004; 311
Dirnagl (B27) 1999; 22
Carloni (B15) 2008; 32
Shi (B116) 2012; 18
Cui (B21) 2013; 29
Wang (B125) 2018; 45
Bao (B4) 2017; 1
Yepes (B139) 2009; 32
Zhang (B145) 2018; 12
Morimoto (B83) 2007; 29
Casas (B17) 2017; 11
Ryan (B111) 2018; 34
Dai (B22) 2017; 108
Crespillo-Casado (B20) 2017; 27
Ginet (B38) 2009; 175
Zhang (B147) 2014; 1
Karsy (B56) 2017; 42
Nah (B85) 2017; 25
References_xml – volume: 12
  year: 2017
  ident: B63
  article-title: CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183680
– volume: 6
  start-page: 16
  year: 2013
  ident: B67
  article-title: The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.03.045
– volume: 11
  start-page: 403
  year: 2004
  ident: B119
  article-title: Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP.
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401365
– volume: 16
  start-page: 37
  year: 2004
  ident: B113
  article-title: Spreading depression activates unfolded protein response.
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2004.06.061
– volume: 14
  start-page: 1581
  year: 1995
  ident: B87
  article-title: Tissue plasminogen activator for acute ischemic stroke.
  publication-title: N. Engl. J. Med.
– volume: 10
  start-page: 32
  year: 1999
  ident: B95
  article-title: Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg(2+)/Ca(2+) ATPase.
  publication-title: Brain Res.
  doi: 10.1016/s0006-8993(99)01504-8
– volume: 3
  start-page: 92
  year: 2002
  ident: B13
  article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA.
  publication-title: Nature
  doi: 10.1038/415092a
– volume: 2
  start-page: 215
  year: 2010
  ident: B144
  article-title: Exacerbation of ischemia-induced amyloid-beta generation by diabetes is associated with autophagy activation in mice brain.
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.05.064
– volume: 26
  start-page: 523
  year: 2003
  ident: B88
  article-title: New roles for astrocytes: redefining the functional architecture of the brain.
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2003.08.008
– volume: 10
  start-page: 60
  year: 2018
  ident: B89
  article-title: RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.10.038
– volume: 14
  start-page: 230
  year: 2007
  ident: B59
  article-title: ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation.
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401984
– volume: 16
  start-page: 201
  year: 2006
  ident: B74
  article-title: Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200508099
– volume: 1
  start-page: 112
  year: 2005
  ident: B25
  article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio711
– volume: 15
  start-page: 48
  year: 2017
  ident: B42
  article-title: Autophagy-related gene microarray and bioinformatics analysis for ischemic stroke detection.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.05.099
– volume: 32
  start-page: 329
  year: 2008
  ident: B15
  article-title: Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury.
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.07.022
– volume: 7
  start-page: 104
  year: 2006
  ident: B50
  article-title: ay of endoplasmic reticulum-localized mRNAs during the unfolded protein response.
  publication-title: Science
  doi: 10.1126/science.1129631
– volume: 11
  start-page: 619
  year: 2003
  ident: B46
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress.
  publication-title: Mol. Cell
  doi: 10.1016/s1097-2765(03)00105-9
– volume: 29
  start-page: 957
  year: 2007
  ident: B83
  article-title: Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.04.017
– volume: 311
  start-page: 388
  year: 2004
  ident: B104
  article-title: Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction.
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.104.069088
– volume: 29
  year: 2009
  ident: B2
  article-title: A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006068
– volume: 17
  start-page: 1
  year: 2014
  ident: B123
  article-title: Rapamycin induces of protective autophagy in vascular endothelial cells exposed to oxygen-glucose deprivation.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.01.017
– volume: 30
  start-page: 2719
  year: 2009
  ident: B99
  article-title: Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805920200
– volume: 1
  start-page: 603
  year: 2011
  ident: B18
  article-title: Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats.
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2011.08.035
– volume: 18
  start-page: 250
  year: 2012
  ident: B116
  article-title: Excessive autophagy contributes to neuron death in cerebral ischemia.
  publication-title: CNS Neurosci. Thera.
  doi: 10.1111/j.1755-5949.2012.00295.x
– volume: 78
  start-page: 779
  year: 2001
  ident: B1
  article-title: Changes in the phosphorylation of initiation factor eIF-2alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice.
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00462.x
– volume: 6
  start-page: 366
  year: 2010
  ident: B16
  article-title: Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia.
  publication-title: Autophagy
  doi: 10.4161/auto.6.3.11261
– volume: 28
  start-page: 1212
  year: 2008
  ident: B71
  article-title: Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2008.14
– volume: 25
  start-page: 41
  year: 2005
  ident: B48
  article-title: Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600005
– volume: 23
  start-page: 949
  year: 2003
  ident: B47
  article-title: Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/01.wcb.0000077641.41248.ea
– volume: 23
  start-page: 462
  year: 2003
  ident: B62
  article-title: Dysfunction of the unfolded protein response during global brain ischemia and reperfusion.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/01.wcb.0000056064.25434.ca
– volume: 25
  year: 2017
  ident: B85
  article-title: Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress.
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.71
– volume: 2
  start-page: 1792
  year: 2010
  ident: B131
  article-title: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.74
– volume: 1
  start-page: 65
  year: 2017
  ident: B4
  article-title: Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2017.05.019
– volume: 21
  start-page: 271
  year: 1999
  ident: B45
  article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase.
  publication-title: Nature
  doi: 10.1038/16729
– volume: 54
  start-page: 403
  year: 2009
  ident: B92
  article-title: Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia.
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2009.01.010
– volume: 10
  start-page: 1535
  year: 2014
  ident: B127
  article-title: ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia.
  publication-title: Autophagy
  doi: 10.4161/auto.29203
– volume: 28
  start-page: 5747
  year: 2008
  ident: B3
  article-title: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02070-07
– volume: 103
  start-page: 1302
  year: 2007
  ident: B141
  article-title: Neuroprotection and stroke: time for a compromise.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2007.04866.x
– volume: 29
  start-page: 117
  year: 2013
  ident: B21
  article-title: Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-kappaB/p53 signaling pathway.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.04.054
– volume: 24
  start-page: 1518
  year: 2017
  ident: B72
  article-title: Activation of cell surface GRP78 reases endoplasmic reticulum stress and neuronal death.
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.35
– volume: 86
  start-page: 1133
  year: 2006
  ident: B75
  article-title: Endoplasmic reticulum stress signaling in disease.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00015.2006
– volume: 23
  start-page: 927
  year: 2005
  ident: B100
  article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.07.002
– volume: 11
  start-page: 709
  year: 2012
  ident: B109
  article-title: Autophagy modulation as a potential therapeutic target for diverse diseases.
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3802
– volume: 2
  year: 2019
  ident: B8
  article-title: mTOR: a cellular regulator interface in health and disease.
  publication-title: Cells
  doi: 10.3390/cells8010018
– volume: 255
  start-page: 103
  year: 2014
  ident: B14
  article-title: Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways.
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2014.03.002
– volume: 6
  start-page: 1107
  year: 2010
  ident: B121
  article-title: In vivo imaging of autophagy in a mouse stroke model.
  publication-title: Autophagy
  doi: 10.4161/auto.6.8.13427
– volume: 32
  start-page: 269
  year: 2002
  ident: B80
  article-title: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum.
  publication-title: Cell Calcium
  doi: 10.1016/s0143416002001884
– volume: 8
  start-page: 77
  year: 2012
  ident: B126
  article-title: Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia.
  publication-title: Autophagy
  doi: 10.4161/auto.8.1.18274
– volume: 5
  start-page: 270
  year: 2009
  ident: B60
  article-title: Piecemeal microautophagy of the nucleus: genetic and morphological traits.
  publication-title: Autophagy
  doi: 10.4161/auto.5.2.7639
– volume: 31
  start-page: 4286
  year: 2011
  ident: B78
  article-title: IRE1-dependent activation of AMPK in response to nitric oxide.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05668-11
– volume: 8
  start-page: 63
  year: 2012
  ident: B136
  article-title: Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction.
  publication-title: Autophagy
  doi: 10.4161/auto.8.1.18217
– volume: 27
  year: 2017
  ident: B20
  article-title: PPP1R15A-mediated dephosphorylation of eIF2alpha is unaffected by Sephin1 or Guanabenz.
  publication-title: eLife
  doi: 10.7554/eLife.26109
– volume: 1
  start-page: 1275
  year: 2011
  ident: B150
  article-title: Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection.
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3359
– volume: 15
  start-page: 6802
  year: 2013
  ident: B69
  article-title: Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis.
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-1106
– volume: 8
  start-page: 225
  ident: B28
  article-title: Activation of MYD116 (gadd34) expression following transient forebrain ischemia of rat: implications for a role of disturbances of endoplasmic reticulum calcium homeostasis.
  publication-title: Brain Res. Mol. Brain Res.
  doi: 10.1016/s0169-328x(98)00276-9
– volume: 25
  start-page: 419
  ident: B29
  article-title: Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump.
  publication-title: Cell Calcium
  doi: 10.1054/ceca.1999.0042
– volume: 175
  start-page: 1962
  year: 2009
  ident: B38
  article-title: Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms.
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.090463
– volume: 106
  start-page: 227
  year: 2008
  ident: B43
  article-title: The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain.
  publication-title: Anesth. Analog.
  doi: 10.1213/01.ane.0000287663.81050.38
– volume: 7
  start-page: 1686
  year: 2017
  ident: B55
  article-title: Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats.
  publication-title: FEBS Open Biol.
  doi: 10.1002/2211-5463.12301
– volume: 12
  year: 2018
  ident: B145
  article-title: HMG-CoA Reductase Inhibitors Relieve Endoplasmic Reticulum Stress by Autophagy Inhibition in Rats With Permanent Brain Ischemia.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00405
– volume: 11
  year: 2017
  ident: B17
  article-title: GRP78 at the Centre of the Stage in Cancer and Neuroprotection.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00177
– volume: 171
  start-page: 3146
  year: 2014
  ident: B54
  article-title: Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12655
– volume: 5
  start-page: 618
  year: 2014
  ident: B65
  article-title: Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury.
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-014-0354-x
– volume: 6
  start-page: 482
  year: 2010
  ident: B115
  article-title: Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning.
  publication-title: Autophagy
  doi: 10.4161/auto.6.4.11737
– volume: 23
  start-page: 219
  year: 2012
  ident: B137
  article-title: Atg9 vesicles are an important membrane source during early steps of autophagosome formation.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201202061
– volume: 52
  start-page: 261
  year: 2005
  ident: B6
  article-title: CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation.
  publication-title: Glia
  doi: 10.1002/glia.20242
– volume: 25
  year: 2018
  ident: B49
  article-title: A lifetime of stress: ATF6 in development and homeostasis.
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-018-0453-1
– volume: 47
  start-page: 122
  year: 2010
  ident: B118
  article-title: Calcium, ischemia and excitotoxicity.
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2010.01.003
– volume: 66
  start-page: 378
  year: 2009
  ident: B103
  article-title: Postischemic treatment of neonatal cerebral ischemia should target autophagy.
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21714
– volume: 17
  year: 2015
  ident: B31
  article-title: Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study.
  publication-title: Fluids Barriers CNS
  doi: 10.1186/2045-8118-12-4
– year: 2018
  ident: B128
  article-title: Impaired capacity to restore proteostasis in the aged brain after ischemia: implications for translational brain ischemia research.
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2018.12.018
– volume: 11
  start-page: 935
  year: 2005
  ident: B9
  article-title: A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress.
  publication-title: Science
  doi: 10.1126/science.1101902
– volume: 67
  start-page: 2005
  year: 1996
  ident: B24
  article-title: Global brain ischemia and reperfusion: modifications in eukaryotic initiation factors associated with inhibition of translation initiation.
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1996.67052005.x
– volume: 78
  start-page: 605
  year: 1989
  ident: B26
  article-title: Morphological consequences of early reperfusion following thrombotic or mechanical occlusion of the rat middle cerebral artery.
  publication-title: Acta Neuropathol.
  doi: 10.1007/bf00691287
– volume: 25
  start-page: 1317
  year: 2008
  ident: B44
  article-title: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0804656
– volume: 9
  year: 2014
  ident: B138
  article-title: Hypoxia Induces autophagic cell death through hypoxia-inducible factor 1alpha in microglia.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096509
– volume: 9
  start-page: 51
  year: 2005
  ident: B77
  article-title: Evolution of GADD34 expression after focal cerebral ischaemia.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2004.11.058
– volume: 15
  start-page: 1001
  year: 1995
  ident: B90
  article-title: Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.15-02-01001.1995
– volume: 7
  start-page: 1256
  year: 2012
  ident: B52
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 14
  start-page: 992
  year: 2000
  ident: B102
  article-title: Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.2.992
– volume: 135
  start-page: 431
  year: 2015
  ident: B32
  article-title: Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13277
– volume: 32
  start-page: 48
  year: 2009
  ident: B139
  article-title: Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic.
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2008.09.006
– volume: 4
  start-page: 762
  year: 2008
  ident: B132
  article-title: Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways.
  publication-title: Autophagy
  doi: 10.4161/auto.6412
– volume: 90
  start-page: 69
  year: 2017
  ident: B101
  article-title: Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.03.039
– volume: 34
  start-page: 79
  year: 2018
  ident: B111
  article-title: Temporal pattern and crosstalk of necroptosis markers with autophagy and apoptosis associated proteins in ischemic hippocampus.
  publication-title: Neurotox Res.
  doi: 10.1007/s12640-017-9861-3
– volume: 30
  start-page: 919
  year: 2009
  ident: B148
  article-title: RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats.
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2009.79
– volume: 11
  start-page: 2299
  year: 2009
  ident: B41
  article-title: GRP78: a multifunctional receptor on the cell surface.
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ARS.2009.2568
– volume: 1
  year: 2019
  ident: B73
  article-title: The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors.
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1523-3
– volume: 17
  start-page: 356
  year: 2011
  ident: B149
  article-title: Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction.
  publication-title: Nat. Med.
  doi: 10.1038/nm.2293
– volume: 17
  start-page: 9463
  year: 2008
  ident: B11
  article-title: Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2286-08.2008
– volume: 12
  start-page: 105
  year: 2013
  ident: B108
  article-title: Endoplasmic reticulum dysfunction in neurological disease.
  publication-title: Lancet Neurol.
  doi: 10.1016/s1474-4422(12)70238-7
– volume: 12
  start-page: 410
  year: 2016
  ident: B133
  article-title: Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury.
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1132134
– volume: 24
  start-page: 901
  year: 2007
  ident: B117
  article-title: Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.4289-06.2007
– volume: 172
  start-page: 454
  year: 2008
  ident: B58
  article-title: Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury.
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.070876
– volume: 45
  start-page: 78
  year: 2018
  ident: B125
  article-title: MicroRNA-9a-5p alleviates ischemia injury after focal cerebral ischemia of the rat by targeting ATG5-mediated autophagy.
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000486224
– volume: 9
  start-page: 1321
  year: 2013
  ident: B146
  article-title: Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance.
  publication-title: Autophagy
  doi: 10.4161/auto.25132
– volume: 13
  start-page: 3963
  year: 1998
  ident: B91
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.7.3963
– volume: 14
  year: 2015
  ident: B66
  article-title: Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients.
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-015-0726-3
– volume: 21
  start-page: 405
  year: 2018
  ident: B70
  article-title: Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/ reperfusion injury.
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2017.1999
– volume: 90
  start-page: 694
  year: 2004
  ident: B98
  article-title: GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2004.02555.x
– volume: 70
  start-page: 314
  year: 2011
  ident: B124
  article-title: Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e31821352bd
– volume: 115
  start-page: 68
  year: 2010
  ident: B68
  article-title: Autophagy and protein aggregation after brain ischemia.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2010.06905.x
– volume: 62
  year: 2017
  ident: B33
  article-title: Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12395
– volume: 7
  year: 2012
  ident: B81
  article-title: Receptor-recognized alpha(2)-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051735
– volume: 15
  start-page: 3066
  year: 2004
  ident: B76
  article-title: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1250704
– volume: 15
  start-page: 741
  year: 2013
  ident: B110
  article-title: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2757
– volume: 14
  start-page: 959
  year: 2008
  ident: B143
  article-title: Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function.
  publication-title: Nat. Med.
  doi: 10.1038/nm.1851
– volume: 55
  start-page: 310
  year: 2008
  ident: B30
  article-title: Mechanisms of ischemic brain damage.
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2008.01.005
– volume: 20
  start-page: 678
  year: 2008
  ident: B130
  article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.06.001
– volume: 1
  start-page: 1801
  year: 2014
  ident: B147
  article-title: Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy.
  publication-title: Autophagy
  doi: 10.4161/auto.32136
– volume: 302
  start-page: 335
  year: 1994
  ident: B12
  article-title: Phosphorylation of the alpha subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat.
  publication-title: Biochem J.
  doi: 10.1042/bj3020335
– volume: 17
  start-page: 189
  year: 2010
  ident: B86
  article-title: Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats.
  publication-title: Neurotox Res.
  doi: 10.1007/s12640-009-9110-5
– volume: 4
  start-page: 265
  year: 2003
  ident: B140
  article-title: A time-dependent phase shift in the mammalian unfolded protein response.
  publication-title: Dev. Cell
  doi: 10.1016/s1534-5807(03)00022-4
– volume: 22
  start-page: 391
  year: 1999
  ident: B27
  article-title: Pathobiology of ischaemic stroke: an integrated view.
  publication-title: Trends Neurosci.
  doi: 10.1016/s0166-2236(99)01401-0
– volume: 8
  start-page: 310
  year: 2012
  ident: B114
  article-title: Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning.
  publication-title: Autophagy
  doi: 10.4161/auto.18673
– volume: 64
  start-page: 233
  year: 2001
  ident: B122
  article-title: Autophagic cell death and its execution by lysosomal cathepsins.
  publication-title: Arch. Histol. Cytol.
  doi: 10.1679/aohc.64.233
– volume: 1
  start-page: 103
  year: 2016
  ident: B34
  article-title: Inhibition of AMP-activated protein kinase alleviates focal cerebral ischemia injury in mice: interference with mTOR and autophagy.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.08.035
– volume: 17
  start-page: 278
  year: 2012
  ident: B40
  article-title: Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis.
  publication-title: Apoptosis
  doi: 10.1007/s10495-011-0678-x
– volume: 19
  start-page: 351
  year: 2013
  ident: B94
  article-title: Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3097
– volume: 5
  start-page: 4424
  year: 2010
  ident: B112
  article-title: Regulation of autophagy by ATF4 in response to severe hypoxia.
  publication-title: Oncogene
  doi: 10.1038/onc.2010.191
– volume: 42
  year: 2017
  ident: B56
  article-title: Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke.
  publication-title: Neurosurg. Focus
  doi: 10.3171/2017.1.FOCUS16522
– volume: 23
  start-page: 449
  year: 2003
  ident: B96
  article-title: Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress.
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200304000-00009
– volume: 1
  start-page: 885
  year: 1965
  ident: B23
  article-title: Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.26.3.885
– volume: 10
  year: 2015
  ident: B37
  article-title: Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137146
– volume: 27
  start-page: 107
  year: 2011
  ident: B82
  article-title: The role of Atg proteins in autophagosome formation.
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 17
  start-page: 1121
  year: 2018
  ident: B120
  article-title: The role of plasminogen activators in stroke treatment: fibrinolysis and beyond.
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30323-5
– volume: 94
  start-page: 1235
  year: 2005
  ident: B93
  article-title: PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03276.x
– volume: 29
  start-page: 132
  year: 2008
  ident: B106
  article-title: Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death.
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2007.08.005
– volume: 177
  start-page: 538
  year: 2002
  ident: B79
  article-title: Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain.
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2002.8002
– volume: 10
  start-page: 285
  year: 2009
  ident: B142
  article-title: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy.
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2008.246
– volume: 77
  start-page: 1418
  year: 2001
  ident: B61
  article-title: Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase.
  publication-title: PERK. J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00387.x
– volume: 41
  start-page: 7683
  year: 2013
  ident: B5
  article-title: The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt563
– volume: 1
  start-page: 11
  year: 2015
  ident: B7
  article-title: A randomized trial of intraarterial treatment for acute ischemic stroke.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1411587
– volume: 92
  start-page: 2960
  year: 2004
  ident: B135
  article-title: Caffeine releasable stores of Ca2+ show depletion prior to the final steps in delayed CA1 neuronal death.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00015.2004
– volume: 38
  start-page: 1086
  year: 2014
  ident: B35
  article-title: AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation.
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.10299
– volume: 15
  start-page: 1929
  year: 2002
  ident: B51
  article-title: Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat.
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2002.02025.x
– volume: 28
  start-page: 59
  year: 2005
  ident: B64
  article-title: The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.04.058
– volume: 19
  start-page: 1
  year: 1999
  ident: B97
  article-title: Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury?
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199901000-00001
– volume: 6
  start-page: 738
  year: 2010
  ident: B105
  article-title: Autophagy was activated in injured astrocytes and mildly reased cell survival following glucose and oxygen deprivation and focal cerebral ischemia.
  publication-title: Autophagy
  doi: 10.4161/auto.6.6.12573
– volume: 4
  start-page: 60
  year: 2006
  ident: B107
  article-title: Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.02.095
– volume: 67
  start-page: 2390
  year: 1996
  ident: B129
  article-title: Dantrolene is cytoprotective in two models of neuronal cell death.
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1996.67062390.x
– volume: 6
  year: 2014
  ident: B10
  article-title: Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke.
  publication-title: Exp.Transl. Stroke Med.
  doi: 10.1186/2040-7378-6-8
– volume: 15
  start-page: 1210
  year: 2014
  ident: B19
  article-title: Autophagy: a double-edged sword for neuronal survival after cerebral ischemia.
  publication-title: Neural Regener. Res.
  doi: 10.4103/1673-5374.135329
– volume: 10
  start-page: 846
  year: 2014
  ident: B39
  article-title: Involvement of autophagy in hypoxic-excitotoxic neuronal death.
  publication-title: Autophagy
  doi: 10.4161/auto.28264
– volume: 108
  start-page: 345
  year: 2017
  ident: B22
  article-title: Sirt3 confers protection against neuronal ischemia by inducing autophagy: involvement of the AMPK-mTOR pathway.
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.04.005
– volume: 24
  start-page: 22426
  year: 2011
  ident: B84
  article-title: Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.149252
– volume: 13
  start-page: 13135
  year: 2005
  ident: B53
  article-title: Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0505801102
– volume: 12
  start-page: 1
  year: 2016
  ident: B57
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100356
– volume: 38
  start-page: 631
  year: 2011
  ident: B134
  article-title: 2-methoxyestradiol attenuates autophagy activation after global ischemia.
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/s031716710001218x
– volume: 34
  start-page: 4033
  year: 2014
  ident: B36
  article-title: Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00397-14
SSID ssj0062842
Score 2.4059625
SecondaryResourceType review_article
Snippet Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 637
SubjectTerms Apoptosis
Autophagy
Brain research
Cell death
Cell survival
Diabetes
Endoplasmic reticulum
ER stress
Homeostasis
Hypoxia
Ischemia
Kinases
mTOR
Neurological disorders
Neuroscience
Phagocytosis
Protein biosynthesis
Protein folding
Protein synthesis
Protein transport
Proteins
proteostasis
Stroke
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCFV3kECgoSIHGINn4mPqFSqEBC1R4A9RY5fkCkNim720r998x4s1EXoV6QVjlsHMXxeMbfeMbfALw2ISAIV2VR42JfSBZ1Qai4aFXkQvu2rtJZmB9fq6Oj-vjYzMcNt-WYVrmxiclQ-8HRHvmMEpaZwl_9_ux3QVWjKLo6ltC4CbeIJUGk1L35xhJrNL0p2qnpZBBC83WYEp0yM4t91xNbNyO6Sk1V0K8sS4m9_1-Q8-_MyStL0eG9__2I-3B3BKH5_nrWPIAboX8Iu_s9OuCnl_nbPKWFpv32XXgzJyaHAUHkslvmH9OpxvwgLCjgfJJ_Qec4nHb2EXw__PTt4HMx1lYonDTlqqhN0Ny01pYyeo9aaKtYltYxW5dWVa1wVWuU4pFJxjyXdemNIHDitZOeC_EYdvqhD08hNzE6RF08clzvq2CtM1I6nAAer0ywDGaboW3cSDxO9S9OGnRASBhNEkZDwmiSMDJ4Nz1xtibduKbtB5LW1I7ostMfw-JnM2pfw62UrUBTFKJADw3XJ2UFApUQa94q32awt5FXM-owvmMSVgavptuofRRSsX0YzrENVwKd1srgVz5ZT42pJ4K48xFdZVBtTZqtrm7f6btfieFbKxxCpp9d363ncIfGgRLXmNmDndXiPLyA2-5i1S0XL5Mq_AG-2g_E
  priority: 102
  providerName: ProQuest
Title Proteostasis During Cerebral Ischemia
URI https://www.ncbi.nlm.nih.gov/pubmed/31275110
https://www.proquest.com/docview/2307157158
https://www.proquest.com/docview/2253282791
https://pubmed.ncbi.nlm.nih.gov/PMC6594416
https://doaj.org/article/2a44b3793ef3487eb15a3853ef82b5db
Volume 13
WOSCitedRecordID wos000472045700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9RAFH5o68FLUeuP1LpEUMFD2MyvTObY1hYLdgmisp7CJJnBQJstu9tC__u-N8kuuyJ6EcIckgmZ-V7mve9lJt8AvDPOIQlXaZJjsE8k81lCrDiplOcia6pch39hfnzRk0k-nZpiY6svWhPWywP3wI25lbIS-BY5L5Bco2tRVmCMcT7nlWoq8r7IelbJVO-DM3S6vJ-UxBTMjH3XdqTNzUicMqM9zzeCUNDq_xPB_H2d5EbgOXsCewNjjI_6lj6FB657BvtHHWbLV3fxhzis4Qwfx_fhfUGyCzNkfIt2EX8KvyDGJ25Os8OX8Tlmsu6qtc_h-9npt5PPybARQlJLky6T3LiMm8raVPqmwSFjtU9TWzObp1bpStS6MkpxzyRjDZd52hhBTKLJatlwIV7ATjfr3CuIjfc1UiTuOQZn7aytjZQ1WqvBkgkWwXiFTFkPKuG0WcVlidkCYVkGLEvCsgxYRvBxfcd1r5Dxl7rHBPa6HmlbhxNo8XKwePkvi0dwuDJVOQw4fAb6KqbwyCN4u76MQ4XmP2znZjdYhyuBGaY22MuXvWXXLREkdI9UKAK9ZfOtpm5f6dpfQY47Uwghyw7-R99ew2NCi9aiMXMIO8v5jXsDj-rbZbuYj-ChnuYj2D0-nRRfR-GNx_KCF1RqLHeL84vi5z0CRQYP
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggSX8iiPQIEgUSQO0caOndgHhEpL1VWX1R4K6i04jg2R2qTd3YL6p_iNzDgPdRHqrQekaA-Jo3g9X2a-yYxnCHmjrAUSLuJIgrGPOHVphKw4KoRjSVoWMvN7Yb5OsulUHh-r2Rr53e-FwbTKXid6RV02Br-RjzBhmQo45Iez8wi7RmF0tW-h0cLi0F7-Apdt8X68B_LdZmz_09HuQdR1FYgMV_EyksqmTBVax9yVJeBPZy6OtaFaxlpkRWKyQgnBHOWUlozLuFQJmuUyNbxk-AEUVP4toBFM-lTBWa_5U1D1Prqa4k4kcAXasCg4gWrk6qrG6uAUy2Om2HX9ihn03QL-RXH_ztS8Yvr27_1vi3afbHQkO9xp34oHZM3WD8nmTq2Xzell-Db0aa8-nrBJtmdYqaIBkryoFuGe37UZ7to5BtRPwjE4__a00o_IlxuZ8GOyXje1fUpC5ZwBVskcAz6TWa2N4twAwEv4pQkNyKgXZW66wurY3-MkBwcLhZ974eco_NwLPyDvhjvO2qIi14z9iOgYxmE5cH-imX_PO-2SM815kYCqtS4BDxTsr9AJEDHrJCtEWQRkq8dH3ukoeMYAjoC8Hi6DdsGQka5tcwFjmEjAKc8U_MsnLRSHmSTYGwDYY0CyFZCuTHX1Sl398BXMUwFLSNNn10_rFblzcPR5kk_G08Pn5C6uCSbpMblF1pfzC_uC3DY_l9Vi_tK_hiH5dtMQ_gMvp2sm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBSEufJUPQwEjUSQOVrzrXdt7QKg0REStohwA9WbW612IVOwSp6D-NX4dM2s7ahDqrQekKId4LW_WzzNvPLNvAF4qa5GEyzjK0dlHgrk0IlYcldLxJK3KPPN7YT4fZbNZfnys5lvwe9gLQ2WVg030hrpqDL0jH1HBMpP4yUeuL4uYjydvT39E1EGKMq1DO40OIof2_BeGb-2b6Rjv9R7nk_cfDz5EfYeByAgVr6Jc2ZSrUutYuKpCLOrMxbE2TOexllmZmKxUUnLHBGMVF3lcqYRcdJUaUXF6GYrm_1pGouW-bHA-eIEUzb7PtKa0KwnDgi5FigGhGrl6UZNSOCOpzJQ6sF9wib5zwL_o7t9Vmxfc4OT2_7yAd-BWT77D_e5puQtbtr4HO_u1XjXfz8NXoS-H9XmGHdibk4JFg-S5XbTh2O_mDA_skhLtJ-G0NaS0oO_DpyuZ8APYrpvaPoJQOWeQbXLHkedkVmujhDAI_Aq_WcICGA23tTC94Dr1_TgpMPAiIBQeCAUBofBACOD1-ozTTmzkkrHvCCnrcSQT7n9oll-L3uoUXAtRJmiCrUswMkW_LHWCBM26nJeyKgPYHbBS9LYLr7EGSgAv1ofR6lAqSde2OcMxXCYYrGcK_-XDDpbrmSTUMwBZZQDZBmA3prp5pF5888rmqcQlZOnjy6f1HG4gcouj6ezwCdykJaHaPaZ2YXu1PLNP4br5uVq0y2f-iQzhy1Uj-A_lTHPj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteostasis+During+Cerebral+Ischemia&rft.jtitle=Frontiers+in+neuroscience&rft.au=Thiebaut%2C+Audrey+M&rft.au=Hedou%2C+Elodie&rft.au=Marciniak%2C+Stefan+J&rft.au=Vivien%2C+Denis&rft.date=2019-06-19&rft.issn=1662-4548&rft.volume=13&rft.spage=637&rft_id=info:doi/10.3389%2Ffnins.2019.00637&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon