Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model

Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in plant science Ročník 13; s. 831204
Hlavní autori: Su, Lingtao, Xu, Chunhui, Zeng, Shuai, Su, Li, Joshi, Trupti, Stacey, Gary, Xu, Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media SA 03.03.2022
Frontiers Media S.A
Predmet:
ISSN:1664-462X, 1664-462X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta .
AbstractList Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta.
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta.Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta.
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta .
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source athttps://github.com/LingtaoSu/SoyMeta.
Author Zeng, Shuai
Su, Lingtao
Su, Li
Joshi, Trupti
Xu, Chunhui
Stacey, Gary
Xu, Dong
AuthorAffiliation 4 Division of Plant Sciences and Technology and Biochemistry Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
1 Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
3 Department of Health Management and Informatics and Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
2 Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
– name: 2 Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
– name: 4 Division of Plant Sciences and Technology and Biochemistry Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
– name: 3 Department of Health Management and Informatics and Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
Author_xml – sequence: 1
  givenname: Lingtao
  surname: Su
  fullname: Su, Lingtao
– sequence: 2
  givenname: Chunhui
  surname: Xu
  fullname: Xu, Chunhui
– sequence: 3
  givenname: Shuai
  surname: Zeng
  fullname: Zeng, Shuai
– sequence: 4
  givenname: Li
  surname: Su
  fullname: Su, Li
– sequence: 5
  givenname: Trupti
  surname: Joshi
  fullname: Joshi, Trupti
– sequence: 6
  givenname: Gary
  surname: Stacey
  fullname: Stacey, Gary
– sequence: 7
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35310659$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rGzEQhpeS0qRp7j2VhV56sauVdvVxKYTQD4NLD4mhNzGWRq7MWnKlXYP_fbV1GpJAdZDE6J2HGc37ujoLMWBVvW3InDGpPrp9n-eUUDqXrKGkfVFdNJy3s5bTn2eP7ufVVc5bUlZHiFLiVXXOOtYQ3qmLCpaQNji7NdBjvQgDbhIM_oD1dYD-mH2uo6tv43GNEOq7BCGb5PdD3GG9yj5s6hJehTzuMR18Rltfj0PEYKLFVH8ve_-meumgz3h1f15Wqy-f726-zZY_vi5urpcz0yoyzLhoO8tb5xSz1lKUljjpwEiq7NooJ4QwwnAlFaAzTQtmaoGvAQV0xgG7rBYnro2w1fvkd5COOoLXfwMxbTSkwZseNRjHrWiENQWEgkHHhOwYt6oxxlBVWJ9OrP243qE1GIYE_RPo05fgf-lNPGipqFCSFcCHe0CKv0fMg975bLDvIWAcs6a8bbpGEtoU6ftn0m0cU_n9rBkVTHay45Pq3eOKHkr5N8kiICeBSTHnhO5B0hA9-UVPftGTX_TJLyWFP0sxfijTj1NPvv9_4h_54MeY
CitedBy_id crossref_primary_10_1016_j_envexpbot_2024_105988
crossref_primary_10_1002_tpg2_20516
crossref_primary_10_1186_s13059_024_03393_6
crossref_primary_10_1016_j_cpb_2025_100523
crossref_primary_10_1186_s40537_025_01078_w
crossref_primary_10_3390_ijms241713072
Cites_doi 10.1186/s12859-019-2952-9
10.1105/tpc.18.00961
10.1111/j.1469-8137.2006.01901.x
10.1186/s12870-019-2132-0
10.1074/jbc.M210538200
10.1093/bioinformatics/btg405
10.1105/tpc.20.00080
10.1093/nar/gkt905
10.1371/journal.pone.0059270
10.1186/1471-2105-9-271
10.1186/1471-2229-10-160
10.15252/msb.20188591
10.1186/s12918-016-0349-1
10.1038/Nmeth.2016
10.12688/f1000research.15931.2
10.1093/nar/gkx681
10.1093/bioinformatics/bts635
10.1111/nph.13365
10.1038/nature02039
10.1186/1755-8794-1-42
10.1093/nar/gkw704
10.1104/pp.68.4.840
10.3389/fpls.2020.604690
10.1371/journal.pone.0062288
10.1186/s12864-019-5434-6
10.1104/pp.108.118141
10.1111/nph.14992
10.1093/biostatistics/kxj037
10.3390/ijms21207603
10.1038/s41467-018-04368-5
10.1093/bib/bbs037
10.1101/gad.14.10.1269
10.1007/s004250050675
10.1105/tpc.113.114017
10.1104/pp.109.144030
10.1093/database/baaa038
10.1104/pp.120.3.867
10.3389/fpls.2019.00578
10.1038/nature12831
10.1093/bioinformatics/btm254
10.1103/PhysRevE.70.066111
10.1093/nar/gkt338
10.1093/nar/gkl595
10.1016/j.plaphy.2011.12.007
10.1002/pld3.167
10.1093/biostatistics/4.2.249
10.1186/1471-2164-13-S1-S15
10.1371/journal.pone.0012776
10.4238/2015.December.28.39
10.1093/nar/gkaa1107
10.1111/nph.15845
10.1038/s41598-017-18235-8
10.1093/bioinformatics/bti042
10.1111/j.1365-313X.2010.04222.x
10.1038/s41467-020-15851-3
10.1093/bioinformatics/btq431
10.1016/j.omtn.2018.03.001
10.1007/s12064-012-0162-3
10.1186/s12864-017-4226-0
10.1038/s41467-017-02285-7
10.1093/bioinformatics/btg385
10.1111/j.2517-6161.1995.tb02031.x
10.1186/s12864-018-5370-x
10.1104/pp.16.01254
10.1104/pp.17.01086
10.1179/174329211x13020951739811
10.1038/ncomms2621
10.1104/pp.16.01610
10.1111/tpj.14850
10.1007/s40484-018-0144-7
10.1126/science.aag1125
10.1007/s00425-007-0680-2
10.1186/1471-2105-9-452
10.1105/tpc.108.059857
10.1038/s41598-020-58546-x
10.1105/tpc.112.095984
10.1002/j.1460-2075.1984.tb02033.x
10.1111/pce.13175
10.1186/s12870-018-1329-y
10.1093/bioinformatics/btq109
10.1093/bioinformatics/btaa796
10.1093/bioinformatics/btl140
10.3389/fpls.2018.01792
10.1093/nar/gky964
10.1007/s10888-011-9188-x
10.1016/j.celrep.2017.10.001
10.1093/nar/gkw982
10.1093/nar/gkp798
10.1105/tpc.108.061010
10.1038/srep42248
10.1093/nar/gkq1019
10.3389/fpls.2015.00578
10.3389/fpls.2017.00567
10.1093/nargab/lqaa078
10.1105/tpc.19.00279
10.1186/s12870-015-0553-y
10.3389/fpls.2017.01030
10.1038/tpj.2010.57
10.1007/978-1-4939-6658-5_7
10.1104/pp.108.123422
10.1109/BIBM.2015.7359871
ContentType Journal Article
Copyright Copyright © 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu. 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu
Copyright_xml – notice: Copyright © 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu. 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu
DBID AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fpls.2022.831204
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Agricultural Science Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_acf6d717dcc14e73a5378536d91ccc29
PMC8927983
35310659
10_3389_fpls_2022_831204
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM126985
– fundername: ;
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
ACXDI
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c490t-6745d64ff93ddd2e8d0f8fac829dbc9f777c7c6989aefc14ac31066bae7a5cfa3
IEDL.DBID M0K
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779015000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-462X
IngestDate Fri Oct 03 12:53:19 EDT 2025
Tue Sep 30 15:57:33 EDT 2025
Fri Sep 05 09:10:24 EDT 2025
Fri Nov 21 23:04:50 EST 2025
Thu Jan 02 22:54:08 EST 2025
Sat Nov 29 05:58:05 EST 2025
Tue Nov 18 21:23:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords functional module
soybean
deep learning
autoencoder
transcriptome analysis
gene regulatory network
tissue-specific gene
Language English
License Copyright © 2022 Su, Xu, Zeng, Su, Joshi, Stacey and Xu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-6745d64ff93ddd2e8d0f8fac829dbc9f777c7c6989aefc14ac31066bae7a5cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Song Li, Virginia Tech, United States; John Louis Van Hemert, Corteva Agriscience™, United States
This article was submitted to Plant Bioinformatics, a section of the journal Frontiers in Plant Science
Edited by: Xiyin Wang, Agricultural University of Hebei, China
OpenAccessLink https://www.proquest.com/docview/3273858561?pq-origsite=%requestingapplication%
PMID 35310659
PQID 3273858561
PQPubID 7426805
ParticipantIDs doaj_primary_oai_doaj_org_article_acf6d717dcc14e73a5378536d91ccc29
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927983
proquest_miscellaneous_2641518021
proquest_journals_3273858561
pubmed_primary_35310659
crossref_primary_10_3389_fpls_2022_831204
crossref_citationtrail_10_3389_fpls_2022_831204
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2022
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Lara (B46) 2003; 278
Lohar (B58) 2007; 173
Marbach (B62) 2012; 9
Haibe-Kains (B32) 2013; 504
Lin (B55) 2017; 45
Brown (B11) 2021; 49
Cortijo (B16) 2019; 15
Gordon (B27) 1999; 120
Benjamini (B7) 1995; 57
Gupta (B30) 2015
Kim (B43) 2008; 227
Moisseyev (B65) 2020; 2020
Bolle (B9) 2000; 14
Sonawane (B77) 2017; 21
Zilli (B101) 2011; 16
Joshi (B41) 2017; 1533
Gupta (B31) 2017; 8
Joshi (B39) 2014; 42
Marcker (B63) 1984; 3
Konishi (B45) 2013; 4
Xie (B91) 2017; 18
Wang (B84) 2019; 3
Dobin (B20) 2013; 29
Wu (B88) 2019; 223
Streeter (B78) 1981; 68
Luo (B59) 2010; 10
Yi (B96) 2018; 11
Yan (B92) 2015; 207
Li (B50) 2017; 173
Xiao (B90) 2010; 26
Sun (B79) 2020; 21
Wang (B86) 2019; 20
Huynh-Thu (B34) 2010; 5
Senovilla (B73) 2018; 218
Lv (B60) 2017; 8
Jones (B38) 2013; 8
Du (B21) 2019; 20
Gautier (B25) 2004; 20
Clauset (B15) 2004; 70
Gharaibeh (B26) 2008; 9
Zhou (B100) 2020; 32
Chen (B14) 2012; 24
Lazar (B47) 2013; 14
Sinharoy (B76) 2013; 25
Ezer (B23) 2017; 175
Seabra (B71) 2015; 6
Irizarry (B35) 2003; 4
Kinalis (B44) 2019; 20
Elhady (B22) 2020; 10
Kim (B42) 2017; 45
Wingett (B87) 2018; 7
Qi (B68) 2018; 41
Pucciariello (B67) 2019; 10
Huang (B33) 2018; 18
Yi (B95) 2019; 31
Liu (B57) 2015; 14
Yang (B94) 2017; 7
Araujo (B2) 2017; 8
Li (B52) 2020; 11
Liu (B56) 2008; 9
Yuan (B98) 2017; 7
Johnson (B37) 2007; 8
Guenther (B29) 2000; 210
Vernie (B81) 2008; 20
Machado (B61) 2020; 103
Libault (B53) 2010; 63
Li (B51) 2018; 6
Sims (B75) 2008; 1
Fan (B24) 2013; 8
Walley (B83) 2016; 353
Wagner (B82) 2012; 131
Asamizu (B4) 2008; 147
Carvalho (B12) 2010; 26
Asakura (B3) 2012; 52
Brown (B10) 2015; 15
Alexa (B1) 2006; 22
Jin (B36) 2017; 45
Xia (B89) 2013; 41
Radutoiu (B69) 2003; 425
Leinonen (B48) 2011; 39
Roy (B70) 2020; 32
Mckenzie (B64) 2016; 10
Ceriani (B13) 2012; 10
Libault (B54) 2009; 151
Yanai (B93) 2005; 21
Zhang (B99) 2020; 2
Wang (B85) 2020; 11
Ding (B19) 2018; 9
Van Heerden (B80) 2008; 148
Berkowitz (B8) 2008; 20
Athar (B5) 2019; 47
Cui (B17) 2019; 19
Yu (B97) 2006; 34
Joshi (B40) 2012
Grant (B28) 2010; 38
Benito (B6) 2004; 20
Sean (B72) 2007; 23
Li (B49) 2018; 9
Nagae (B66) 2016; 172
Dincer (B18) 2020; 36
Severin (B74) 2010; 10
References_xml – volume: 20
  start-page: 379
  year: 2019
  ident: B44
  article-title: Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2952-9
– volume: 31
  start-page: 974
  year: 2019
  ident: B95
  article-title: High temporal-resolution transcriptome landscape of early maize seed development.
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00961
– volume: 173
  start-page: 39
  year: 2007
  ident: B58
  article-title: A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01901.x
– volume: 19
  start-page: 598
  year: 2019
  ident: B17
  article-title: GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2132-0
– volume: 278
  start-page: 21003
  year: 2003
  ident: B46
  article-title: Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210538200
– volume: 20
  start-page: 307
  year: 2004
  ident: B25
  article-title: AFFY – analysis of Affymetrix GeneChip data at the probe level.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg405
– volume: 32
  start-page: 1377
  year: 2020
  ident: B100
  article-title: Meta gene regulatory networks in maize highlight functionally relevant regulatory interactions.
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00080
– volume: 42
  start-page: D1245
  year: 2014
  ident: B39
  article-title: Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt905
– volume: 8
  start-page: e59270
  year: 2013
  ident: B38
  article-title: Using RNA-Seq to profile soybean seed development from fertilization to maturity.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059270
– volume: 9
  start-page: 271
  year: 2008
  ident: B56
  article-title: TiGER: A database for tissue-specific gene expression and regulation.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-271
– volume: 10
  start-page: 160
  year: 2010
  ident: B74
  article-title: RNA-Seq atlas of glycine max: a guide to the soybean transcriptome.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-10-160
– volume: 15
  start-page: e8591
  year: 2019
  ident: B16
  article-title: Widespread inter-individual gene expression variability in Arabidopsis thaliana.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188591
– volume: 10
  start-page: 106
  year: 2016
  ident: B64
  article-title: DGCA: A comprehensive R package for differential gene correlation analysis.
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-016-0349-1
– volume: 9
  start-page: 796
  year: 2012
  ident: B62
  article-title: Wisdom of crowds for robust gene network inference.
  publication-title: Nat. Methods
  doi: 10.1038/Nmeth.2016
– volume: 7
  start-page: 1338
  year: 2018
  ident: B87
  article-title: FastQ screen: a tool for multi-genome mapping and quality control.
  publication-title: F1000Res
  doi: 10.12688/f1000research.15931.2
– volume: 45
  start-page: e156
  year: 2017
  ident: B55
  article-title: Using neural networks for reducing the dimensions of single-cell RNA-Seq data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx681
– volume: 29
  start-page: 15
  year: 2013
  ident: B20
  article-title: STAR: ultrafast universal RNA-seq aligner.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 207
  start-page: 748
  year: 2015
  ident: B92
  article-title: Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation.
  publication-title: New Phytol.
  doi: 10.1111/nph.13365
– volume: 425
  start-page: 585
  year: 2003
  ident: B69
  article-title: Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases.
  publication-title: Nature
  doi: 10.1038/nature02039
– volume: 1
  start-page: 42
  year: 2008
  ident: B75
  article-title: The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets - improving meta-analysis and prediction of prognosis.
  publication-title: BMC Med. Genomics
  doi: 10.1186/1755-8794-1-42
– volume: 45
  start-page: D1082
  year: 2017
  ident: B42
  article-title: SoyNet: a database of co-functional networks for soybean Glycine max.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw704
– volume: 68
  start-page: 840
  year: 1981
  ident: B78
  article-title: Effect of nitrate in the rooting medium on carbohydrate composition of soybean nodules.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.68.4.840
– volume: 11
  start-page: 604690
  year: 2020
  ident: B85
  article-title: Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.604690
– volume: 8
  start-page: e62288
  year: 2013
  ident: B24
  article-title: Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062288
– volume: 20
  start-page: 51
  year: 2019
  ident: B86
  article-title: Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5434-6
– volume: 147
  start-page: 2030
  year: 2008
  ident: B4
  article-title: A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.118141
– volume: 218
  start-page: 696
  year: 2018
  ident: B73
  article-title: Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.
  publication-title: New Phytol.
  doi: 10.1111/nph.14992
– volume: 8
  start-page: 118
  year: 2007
  ident: B37
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods.
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 21
  start-page: 7603
  year: 2020
  ident: B79
  article-title: Analysis of spatio-temporal transcriptome profiles of soybean (Glycine max) tissues during early seed development.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21207603
– volume: 9
  start-page: 2002
  year: 2018
  ident: B19
  article-title: Interpretable dimensionality reduction of single cell transcriptome data with deep generative models.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04368-5
– volume: 14
  start-page: 469
  year: 2013
  ident: B47
  article-title: Batch effect removal methods for microarray gene expression data integration: a survey.
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbs037
– volume: 14
  start-page: 1269
  year: 2000
  ident: B9
  article-title: PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction.
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.10.1269
– volume: 210
  start-page: 741
  year: 2000
  ident: B29
  article-title: Water-selective and multifunctional aquaporins from Lotus japonicus nodules.
  publication-title: Planta
  doi: 10.1007/s004250050675
– volume: 25
  start-page: 3584
  year: 2013
  ident: B76
  article-title: The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114017
– volume: 151
  start-page: 1207
  year: 2009
  ident: B54
  article-title: Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.144030
– volume: 2020
  start-page: baaa038
  year: 2020
  ident: B65
  article-title: RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum.
  publication-title: Database (Oxford)
  doi: 10.1093/database/baaa038
– volume: 120
  start-page: 867
  year: 1999
  ident: B27
  article-title: Sucrose synthase in legume nodules is essential for nitrogen fixation.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.120.3.867
– volume: 10
  start-page: 578
  year: 2019
  ident: B67
  article-title: Exploring legume-rhizobia symbiotic models for waterlogging tolerance.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00578
– volume: 504
  start-page: 389
  year: 2013
  ident: B32
  article-title: Inconsistency in large pharmacogenomic studies.
  publication-title: Nature
  doi: 10.1038/nature12831
– volume: 23
  start-page: 1846
  year: 2007
  ident: B72
  article-title: GEOquery: a bridge between the gene expression omnibus (GEO) and BioConductor.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm254
– volume: 70
  start-page: 06611
  year: 2004
  ident: B15
  article-title: Finding community structure in very large networks.
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– volume: 41
  start-page: W63
  year: 2013
  ident: B89
  article-title: INMEX–a web-based tool for integrative meta-analysis of expression data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt338
– volume: 34
  start-page: 4925
  year: 2006
  ident: B97
  article-title: Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl595
– volume: 52
  start-page: 147
  year: 2012
  ident: B3
  article-title: Global gene expression profiles in developing soybean seeds.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.12.007
– volume: 3
  start-page: e00167
  year: 2019
  ident: B84
  article-title: SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data.
  publication-title: Plant Direct
  doi: 10.1002/pld3.167
– volume: 4
  start-page: 249
  year: 2003
  ident: B35
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– start-page: S15
  year: 2012
  ident: B40
  article-title: Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-S1-S15
– volume: 5
  start-page: e12776
  year: 2010
  ident: B34
  article-title: Inferring regulatory networks from expression data using tree-based methods.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012776
– volume: 14
  start-page: 18895
  year: 2015
  ident: B57
  article-title: Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis.
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2015.December.28.39
– volume: 49
  start-page: D1496
  year: 2021
  ident: B11
  article-title: A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1107
– volume: 223
  start-page: 2104
  year: 2019
  ident: B88
  article-title: A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes.
  publication-title: New Phytol.
  doi: 10.1111/nph.15845
– volume: 7
  start-page: 17804
  year: 2017
  ident: B94
  article-title: Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18235-8
– volume: 21
  start-page: 650
  year: 2005
  ident: B93
  article-title: Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti042
– volume: 63
  start-page: 86
  year: 2010
  ident: B53
  article-title: An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04222.x
– volume: 11
  start-page: 2338
  year: 2020
  ident: B52
  article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15851-3
– volume: 26
  start-page: 2363
  year: 2010
  ident: B12
  article-title: A framework for oligonucleotide microarray preprocessing.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq431
– volume: 11
  start-page: 337
  year: 2018
  ident: B96
  article-title: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information.
  publication-title: Mol. Therapy Nucleic Acids
  doi: 10.1016/j.omtn.2018.03.001
– volume: 131
  start-page: 281
  year: 2012
  ident: B82
  article-title: Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples.
  publication-title: Theory Biosci.
  doi: 10.1007/s12064-012-0162-3
– volume: 18
  start-page: 845
  year: 2017
  ident: B91
  article-title: A deep auto-encoder model for gene expression prediction.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4226-0
– volume: 8
  start-page: 2132
  year: 2017
  ident: B2
  article-title: Stochastic gene expression in Arabidopsis thaliana.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02285-7
– volume: 20
  start-page: 105
  year: 2004
  ident: B6
  article-title: Adjustment of systematic microarray data biases.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg385
– volume: 57
  start-page: 289
  year: 1995
  ident: B7
  article-title: Controlling the false discovery rate - a practical and powerful approach to multiple testing.
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 20
  start-page: 82
  year: 2019
  ident: B21
  article-title: Gene2vec: distributed representation of genes based on co-expression.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5370-x
– volume: 172
  start-page: 2033
  year: 2016
  ident: B66
  article-title: The thiamine biosynthesis gene THI1 promotes nodule growth and seed maturation.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01254
– volume: 175
  start-page: 628
  year: 2017
  ident: B23
  article-title: The G-Box transcriptional regulatory code in Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01086
– volume: 16
  start-page: 49
  year: 2011
  ident: B101
  article-title: Symbiotic association between soybean plants and Bradyrhizobium japonicum develops oxidative stress and heme oxygenase-1 induction at early stages.
  publication-title: Redox Rep.
  doi: 10.1179/174329211x13020951739811
– volume: 4
  start-page: 1617
  year: 2013
  ident: B45
  article-title: Arabidopsis NIN-like transcription factors have a central role in nitrate signalling.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2621
– volume: 173
  start-page: 2208
  year: 2017
  ident: B50
  article-title: Selection for a zinc-finger protein contributes to seed oil increase during soybean domestication.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01610
– volume: 103
  start-page: 1894
  year: 2020
  ident: B61
  article-title: Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas.
  publication-title: Plant J.
  doi: 10.1111/tpj.14850
– volume: 6
  start-page: 195
  year: 2018
  ident: B51
  article-title: Modeling and analysis of RNA-seq data: a review from a statistical perspective.
  publication-title: Quant. Biol.
  doi: 10.1007/s40484-018-0144-7
– volume: 353
  start-page: 814
  year: 2016
  ident: B83
  article-title: Integration of omic networks in a developmental atlas of maize.
  publication-title: Science
  doi: 10.1126/science.aag1125
– volume: 227
  start-page: 1169
  year: 2008
  ident: B43
  article-title: Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses.
  publication-title: Planta
  doi: 10.1007/s00425-007-0680-2
– volume: 9
  start-page: 452
  year: 2008
  ident: B26
  article-title: Background correction using dinucleotide affinities improves the performance of GCRMA.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-452
– volume: 20
  start-page: 2696
  year: 2008
  ident: B81
  article-title: EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059857
– volume: 10
  start-page: 1619
  year: 2020
  ident: B22
  article-title: Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density-dependent manner.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58546-x
– volume: 24
  start-page: 823
  year: 2012
  ident: B14
  article-title: A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus.
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.095984
– volume: 3
  start-page: 1691
  year: 1984
  ident: B63
  article-title: Transcription of the soybean leghemoglobin genes during nodule development.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1984.tb02033.x
– volume: 41
  start-page: 2109
  year: 2018
  ident: B68
  article-title: Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13175
– volume: 18
  start-page: 111
  year: 2018
  ident: B33
  article-title: Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1329-y
– volume: 26
  start-page: 1273
  year: 2010
  ident: B90
  article-title: TiSGeD: a database for tissue-specific genes.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq109
– volume: 36
  start-page: I573
  year: 2020
  ident: B18
  article-title: Adversarial deconfounding autoencoder for learning robust gene expression embeddings.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa796
– volume: 22
  start-page: 1600
  year: 2006
  ident: B1
  article-title: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl140
– volume: 9
  start-page: 1792
  year: 2018
  ident: B49
  article-title: BrLAS, a GRAS Transcription factor from brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01792
– volume: 47
  start-page: D711
  year: 2019
  ident: B5
  article-title: ArrayExpress update – from bulk to single-cell expression data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky964
– volume: 10
  start-page: 421
  year: 2012
  ident: B13
  article-title: The origins of the Gini index: extracts from VariabilitA e MutabilitA (1912) by Corrado Gini.
  publication-title: J. Econ. Inequality
  doi: 10.1007/s10888-011-9188-x
– volume: 21
  start-page: 1077
  year: 2017
  ident: B77
  article-title: Understanding tissue-specific gene regulation.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.001
– volume: 45
  start-page: D1040
  year: 2017
  ident: B36
  article-title: PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw982
– volume: 38
  start-page: D843
  year: 2010
  ident: B28
  article-title: SoyBase, the USDA-ARS soybean genetics and genomics database.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp798
– volume: 20
  start-page: 3430
  year: 2008
  ident: B8
  article-title: Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana.
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061010
– volume: 7
  start-page: 42248
  year: 2017
  ident: B98
  article-title: RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2.
  publication-title: Sci. Rep.
  doi: 10.1038/srep42248
– volume: 39
  start-page: D19
  year: 2011
  ident: B48
  article-title: The sequence read archive.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1019
– volume: 6
  start-page: 578
  year: 2015
  ident: B71
  article-title: Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00578
– volume: 8
  start-page: 567
  year: 2017
  ident: B31
  article-title: Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00567
– volume: 2
  start-page: lqaa078
  year: 2020
  ident: B99
  article-title: ComBat-seq: batch effect adjustment for RNA-seq count data.
  publication-title: NAR Genom. Bioinform.
  doi: 10.1093/nargab/lqaa078
– volume: 32
  start-page: 15
  year: 2020
  ident: B70
  article-title: Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation([OPEN]).
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00279
– volume: 15
  start-page: 169
  year: 2015
  ident: B10
  article-title: Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-015-0553-y
– volume: 8
  start-page: 1030
  year: 2017
  ident: B60
  article-title: Molecular characterization, gene evolution, and expression analysis of the fructose-1, 6-bisphosphate Aldolase (FBA) gene family in wheat (Triticum aestivum L.).
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01030
– volume: 10
  start-page: 278
  year: 2010
  ident: B59
  article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2010.57
– volume: 1533
  start-page: 149
  year: 2017
  ident: B41
  article-title: The evolution of soybean knowledge base (SoyKB).
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6658-5_7
– volume: 148
  start-page: 316
  year: 2008
  ident: B80
  article-title: Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.123422
– start-page: 1328
  year: 2015
  ident: B30
  article-title: Learning structure in gene expression data using deep architectures, with an application to gene clustering
  publication-title: Proceedings 2015 IEEE International Conference on Bioinformatics and Biomedicine
  doi: 10.1109/BIBM.2015.7359871
SSID ssj0000500997
Score 2.3334584
Snippet Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 831204
SubjectTerms autoencoder
Biological effects
Data compression
Datasets
deep learning
Gene expression
gene regulatory network
Genes
Genomes
Heterogeneity
Modules
Plant Science
Plant tissues
Source code
soybean
Soybeans
Statistical power
tissue-specific gene
Transcription factors
transcriptome analysis
Transcriptomes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4k5OBF1PhYjdJCLh7Gneme6ccxEUOEEAIxkFvTTwysM8s-hPx7q7pnl10RvXidftDzdVVXFV39FSEnKjUq1cFWjQdtap3TlRXOVwoCMbBATieRHwpfyqsrdXenr3dKfWFOWKEHLsBNrU8iQMwRvG_aKLntuAQTI4JuvPcsP92rpd4JpgqrN7o-stxLQhSmp2k-Q3Zuxj4p3rCxLtvGDmW6_j_5mL-nSu7YnvOn5MnoNNLTsthn5FHsn5PDswEcu4cjYi8xm7u6AbQj_TrSP8AhRjeEI3RI9GZ4cNH2NNumfFIMPyLNCQMUPt_2y_Ucj41lDPR0vRqQ3zLEBcVaabMX5Pb8y7fPF9VYOaHyra5XlZBtF0SbkuYhBBZVqJNK1iumg_M6SSm99Fg70sYEuFoPXp4QzkZpO58sf0kO-qGPrwmNQcA4q5sUBczNtWMtTwyGp1o7HSdkusHR-JFWHKtbzAyEF4i8QeQNIm8K8hPycTtiXig1_tL3DLdm2w_JsPMHEBEzioj5l4hMyPFmY82ooUvDC48PuI8T8mHbDLqFFya2j8MaFiLAvUGKPOjzqsjBdiW8Q8g6mFzuScjeUvdb-vvvmb9baSa14m_-x7-9JY8RrpwVx4_JwWqxju_Iof-5ul8u3mel-AVwBBWC
  priority: 102
  providerName: Directory of Open Access Journals
Title Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model
URI https://www.ncbi.nlm.nih.gov/pubmed/35310659
https://www.proquest.com/docview/3273858561
https://www.proquest.com/docview/2641518021
https://pubmed.ncbi.nlm.nih.gov/PMC8927983
https://doaj.org/article/acf6d717dcc14e73a5378536d91ccc29
Volume 13
WOSCitedRecordID wos000779015000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M0K
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: M7P
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1664-462X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000500997
  issn: 1664-462X
  databaseCode: PIMPY
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLaY5cCFfSkMlZG4cAhN4sTLCU1RR4yYqSKGkcopcrzASCUpTYs0F3477zlpoQjNhUsOsR295PNbbL98j5BX0ifSx1ZHiQFtyqpKRZpXJpKwEAMPVCnPw4_CZ2I6lbOZKvoNt7ZPq9zYxGCobWNwj3zEOt4VcPdvF98jrBqFp6t9CY09cgCBssKUvvP4w3aPJc4xABLd6SSsxdTIL-bI0Z2mbyRL0r4628YbBdL-f0WafydM_uGBTu7-r-z3yJ0-9qTH3WS5T265-gE5HDcQH14_JPoMk8KjCwDN0dOeRQJsId3wltDG04vmunK6psHFBYPTfHM05B1QuH1Zt-sFWp_WWXq8XjVIk2ndkmLJtfkjcnky-fTufdQXYIhMpuJVxEWWW555r5i1NnXSxl56bWSqbGWUF0IYYbAEpXbeJJk2ECxyXmkndG68Zo_Jft3U7imhznIYp1XiHYdnM1WlGfMpDPexqpQbkNEGiNL07ORYJGNewioFoSsRuhKhKzvoBuT1dsSiY-a4oe8Ysd32Q07tcKNZfil7FS218dzC6tYaeBUnmM6ZgGCGW5UYY1I1IEcbdMte0dvyN7QD8nLbDCqK5y66ds0aBOEQJSHTHvR50k2krSQsx0-Ww8PFzhTbEXW3pb76GmjApUqFkuzZzWI9J7fxQ4S0OXZE9lfLtXtBDs2P1VW7HJI9MZNDcjCeTIuPw7AhMQw6hFdR4PXnBNqL0_Pi8y-5xipi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4q00pwYV8GChgJDhzCJHZixweEWqDqqNPRSG2lckodL22lIRlmAc2f4jfynGVgEOqtB66Jbb04n99iP38P4HXqotSFRgWRxtUU57kMFM91kGIghhYol45XF4UHYjhMT0_laAN-tndhfFplqxMrRW1K7ffIe6zmXUFz_2HyLfBVo_zpaltCo4bFgV3-wJBt9r7_Cf_vG0r3Ph9_3A-aqgKBjmU4D7iIE8Nj5yQzxlCbmtClTumUSpNr6YQQWmhfV1FZp6NYafSAOM-VFSrRTjEc9wZsxgj2sAObo_7h6MtqVydMvMsl6vNQjP5kz03GnhWc0ncpi2hTD661f1WZgH_5tn-naP5h8_bu_G-zdRduN9412amXwz3YsMV92Not0QNePgA18GnvwRHC0pJ-w5OB2p60zCykdOSoXOZWFaQy4pVKLb9aUmVWEHx8UswWE69fZ9aQncW89ESgxk6JLyo3fggn1_J5j6BTlIV9AsQajv2UjJzlODaTOY2Zo9jdhTKXtgu99sdnuuFf92VAxhnGYR4qmYdK5qGS1VDpwttVj0nNPXJF212PpVU7zxpePSin51mjhDKlHTcYvxuNn2IFUwkT6K5xIyOtNZVd2G7RlDWqbJb9hlIXXq1eoxLyJ0uqsOUCBeHoB3ouQWzzuAbuShKW-ClLcHCxBuk1UdffFJcXFdF5KqmQKXt6tVgv4eb-8eEgG_SHB8_glp-UKkmQbUNnPl3Y57Clv88vZ9MXzWolcHbdkP8FVxaFjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Integrative+Analysis+of+Soybean+Transcriptome+Using+an+Unsupervised+Autoencoder+Model&rft.jtitle=Frontiers+in+plant+science&rft.au=Su%2C+Lingtao&rft.au=Xu%2C+Chunhui&rft.au=Zeng%2C+Shuai&rft.au=Li%2C+Su&rft.date=2022-03-03&rft.pub=Frontiers+Media+SA&rft.eissn=1664-462X&rft.volume=13&rft.spage=831204&rft_id=info:doi/10.3389%2Ffpls.2022.831204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon