Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer’s Disease Using Voice
There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artific...
Uložené v:
| Vydané v: | Brain sciences Ročník 13; číslo 1; s. 28 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
23.12.2022
MDPI |
| Predmet: | |
| ISSN: | 2076-3425, 2076-3425 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer’s Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject’s cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer’s disease in a community setting. |
|---|---|
| AbstractList | There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting.There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting. There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech ) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit -value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting. There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer’s Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject’s cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer’s disease in a community setting. |
| Author | Agbavor, Felix Liang, Hualou |
| AuthorAffiliation | School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA |
| AuthorAffiliation_xml | – name: School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA |
| Author_xml | – sequence: 1 givenname: Felix surname: Agbavor fullname: Agbavor, Felix – sequence: 2 givenname: Hualou orcidid: 0000-0002-3805-1837 surname: Liang fullname: Liang, Hualou |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36672010$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Us1qVDEYvUjF1tq9K7ngxs3V_OdmIwztqAMFN63bkJt8mclwJ6nJHUFXfY2-nk9ixmmlHTAEki8553C-n5fNUUwRmuY1Ru8pVejDkE2IxQZMEUaI9M-aE4Kk6Cgj_OjR_bg5K2WN6uoRohy9aI6pEJJU1kmzmuUp-GCDGdtFnGAcwxKihW4ezTCCa-fRdVephq69gAnsFFJsTY1mpUApG4hTm3w7G3-tIGwg_769K-1FKGAKtNclxGX7LQULr5rn3owFzu7P0-b60_zq_Et3-fXz4nx22Vmm0NTxXvHBCWkG7L232BPi2MAl8OreY6sG5qiqWzoBIASWg1MMEOfM1JQ4PW0We12XzFrf5LAx-adOJui_Dykvtakp2xG0sD3n4LmSfc8IEgP1BmPei12tMMNV6-Ne62Y7bMDZmms24xPRpz8xrPQy_dCq5wIzWgXe3Qvk9H0LZdKbUGwtsomQtkUTKXpClFCoQt8eQNdpm2Mt1Q4lsRSCs4p689jRPysPDa0AsQfYnErJ4LUNk9k1rRoMo8ZI74ZHHw5PJaID4oP2fyl_AHKRyH4 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0325177 crossref_primary_10_1371_journal_pone_0310966 crossref_primary_10_17714_gumusfenbil_1714884 crossref_primary_10_3390_brainsci14121292 crossref_primary_10_1097_MD_0000000000037458 crossref_primary_10_1097_MS9_0000000000002200 crossref_primary_10_1007_s13534_024_00444_6 crossref_primary_10_3390_s23115196 crossref_primary_10_3390_electronics13183644 crossref_primary_10_3390_ai6040068 crossref_primary_10_1159_000531818 crossref_primary_10_1038_s41598_024_77220_0 crossref_primary_10_3390_healthcare12212194 crossref_primary_10_32604_cmes_2025_060545 crossref_primary_10_2196_67369 crossref_primary_10_1109_ACCESS_2024_3390186 crossref_primary_10_3390_brainsci13030477 crossref_primary_10_2196_46105 crossref_primary_10_1007_s10462_024_10714_5 crossref_primary_10_3390_bioengineering11030219 crossref_primary_10_3390_math13132100 |
| Cites_doi | 10.25080/Majora-7b98e3ed-003 10.1016/S1474-4422(22)00298-8 10.3233/JAD-200888 10.1109/CTEMS.2018.8769211 10.1002/alz.12721 10.21437/Interspeech.2020-2571 10.1111/j.1532-5415.2005.53221.x 10.3233/JAD-210684 10.2105/AJPH.84.8.1261 10.21437/Interspeech.2020-2557 10.1109/ICASSP.2015.7178964 10.1101/2021.03.24.21254263 10.1001/archneur.1994.00540180063015 10.1371/journal.pone.0222446 10.21437/Interspeech.2021-759 10.1016/0022-3956(75)90026-6 10.1002/j.1875-9114.1998.tb03880.x 10.21437/Interspeech.2021-1519 10.3233/JAD-150520 10.1371/journal.pdig.0000168 10.1109/TAFFC.2015.2457417 10.1093/biomet/70.1.41 10.3389/fcomp.2021.642517 10.37349/emed.2020.00028 10.1145/1873951.1874246 10.1109/JSTSP.2019.2955022 10.1016/j.eclinm.2020.100583 10.1017/S1481803500013336 10.2307/2531595 10.18653/v1/2020.emnlp-demos.6 10.2165/00002512-199915050-00004 10.1177/1179573520907397 10.1201/9780429246593 10.1002/9781118548387 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3390/brainsci13010028 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Biological Science Collection Research Library Biological Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2076-3425 |
| ExternalDocumentID | oai_doaj_org_article_6c855ef597884206b3fa115860000141 PMC9856143 36672010 10_3390_brainsci13010028 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P50 AG005133 – fundername: NIH grantid: AG03705; AG05133 – fundername: DementiaBank |
| GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM NPM 3V. 7TK 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-5895bd67ab1fffc1f22d4b57e5080f1c9b4d39d397d6ee6617bd94e0554a72053 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914597300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3425 |
| IngestDate | Fri Oct 03 12:38:19 EDT 2025 Tue Nov 04 02:06:39 EST 2025 Thu Sep 04 17:12:18 EDT 2025 Fri Jul 25 12:01:22 EDT 2025 Mon Jul 21 05:38:16 EDT 2025 Sat Nov 29 07:16:13 EST 2025 Tue Nov 18 21:27:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | end-to-end speech and language dementia large language models Alzheimer’s disease data2vec |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-5895bd67ab1fffc1f22d4b57e5080f1c9b4d39d397d6ee6617bd94e0554a72053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3805-1837 |
| OpenAccessLink | https://www.proquest.com/docview/2767176654?pq-origsite=%requestingapplication% |
| PMID | 36672010 |
| PQID | 2767176654 |
| PQPubID | 2032423 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c855ef597884206b3fa115860000141 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9856143 proquest_miscellaneous_2768229690 proquest_journals_2767176654 pubmed_primary_36672010 crossref_citationtrail_10_3390_brainsci13010028 crossref_primary_10_3390_brainsci13010028 |
| PublicationCentury | 2000 |
| PublicationDate | 20221223 |
| PublicationDateYYYYMMDD | 2022-12-23 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221223 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Brain sciences |
| PublicationTitleAlternate | Brain Sci |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_35 Guo (ref_21) 2021; 3 ref_34 ref_11 Agbavor (ref_22) 2022; 1 Fraser (ref_15) 2016; 49 Weiner (ref_9) 2013; 9 ref_31 ref_30 DeLong (ref_37) 1988; 44 Seitz (ref_8) 2018; 2 Jack (ref_10) 2022; 21 Ritchie (ref_41) 2020; 78 Yiannopoulou (ref_5) 2020; 12 ref_19 ref_18 Wong (ref_43) 2020; 26 ref_17 Baevski (ref_29) 2020; Volume 33 ref_39 Ernst (ref_3) 1994; 84 ref_38 Murphy (ref_33) 1977; 26 Nasreddine (ref_24) 2005; 53 Fratiglioni (ref_1) 1999; 15 Degroot (ref_32) 1983; 32 Becker (ref_23) 1994; 51 Haider (ref_16) 2020; 14 Fan (ref_36) 2006; 8 Meek (ref_4) 1998; 18 ref_20 ref_42 ref_40 Yamada (ref_44) 2021; 84 ref_2 Eyben (ref_13) 2015; 7 ref_28 ref_27 ref_26 Lin (ref_12) 2020; 1 Folstein (ref_6) 1975; 12 Eyigoz (ref_14) 2020; 28 Rosenbaum (ref_25) 1983; 70 ref_7 |
| References_xml | – ident: ref_28 doi: 10.25080/Majora-7b98e3ed-003 – volume: 21 start-page: 866 year: 2022 ident: ref_10 article-title: Advances in Alzheimer’s Disease Research over the Past Two Decades publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(22)00298-8 – volume: 78 start-page: 1547 year: 2020 ident: ref_41 article-title: Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer’s Disease: A Systematic Review publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-200888 – ident: ref_31 doi: 10.1109/CTEMS.2018.8769211 – ident: ref_40 doi: 10.1002/alz.12721 – ident: ref_18 doi: 10.21437/Interspeech.2020-2571 – volume: 53 start-page: 695 year: 2005 ident: ref_24 article-title: The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.2005.53221.x – ident: ref_26 – ident: ref_34 – volume: 26 start-page: S177 year: 2020 ident: ref_43 article-title: Economic Burden of Alzheimer Disease and Managed Care Considerations publication-title: Suppl. Featur. Publ. – volume: 84 start-page: 315 year: 2021 ident: ref_44 article-title: Combining Multimodal Behavioral Data of Gait, Speech, and Drawing for Classification of Alzheimer’s Disease and Mild Cognitive Impairment publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-210684 – ident: ref_11 – volume: 84 start-page: 1261 year: 1994 ident: ref_3 article-title: The US Economic and Social Costs of Alzheimer’s Disease Revisited publication-title: Am. J. Public Health doi: 10.2105/AJPH.84.8.1261 – ident: ref_20 doi: 10.21437/Interspeech.2020-2557 – ident: ref_27 doi: 10.1109/ICASSP.2015.7178964 – ident: ref_19 doi: 10.1101/2021.03.24.21254263 – volume: 51 start-page: 585 year: 1994 ident: ref_23 article-title: The Natural History of Alzheimer’s Disease: Description of Study Cohort and Accuracy of Diagnosis publication-title: Arch. Neurol. doi: 10.1001/archneur.1994.00540180063015 – ident: ref_7 doi: 10.1371/journal.pone.0222446 – ident: ref_17 doi: 10.21437/Interspeech.2021-759 – volume: 12 start-page: 189 year: 1975 ident: ref_6 article-title: “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 18 start-page: 68 year: 1998 ident: ref_4 article-title: Economic Considerations in Alzheimer’s Disease publication-title: Pharmacother. J. Hum. Pharmacol. Drug Ther. doi: 10.1002/j.1875-9114.1998.tb03880.x – ident: ref_42 doi: 10.21437/Interspeech.2021-1519 – volume: 26 start-page: 41 year: 1977 ident: ref_33 article-title: Reliability of Subjective Probability Forecasts of Precipitation and Temperature publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – volume: 9 start-page: e111 year: 2013 ident: ref_9 article-title: The Alzheimer’s Disease Neuroimaging Initiative: A Review of Papers Published since Its Inception publication-title: Alzheimers Dement. J. Alzheimers Assoc. – volume: 49 start-page: 407 year: 2016 ident: ref_15 article-title: Linguistic Features Identify Alzheimer’s Disease in Narrative Speech publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150520 – volume: 1 start-page: e0000168 year: 2022 ident: ref_22 article-title: Predicting Dementia from Spontaneous Speech Using Large Language Models publication-title: PLoS Digit. Health doi: 10.1371/journal.pdig.0000168 – volume: 7 start-page: 190 year: 2015 ident: ref_13 article-title: The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2457417 – volume: 70 start-page: 41 year: 1983 ident: ref_25 article-title: The Central Role of the Propensity Score in Observational Studies for Causal Effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – ident: ref_2 – volume: 3 start-page: 642517 year: 2021 ident: ref_21 article-title: Crossing the “Cookie Theft” Corpus Chasm: Applying What BERT Learns From Outside Data to the ADReSS Challenge Dementia Detection Task publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2021.642517 – volume: 2 start-page: CD011415 year: 2018 ident: ref_8 article-title: Mini-Cog for the Diagnosis of Alzheimer’s Disease Dementia and Other Dementias within a Primary Care Setting publication-title: Cochrane Database Syst. Rev. – volume: 1 start-page: 406 year: 2020 ident: ref_12 article-title: Identification of Digital Voice Biomarkers for Cognitive Health publication-title: Explor. Med. doi: 10.37349/emed.2020.00028 – ident: ref_39 doi: 10.1145/1873951.1874246 – volume: 14 start-page: 272 year: 2020 ident: ref_16 article-title: An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer’s Dementia in Spontaneous Speech publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2955022 – volume: 28 start-page: 100583 year: 2020 ident: ref_14 article-title: Linguistic Markers Predict Onset of Alzheimer’s Disease publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2020.100583 – volume: 8 start-page: 19 year: 2006 ident: ref_36 article-title: Understanding Receiver Operating Characteristic (ROC) Curves publication-title: CJEM doi: 10.1017/S1481803500013336 – volume: 44 start-page: 837 year: 1988 ident: ref_37 article-title: Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach publication-title: Biometrics doi: 10.2307/2531595 – ident: ref_30 doi: 10.18653/v1/2020.emnlp-demos.6 – volume: 15 start-page: 365 year: 1999 ident: ref_1 article-title: Worldwide Prevalence and Incidence of Dementia publication-title: Drugs Aging doi: 10.2165/00002512-199915050-00004 – volume: 12 start-page: 1179573520907397 year: 2020 ident: ref_5 article-title: Current and Future Treatments in Alzheimer Disease: An Update publication-title: J. Cent. Nerv. Syst. Dis. doi: 10.1177/1179573520907397 – volume: Volume 33 start-page: 12449 year: 2020 ident: ref_29 article-title: Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations publication-title: Advances in Neural Information Processing Systems – ident: ref_35 doi: 10.1201/9780429246593 – ident: ref_38 doi: 10.1002/9781118548387 – volume: 32 start-page: 12 year: 1983 ident: ref_32 article-title: The Comparison and Evaluation of Forecasters publication-title: J. R. Stat. Soc. Ser. Stat. |
| SSID | ssj0000800350 |
| Score | 2.3428297 |
| Snippet | There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically... There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 28 |
| SubjectTerms | Acoustics Age Alzheimer's disease Artificial intelligence Cognitive ability data2vec Datasets Dementia Dementia disorders Diagnosis end-to-end Feasibility studies Gender Health care large language models Machine learning Neural networks Neurodegenerative diseases Speech speech and language |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXBC2PQKmMhJA4WJv47ePSbgWXikNBvUXxS7uoTardLVJ74m_w9_gljJ002q0QXJBycWxHtmcmM2OPv0HordHBJE1BmAia8IZzYqOT6fTROxetZdHnZBPq9FSfn5vPG6m-UkxYDw_cL9xEOi1EiGD3as1pKaFzA1aMlnlfOl9Zp6UyG87Ut8EOYqLszyUZ-PUTmzIugFaBf3ZCHdVbeijD9f_JxrwfKrmhe04eo0eD0Yin_WCfoAeh3UP70xYc5ssb_A7nMM68P76P5qlVDwuBP23gbZJZviXl8az15KyDosfHYZ0jsVrcQGk6gnTiLuLpxe08LC7D8tePnyt83J_j4BxhgL928Ht5ir6czM6OPpIhnQJx3JRrIrQR1kvV2CrG6KpIqedWqAA2WhkrZyz3zMCjvAwB9Lay3vBQgsHRKArC-gzttF0bXiDcMFp54-ALYB4EKq3gMTYGVskmOPiyQJO7xa3dgDWeUl5c1OBzJHLU98lRoPdjj6seZ-MvbT8keo3tEkJ2fgF8Uw98U_-Lbwp0cEftehDbVU2VVAkxU_ACvRmrQeDSKUrThu46t0kg-dLALJ_3zDGOhEmpUnhBgdQW22wNdbumXcwzqLfRCZOVvfwfc3uFHtJ0S6OihLIDtLNeXofXaNd9Xy9Wy8MsKb8BCxgY_g priority: 102 providerName: Directory of Open Access Journals |
| Title | Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer’s Disease Using Voice |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36672010 https://www.proquest.com/docview/2767176654 https://www.proquest.com/docview/2768229690 https://pubmed.ncbi.nlm.nih.gov/PMC9856143 https://doaj.org/article/6c855ef597884206b3fa115860000141 |
| Volume | 13 |
| WOSCitedRecordID | wos000914597300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journals customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2076-3425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800350 issn: 2076-3425 databaseCode: M2O dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4ELr_IIlJWREBKHaDeOE9sntKVb0UOXFSpoOUXxq7tSm5TdLRKc-Bv8PX4JM042dCvUC1IUKbETTTIez3hm_A0hr5R0CjVFnGZOxrzkPNbe5Bh9tMZ4rVNvQ7EJMR7L6VRNWofbsk2rXM-JYaK2tUEfeZ-JXCCYYcbfXnyNsWoURlfbEhpbZAdRElhI3Zt0Pha0htJs0EQnU1jd9zXWXQDdAjM3Yo_KDW0UQPv_ZWleT5i8ooEO7_0v7ffJ3db2pMNmsDwgt1z1kOwOK1h3n3-nr2nIBg1u9l0yw14NugQ9ugLbGY_CZitLR5WNT2q4tPTArUJCV0VLuBp2WJ-09nR49mPm5udu8fvnryU9aMJBNCQq0M81zFKPyKfD0cm793FblSE2XA1WcSZVpm0uSp14703iGbNcZ8KBqTfwiVGa21TBIWzuHKh_oa3ibgB2SykYyPxjsl3VlXtKaJmyxCoDbwArw7FcZ9z7UsFv1ogqP4hIf82dwrSQ5Vg546yApQvys7jOz4i86Z64aOA6bui7jwzv-iHQdrhRL06LVm6L3Mgscx6WXVJyIArGbglGtMxDWIQnEdlbs7xopX9Z_OV3RF52zSC3GIwpK1dfhj6ItZ8r-MonzejqKEnzXGCWQkTExrjbIHWzpZrPAja4kgjtmj67mazn5A7DbRwJi1m6R7ZXi0v3gtw231bz5aJHtsRU9sjO_mg8-dgLXgo4H7MPvSBe0DI5Op58-QN3DS9x |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKRJseJVHSoFBAiQWVuzx-DELhAJJ1ahtlEVAZeV6XiRSa7dJCiorfoOf4KP4Eu4dO6apUHddIHlje2yN7TP33vG9cw4hL0VqBHoKL4xM6vGcc09aFWP2UStlpQytdmITyXCYHhyI0Rr5tVwLg2WVS5voDLUuFf4j77AkTpDMMOLvTk49VI3C7OpSQqOCxa45_wZTtvnbQQ--7yvGtvvjDzterSrgKS78hRelIpI6TnIZWGtVYBnTXEaJgVDFt4ESkutQwJbo2BhwX4nUghsf_G6eMB9VIsDkr3MEe4usjwb7o8_NXx2Mv8LIr_KhYSj8jkSlB_Bm4CuQ7TRd8X9OJuBfse3lEs0LPm_7zv_2tu6S23V0TbvVcLhH1kxxn2x0i3xRHp_T19TVu7pEwgaZYKuKP4MOLhCTen23nEzTfqG9cQm7mvbMwpWsFTSHvW7DZkpLS7tH3ydmemxmv3_8nNNelfCirhSDfirBDj8gH6_lmR-SVlEW5jGhecgCLRTcAeIow2IZcWtzAZ9VIm--3yadJRoyVZOyozbIUQaTM8RPdhk_bfKmueKkIiS5ou17BFjTDqnE3YFy9iWrLVMWqzSKjIWJZZpy6BSMzhymCWnsEj88aJOtJcSy2r7Ns7_4apMXzWmwTJhuygtTnrk2qCYQC3jKRxWam56EcZxgHUabJCs4X-nq6pliOnHs5yJF8tpw8-puPSc3d8b7e9neYLj7hNxiuGglYB4Lt0hrMTszT8kN9XUxnc-e1UOYksPrHgd_AOMGh7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKUJsyqM8DAUGCZBYWLHH48csEAokEVEhyqKgsjKeF4nU2m2SgsqK3-BX-By-hHvHjmkq1F0XSN7YHltj-8y9d3zvnEPIU5EZgZ7Cj2KT-bzg3JdWJZh91EpZKSOrndhEOh5n-_tiskF-rdbCYFnlyiY6Q60rhf_IuyxNUiQzjHnXNmURk_7w1dGxjwpSmGldyWnUENk1p99g-rZ4OerDt37G2HCw9-at3ygM-IqLYOnHmYilTtJChtZaFVrGNJdxaiBsCWyohOQ6ErClOjEGXFkqteAmAB9cpCxAxQgw_5sQknPWIZuT0fvJp_YPD8ZiURzUudEoEkFXouoDeDbwG8h8mq35QicZ8K8493y55hn_N7z-P7-5G2Sribpprx4mN8mGKW-R7V5ZLKvDU_qcujpYl2DYJlNsVfNq0NEZwlJ_4JaZaTootb9Xwa6mfbN0pWwlLWCv17Kc0srS3sH3qZkdmvnvHz8XtF8nwqgr0aAfK7DPt8mHS3nmO6RTVqW5R2gRsVALBXeA-MqwRMbc2kLAJ5bIpx94pLtCRq4asnbUDDnIYdKGWMrPY8kjL9orjmqikgvavkawte2QYtwdqOZf8sZi5YnK4thYmHBmGYdOwagtYPqQJS4hxEOP7Kzgljd2b5H_xZpHnrSnwWJhGqooTXXi2qDKQCLgKe_WyG57EiVJivUZHknXML_W1fUz5WzqWNFFhqS20f2Lu_WYXAXw5-9G490H5BrDtSwh81m0QzrL-Yl5SK6or8vZYv6oGc2UfL7sYfAHAomQcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Enabled+End-To-End+Detection+and+Assessment+of+Alzheimer%27s+Disease+Using+Voice&rft.jtitle=Brain+sciences&rft.au=Agbavor%2C+Felix&rft.au=Liang%2C+Hualou&rft.date=2022-12-23&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fbrainsci13010028&rft_id=info%3Apmid%2F36672010&rft.externalDocID=36672010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |