Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer’s Disease Using Voice

There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artific...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain sciences Ročník 13; číslo 1; s. 28
Hlavní autori: Agbavor, Felix, Liang, Hualou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 23.12.2022
MDPI
Predmet:
ISSN:2076-3425, 2076-3425
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer’s Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject’s cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer’s disease in a community setting.
AbstractList There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting.There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting.
There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech ) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit -value = 0.9616). Moreover, the model can reliably predict the subject's cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer's disease in a community setting.
There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically involves expensive and sometimes invasive tests not commonly available outside highly specialized clinical settings. Here, we developed an artificial intelligence (AI)-powered end-to-end system to detect AD and predict its severity directly from voice recordings. At the core of our system is the pre-trained data2vec model, the first high-performance self-supervised algorithm that works for speech, vision, and text. Our model was internally evaluated on the ADReSSo (Alzheimer’s Dementia Recognition through Spontaneous Speech only) dataset containing voice recordings of subjects describing the Cookie Theft picture, and externally validated on a test dataset from DementiaBank. The AI model can detect AD with average area under the curve (AUC) of 0.846 and 0.835 on held-out and external test set, respectively. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.9616). Moreover, the model can reliably predict the subject’s cognitive testing score solely based on raw voice recordings. Our study demonstrates the feasibility of using the AI-powered end-to-end model for early AD diagnosis and severity prediction directly based on voice, showing its potential for screening Alzheimer’s disease in a community setting.
Author Agbavor, Felix
Liang, Hualou
AuthorAffiliation School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
AuthorAffiliation_xml – name: School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Felix
  surname: Agbavor
  fullname: Agbavor, Felix
– sequence: 2
  givenname: Hualou
  orcidid: 0000-0002-3805-1837
  surname: Liang
  fullname: Liang, Hualou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36672010$$D View this record in MEDLINE/PubMed
BookMark eNp1Us1qVDEYvUjF1tq9K7ngxs3V_OdmIwztqAMFN63bkJt8mclwJ6nJHUFXfY2-nk9ixmmlHTAEki8553C-n5fNUUwRmuY1Ru8pVejDkE2IxQZMEUaI9M-aE4Kk6Cgj_OjR_bg5K2WN6uoRohy9aI6pEJJU1kmzmuUp-GCDGdtFnGAcwxKihW4ezTCCa-fRdVephq69gAnsFFJsTY1mpUApG4hTm3w7G3-tIGwg_769K-1FKGAKtNclxGX7LQULr5rn3owFzu7P0-b60_zq_Et3-fXz4nx22Vmm0NTxXvHBCWkG7L232BPi2MAl8OreY6sG5qiqWzoBIASWg1MMEOfM1JQ4PW0We12XzFrf5LAx-adOJui_Dykvtakp2xG0sD3n4LmSfc8IEgP1BmPei12tMMNV6-Ne62Y7bMDZmms24xPRpz8xrPQy_dCq5wIzWgXe3Qvk9H0LZdKbUGwtsomQtkUTKXpClFCoQt8eQNdpm2Mt1Q4lsRSCs4p689jRPysPDa0AsQfYnErJ4LUNk9k1rRoMo8ZI74ZHHw5PJaID4oP2fyl_AHKRyH4
CitedBy_id crossref_primary_10_1371_journal_pone_0325177
crossref_primary_10_1371_journal_pone_0310966
crossref_primary_10_17714_gumusfenbil_1714884
crossref_primary_10_3390_brainsci14121292
crossref_primary_10_1097_MD_0000000000037458
crossref_primary_10_1097_MS9_0000000000002200
crossref_primary_10_1007_s13534_024_00444_6
crossref_primary_10_3390_s23115196
crossref_primary_10_3390_electronics13183644
crossref_primary_10_3390_ai6040068
crossref_primary_10_1159_000531818
crossref_primary_10_1038_s41598_024_77220_0
crossref_primary_10_3390_healthcare12212194
crossref_primary_10_32604_cmes_2025_060545
crossref_primary_10_2196_67369
crossref_primary_10_1109_ACCESS_2024_3390186
crossref_primary_10_3390_brainsci13030477
crossref_primary_10_2196_46105
crossref_primary_10_1007_s10462_024_10714_5
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_3390_math13132100
Cites_doi 10.25080/Majora-7b98e3ed-003
10.1016/S1474-4422(22)00298-8
10.3233/JAD-200888
10.1109/CTEMS.2018.8769211
10.1002/alz.12721
10.21437/Interspeech.2020-2571
10.1111/j.1532-5415.2005.53221.x
10.3233/JAD-210684
10.2105/AJPH.84.8.1261
10.21437/Interspeech.2020-2557
10.1109/ICASSP.2015.7178964
10.1101/2021.03.24.21254263
10.1001/archneur.1994.00540180063015
10.1371/journal.pone.0222446
10.21437/Interspeech.2021-759
10.1016/0022-3956(75)90026-6
10.1002/j.1875-9114.1998.tb03880.x
10.21437/Interspeech.2021-1519
10.3233/JAD-150520
10.1371/journal.pdig.0000168
10.1109/TAFFC.2015.2457417
10.1093/biomet/70.1.41
10.3389/fcomp.2021.642517
10.37349/emed.2020.00028
10.1145/1873951.1874246
10.1109/JSTSP.2019.2955022
10.1016/j.eclinm.2020.100583
10.1017/S1481803500013336
10.2307/2531595
10.18653/v1/2020.emnlp-demos.6
10.2165/00002512-199915050-00004
10.1177/1179573520907397
10.1201/9780429246593
10.1002/9781118548387
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci13010028
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_6c855ef597884206b3fa115860000141
PMC9856143
36672010
10_3390_brainsci13010028
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P50 AG005133
– fundername: NIH
  grantid: AG03705; AG05133
– fundername: DementiaBank
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
NPM
3V.
7TK
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-5895bd67ab1fffc1f22d4b57e5080f1c9b4d39d397d6ee6617bd94e0554a72053
IEDL.DBID M7P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914597300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3425
IngestDate Fri Oct 03 12:38:19 EDT 2025
Tue Nov 04 02:06:39 EST 2025
Thu Sep 04 17:12:18 EDT 2025
Fri Jul 25 12:01:22 EDT 2025
Mon Jul 21 05:38:16 EDT 2025
Sat Nov 29 07:16:13 EST 2025
Tue Nov 18 21:27:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords end-to-end
speech and language
dementia
large language models
Alzheimer’s disease
data2vec
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-5895bd67ab1fffc1f22d4b57e5080f1c9b4d39d397d6ee6617bd94e0554a72053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3805-1837
OpenAccessLink https://www.proquest.com/docview/2767176654?pq-origsite=%requestingapplication%
PMID 36672010
PQID 2767176654
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_6c855ef597884206b3fa115860000141
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9856143
proquest_miscellaneous_2768229690
proquest_journals_2767176654
pubmed_primary_36672010
crossref_citationtrail_10_3390_brainsci13010028
crossref_primary_10_3390_brainsci13010028
PublicationCentury 2000
PublicationDate 20221223
PublicationDateYYYYMMDD 2022-12-23
PublicationDate_xml – month: 12
  year: 2022
  text: 20221223
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_35
Guo (ref_21) 2021; 3
ref_34
ref_11
Agbavor (ref_22) 2022; 1
Fraser (ref_15) 2016; 49
Weiner (ref_9) 2013; 9
ref_31
ref_30
DeLong (ref_37) 1988; 44
Seitz (ref_8) 2018; 2
Jack (ref_10) 2022; 21
Ritchie (ref_41) 2020; 78
Yiannopoulou (ref_5) 2020; 12
ref_19
ref_18
Wong (ref_43) 2020; 26
ref_17
Baevski (ref_29) 2020; Volume 33
ref_39
Ernst (ref_3) 1994; 84
ref_38
Murphy (ref_33) 1977; 26
Nasreddine (ref_24) 2005; 53
Fratiglioni (ref_1) 1999; 15
Degroot (ref_32) 1983; 32
Becker (ref_23) 1994; 51
Haider (ref_16) 2020; 14
Fan (ref_36) 2006; 8
Meek (ref_4) 1998; 18
ref_20
ref_42
ref_40
Yamada (ref_44) 2021; 84
ref_2
Eyben (ref_13) 2015; 7
ref_28
ref_27
ref_26
Lin (ref_12) 2020; 1
Folstein (ref_6) 1975; 12
Eyigoz (ref_14) 2020; 28
Rosenbaum (ref_25) 1983; 70
ref_7
References_xml – ident: ref_28
  doi: 10.25080/Majora-7b98e3ed-003
– volume: 21
  start-page: 866
  year: 2022
  ident: ref_10
  article-title: Advances in Alzheimer’s Disease Research over the Past Two Decades
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(22)00298-8
– volume: 78
  start-page: 1547
  year: 2020
  ident: ref_41
  article-title: Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer’s Disease: A Systematic Review
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-200888
– ident: ref_31
  doi: 10.1109/CTEMS.2018.8769211
– ident: ref_40
  doi: 10.1002/alz.12721
– ident: ref_18
  doi: 10.21437/Interspeech.2020-2571
– volume: 53
  start-page: 695
  year: 2005
  ident: ref_24
  article-title: The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2005.53221.x
– ident: ref_26
– ident: ref_34
– volume: 26
  start-page: S177
  year: 2020
  ident: ref_43
  article-title: Economic Burden of Alzheimer Disease and Managed Care Considerations
  publication-title: Suppl. Featur. Publ.
– volume: 84
  start-page: 315
  year: 2021
  ident: ref_44
  article-title: Combining Multimodal Behavioral Data of Gait, Speech, and Drawing for Classification of Alzheimer’s Disease and Mild Cognitive Impairment
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-210684
– ident: ref_11
– volume: 84
  start-page: 1261
  year: 1994
  ident: ref_3
  article-title: The US Economic and Social Costs of Alzheimer’s Disease Revisited
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.84.8.1261
– ident: ref_20
  doi: 10.21437/Interspeech.2020-2557
– ident: ref_27
  doi: 10.1109/ICASSP.2015.7178964
– ident: ref_19
  doi: 10.1101/2021.03.24.21254263
– volume: 51
  start-page: 585
  year: 1994
  ident: ref_23
  article-title: The Natural History of Alzheimer’s Disease: Description of Study Cohort and Accuracy of Diagnosis
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1994.00540180063015
– ident: ref_7
  doi: 10.1371/journal.pone.0222446
– ident: ref_17
  doi: 10.21437/Interspeech.2021-759
– volume: 12
  start-page: 189
  year: 1975
  ident: ref_6
  article-title: “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 18
  start-page: 68
  year: 1998
  ident: ref_4
  article-title: Economic Considerations in Alzheimer’s Disease
  publication-title: Pharmacother. J. Hum. Pharmacol. Drug Ther.
  doi: 10.1002/j.1875-9114.1998.tb03880.x
– ident: ref_42
  doi: 10.21437/Interspeech.2021-1519
– volume: 26
  start-page: 41
  year: 1977
  ident: ref_33
  article-title: Reliability of Subjective Probability Forecasts of Precipitation and Temperature
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– volume: 9
  start-page: e111
  year: 2013
  ident: ref_9
  article-title: The Alzheimer’s Disease Neuroimaging Initiative: A Review of Papers Published since Its Inception
  publication-title: Alzheimers Dement. J. Alzheimers Assoc.
– volume: 49
  start-page: 407
  year: 2016
  ident: ref_15
  article-title: Linguistic Features Identify Alzheimer’s Disease in Narrative Speech
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150520
– volume: 1
  start-page: e0000168
  year: 2022
  ident: ref_22
  article-title: Predicting Dementia from Spontaneous Speech Using Large Language Models
  publication-title: PLoS Digit. Health
  doi: 10.1371/journal.pdig.0000168
– volume: 7
  start-page: 190
  year: 2015
  ident: ref_13
  article-title: The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2457417
– volume: 70
  start-page: 41
  year: 1983
  ident: ref_25
  article-title: The Central Role of the Propensity Score in Observational Studies for Causal Effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– ident: ref_2
– volume: 3
  start-page: 642517
  year: 2021
  ident: ref_21
  article-title: Crossing the “Cookie Theft” Corpus Chasm: Applying What BERT Learns From Outside Data to the ADReSS Challenge Dementia Detection Task
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2021.642517
– volume: 2
  start-page: CD011415
  year: 2018
  ident: ref_8
  article-title: Mini-Cog for the Diagnosis of Alzheimer’s Disease Dementia and Other Dementias within a Primary Care Setting
  publication-title: Cochrane Database Syst. Rev.
– volume: 1
  start-page: 406
  year: 2020
  ident: ref_12
  article-title: Identification of Digital Voice Biomarkers for Cognitive Health
  publication-title: Explor. Med.
  doi: 10.37349/emed.2020.00028
– ident: ref_39
  doi: 10.1145/1873951.1874246
– volume: 14
  start-page: 272
  year: 2020
  ident: ref_16
  article-title: An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer’s Dementia in Spontaneous Speech
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2955022
– volume: 28
  start-page: 100583
  year: 2020
  ident: ref_14
  article-title: Linguistic Markers Predict Onset of Alzheimer’s Disease
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100583
– volume: 8
  start-page: 19
  year: 2006
  ident: ref_36
  article-title: Understanding Receiver Operating Characteristic (ROC) Curves
  publication-title: CJEM
  doi: 10.1017/S1481803500013336
– volume: 44
  start-page: 837
  year: 1988
  ident: ref_37
  article-title: Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: ref_30
  doi: 10.18653/v1/2020.emnlp-demos.6
– volume: 15
  start-page: 365
  year: 1999
  ident: ref_1
  article-title: Worldwide Prevalence and Incidence of Dementia
  publication-title: Drugs Aging
  doi: 10.2165/00002512-199915050-00004
– volume: 12
  start-page: 1179573520907397
  year: 2020
  ident: ref_5
  article-title: Current and Future Treatments in Alzheimer Disease: An Update
  publication-title: J. Cent. Nerv. Syst. Dis.
  doi: 10.1177/1179573520907397
– volume: Volume 33
  start-page: 12449
  year: 2020
  ident: ref_29
  article-title: Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_35
  doi: 10.1201/9780429246593
– ident: ref_38
  doi: 10.1002/9781118548387
– volume: 32
  start-page: 12
  year: 1983
  ident: ref_32
  article-title: The Comparison and Evaluation of Forecasters
  publication-title: J. R. Stat. Soc. Ser. Stat.
SSID ssj0000800350
Score 2.3428297
Snippet There is currently no simple, widely available screening method for Alzheimer’s disease (AD), partly because the diagnosis of AD is complex and typically...
There is currently no simple, widely available screening method for Alzheimer's disease (AD), partly because the diagnosis of AD is complex and typically...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 28
SubjectTerms Acoustics
Age
Alzheimer's disease
Artificial intelligence
Cognitive ability
data2vec
Datasets
Dementia
Dementia disorders
Diagnosis
end-to-end
Feasibility studies
Gender
Health care
large language models
Machine learning
Neural networks
Neurodegenerative diseases
Speech
speech and language
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXBC2PQKmMhJA4WJv47ePSbgWXikNBvUXxS7uoTardLVJ74m_w9_gljJ002q0QXJBycWxHtmcmM2OPv0HordHBJE1BmAia8IZzYqOT6fTROxetZdHnZBPq9FSfn5vPG6m-UkxYDw_cL9xEOi1EiGD3as1pKaFzA1aMlnlfOl9Zp6UyG87Ut8EOYqLszyUZ-PUTmzIugFaBf3ZCHdVbeijD9f_JxrwfKrmhe04eo0eD0Yin_WCfoAeh3UP70xYc5ssb_A7nMM68P76P5qlVDwuBP23gbZJZviXl8az15KyDosfHYZ0jsVrcQGk6gnTiLuLpxe08LC7D8tePnyt83J_j4BxhgL928Ht5ir6czM6OPpIhnQJx3JRrIrQR1kvV2CrG6KpIqedWqAA2WhkrZyz3zMCjvAwB9Lay3vBQgsHRKArC-gzttF0bXiDcMFp54-ALYB4EKq3gMTYGVskmOPiyQJO7xa3dgDWeUl5c1OBzJHLU98lRoPdjj6seZ-MvbT8keo3tEkJ2fgF8Uw98U_-Lbwp0cEftehDbVU2VVAkxU_ACvRmrQeDSKUrThu46t0kg-dLALJ_3zDGOhEmpUnhBgdQW22wNdbumXcwzqLfRCZOVvfwfc3uFHtJ0S6OihLIDtLNeXofXaNd9Xy9Wy8MsKb8BCxgY_g
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer’s Disease Using Voice
URI https://www.ncbi.nlm.nih.gov/pubmed/36672010
https://www.proquest.com/docview/2767176654
https://www.proquest.com/docview/2768229690
https://pubmed.ncbi.nlm.nih.gov/PMC9856143
https://doaj.org/article/6c855ef597884206b3fa115860000141
Volume 13
WOSCitedRecordID wos000914597300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2076-3425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800350
  issn: 2076-3425
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4ELr_IIlJWREBKHaDeOE9sntKVb0UOXFSpoOUXxq7tSm5TdLRKc-Bv8PX4JM042dCvUC1IUKbETTTIez3hm_A0hr5R0CjVFnGZOxrzkPNbe5Bh9tMZ4rVNvQ7EJMR7L6VRNWofbsk2rXM-JYaK2tUEfeZ-JXCCYYcbfXnyNsWoURlfbEhpbZAdRElhI3Zt0Pha0htJs0EQnU1jd9zXWXQDdAjM3Yo_KDW0UQPv_ZWleT5i8ooEO7_0v7ffJ3db2pMNmsDwgt1z1kOwOK1h3n3-nr2nIBg1u9l0yw14NugQ9ugLbGY_CZitLR5WNT2q4tPTArUJCV0VLuBp2WJ-09nR49mPm5udu8fvnryU9aMJBNCQq0M81zFKPyKfD0cm793FblSE2XA1WcSZVpm0uSp14703iGbNcZ8KBqTfwiVGa21TBIWzuHKh_oa3ibgB2SykYyPxjsl3VlXtKaJmyxCoDbwArw7FcZ9z7UsFv1ogqP4hIf82dwrSQ5Vg546yApQvys7jOz4i86Z64aOA6bui7jwzv-iHQdrhRL06LVm6L3Mgscx6WXVJyIArGbglGtMxDWIQnEdlbs7xopX9Z_OV3RF52zSC3GIwpK1dfhj6ItZ8r-MonzejqKEnzXGCWQkTExrjbIHWzpZrPAja4kgjtmj67mazn5A7DbRwJi1m6R7ZXi0v3gtw231bz5aJHtsRU9sjO_mg8-dgLXgo4H7MPvSBe0DI5Op58-QN3DS9x
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKRJseJVHSoFBAiQWVuzx-DELhAJJ1ahtlEVAZeV6XiRSa7dJCiorfoOf4KP4Eu4dO6apUHddIHlje2yN7TP33vG9cw4hL0VqBHoKL4xM6vGcc09aFWP2UStlpQytdmITyXCYHhyI0Rr5tVwLg2WVS5voDLUuFf4j77AkTpDMMOLvTk49VI3C7OpSQqOCxa45_wZTtvnbQQ--7yvGtvvjDzterSrgKS78hRelIpI6TnIZWGtVYBnTXEaJgVDFt4ESkutQwJbo2BhwX4nUghsf_G6eMB9VIsDkr3MEe4usjwb7o8_NXx2Mv8LIr_KhYSj8jkSlB_Bm4CuQ7TRd8X9OJuBfse3lEs0LPm_7zv_2tu6S23V0TbvVcLhH1kxxn2x0i3xRHp_T19TVu7pEwgaZYKuKP4MOLhCTen23nEzTfqG9cQm7mvbMwpWsFTSHvW7DZkpLS7tH3ydmemxmv3_8nNNelfCirhSDfirBDj8gH6_lmR-SVlEW5jGhecgCLRTcAeIow2IZcWtzAZ9VIm--3yadJRoyVZOyozbIUQaTM8RPdhk_bfKmueKkIiS5ou17BFjTDqnE3YFy9iWrLVMWqzSKjIWJZZpy6BSMzhymCWnsEj88aJOtJcSy2r7Ns7_4apMXzWmwTJhuygtTnrk2qCYQC3jKRxWam56EcZxgHUabJCs4X-nq6pliOnHs5yJF8tpw8-puPSc3d8b7e9neYLj7hNxiuGglYB4Lt0hrMTszT8kN9XUxnc-e1UOYksPrHgd_AOMGh7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKUJsyqM8DAUGCZBYWLHH48csEAokEVEhyqKgsjKeF4nU2m2SgsqK3-BX-By-hHvHjmkq1F0XSN7YHltj-8y9d3zvnEPIU5EZgZ7Cj2KT-bzg3JdWJZh91EpZKSOrndhEOh5n-_tiskF-rdbCYFnlyiY6Q60rhf_IuyxNUiQzjHnXNmURk_7w1dGxjwpSmGldyWnUENk1p99g-rZ4OerDt37G2HCw9-at3ygM-IqLYOnHmYilTtJChtZaFVrGNJdxaiBsCWyohOQ6ErClOjEGXFkqteAmAB9cpCxAxQgw_5sQknPWIZuT0fvJp_YPD8ZiURzUudEoEkFXouoDeDbwG8h8mq35QicZ8K8493y55hn_N7z-P7-5G2Sribpprx4mN8mGKW-R7V5ZLKvDU_qcujpYl2DYJlNsVfNq0NEZwlJ_4JaZaTootb9Xwa6mfbN0pWwlLWCv17Kc0srS3sH3qZkdmvnvHz8XtF8nwqgr0aAfK7DPt8mHS3nmO6RTVqW5R2gRsVALBXeA-MqwRMbc2kLAJ5bIpx94pLtCRq4asnbUDDnIYdKGWMrPY8kjL9orjmqikgvavkawte2QYtwdqOZf8sZi5YnK4thYmHBmGYdOwagtYPqQJS4hxEOP7Kzgljd2b5H_xZpHnrSnwWJhGqooTXXi2qDKQCLgKe_WyG57EiVJivUZHknXML_W1fUz5WzqWNFFhqS20f2Lu_WYXAXw5-9G490H5BrDtSwh81m0QzrL-Yl5SK6or8vZYv6oGc2UfL7sYfAHAomQcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Enabled+End-To-End+Detection+and+Assessment+of+Alzheimer%27s+Disease+Using+Voice&rft.jtitle=Brain+sciences&rft.au=Agbavor%2C+Felix&rft.au=Liang%2C+Hualou&rft.date=2022-12-23&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fbrainsci13010028&rft_id=info%3Apmid%2F36672010&rft.externalDocID=36672010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon