Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent
The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode confi...
Saved in:
| Published in: | Frontiers in neuroinformatics Vol. 11; p. 45 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Research Foundation
11.07.2017
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1662-5196, 1662-5196 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients. |
|---|---|
| AbstractList | The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients. The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients. |
| Author | Iáñez, Eduardo Ortíz, Mario Rodríguez-Ugarte, Marisol Azorín, Jose M. |
| AuthorAffiliation | Brain-Machine Interface Systems Lab, Systems Engineering and Automation Department, Miguel Hernández University of Elche Elche, Spain |
| AuthorAffiliation_xml | – name: Brain-Machine Interface Systems Lab, Systems Engineering and Automation Department, Miguel Hernández University of Elche Elche, Spain |
| Author_xml | – sequence: 1 givenname: Marisol surname: Rodríguez-Ugarte fullname: Rodríguez-Ugarte, Marisol – sequence: 2 givenname: Eduardo surname: Iáñez fullname: Iáñez, Eduardo – sequence: 3 givenname: Mario surname: Ortíz fullname: Ortíz, Mario – sequence: 4 givenname: Jose M. surname: Azorín fullname: Azorín, Jose M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28744212$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks-PEyEcxYlZ4_7QuycziRcvrfwaGC4mWn9s45r2oGfCwJdKM4V1YEz0r5e2u5vdTTxB4L0PD3jn6CSmCAi9JHjOWKfe-hiin1NM5BxjzNsn6IwIQWctUeLk3vwUnee8xVhQ0cpn6JR2knNK6Bn6uoYxp2iG8Bdcs_J-CBEaE12zzjC5NFvFw8qHxbL5lhwMuSmp-QgFbGnW4KoxbpplLBDLc_TUmyHDi5vxAv34_On74nJ2tfqyXLy_mlmucKmBiGJScetaRZUzzimBqRRAXeeBY0wdM74X0jBPMaOEtUyoHksFhtvWswu0PHJdMlt9PYadGf_oZII-LKRxo81Ygh1Ad6LlQkgrPWl5j7mith4OEhPBgfd9Zb07sq6nfgfO1muMZngAfbgTw0-9Sb9122JOVVcBb24AY_o1QS56F7KFYTAR0pQ1UZRJLpjgVfr6kXSbprG-fdaUKk6wxIxU1av7ie6i3P5ZFYijwI4p5xG8tqGYEtI-YBg0wXpfDn0oh96XQx_KUY34kfGW_V_LP6VmusQ |
| CitedBy_id | crossref_primary_10_1109_TNSRE_2020_2974056 crossref_primary_10_4995_riai_2018_9861 crossref_primary_10_1088_1741_2552_ac77be crossref_primary_10_1088_1741_2552_ad171a crossref_primary_10_3390_jpm13010046 crossref_primary_10_1088_2057_1976_ad2e35 crossref_primary_10_3390_app12010415 crossref_primary_10_3389_fnbot_2022_971547 crossref_primary_10_3389_fninf_2022_961089 crossref_primary_10_3390_bios12121134 crossref_primary_10_1088_1741_2552_ab08c8 crossref_primary_10_1109_TNSRE_2024_3434983 crossref_primary_10_3389_fnins_2017_00660 crossref_primary_10_1016_j_compbiomed_2023_107658 crossref_primary_10_1145_3757732 crossref_primary_10_3390_s21144754 |
| Cites_doi | 10.1186/s12984-015-0087-4 10.1007/978-0-387-77242-4 10.1113/jphysiol.2006.123067 10.1109/embc.2016.7590993 10.1016/S0013-4694(97)00022-2 10.1016/j.clinph.2010.08.002 10.1109/TBME.2013.2294203 10.3389/fneng.2012.00013 10.1037/0735-7044.121.5.854 10.1186/1743-0003-11-153 10.1109/EMBC.2014.6944532 10.1109/TBME.2007.912653 10.1016/j.neuroimage.2005.12.003 10.1016/S0013-4694(98)00051-0 10.1016/j.clinph.2010.07.010 10.1186/1743-0003-9-65 10.1109/IEMBS.2010.5625947 10.3390/s141018172 10.1016/j.artmed.2013.07.004 10.1007/978-3-319-26242-0_10 10.1016/j.clinph.2007.08.025 10.1017/CBO9781139032803 10.3389/fnins.2014.00376 10.1016/S1474-4422(08)70223-0 10.1007/978-1-4615-0189-3 10.1016/0301-0511(77)90028-X 10.1016/j.clinph.2014.05.003 10.5626/JCSE.2013.7.2.139 |
| ContentType | Journal Article |
| Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín. 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín |
| Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín. 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fninf.2017.00045 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_8654667c7f154b0492c193e70164e4bb PMC5504298 28744212 10_3389_fninf_2017_00045 |
| Genre | Journal Article |
| GeographicLocations | New York Spain |
| GeographicLocations_xml | – name: New York – name: Spain |
| GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: DPI2014-58431-C4-2-R |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-51193794cd5929dadd960276e2d8fe4002d3afb67a3f2032135369b079ea4c5f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406561400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5196 |
| IngestDate | Mon Nov 10 04:32:07 EST 2025 Tue Nov 04 01:59:20 EST 2025 Thu Sep 04 16:50:17 EDT 2025 Fri Jul 25 11:53:17 EDT 2025 Thu Jan 02 22:42:06 EST 2025 Sat Nov 29 07:46:56 EST 2025 Tue Nov 18 22:16:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | offline electrode configurations pedaling intention personalized brain-computer interfaces feature extraction algorithms pseudo-online |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-51193794cd5929dadd960276e2d8fe4002d3afb67a3f2032135369b079ea4c5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Jose Manuel Ferrandez, Universidad Politécnica de Cartagena, Spain Reviewed by: Monzurul Alam, Hong Kong Polytechnic University, Hong Kong; Miguel Almonacid, Universidad Politécnica de Cartagena, Spain |
| OpenAccessLink | https://www.proquest.com/docview/2294107031?pq-origsite=%requestingapplication% |
| PMID | 28744212 |
| PQID | 2294107031 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8654667c7f154b0492c193e70164e4bb pubmedcentral_primary_oai_pubmedcentral_nih_gov_5504298 proquest_miscellaneous_1923746364 proquest_journals_2294107031 pubmed_primary_28744212 crossref_citationtrail_10_3389_fninf_2017_00045 crossref_primary_10_3389_fninf_2017_00045 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-11 |
| PublicationDateYYYYMMDD | 2017-07-11 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2017 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Schacter (B27) 1977; 5 Lew (B15) 2012; 5 Ibáñez (B11) 2010 Lehtonen (B14) 2008; 55 Rohm (B24) 2013; 59 Toffanin (B30) 2007; 121 Ang (B2) 2013; 7 Bai (B3) 2007; 118 Dobkin (B8) 2007; 579 Pfurtscheller (B20) 2006; 31 Hortal (B9) 2016 Steriade (B29) 2005 Steinwart (B28) 2008 McFarland (B17) 1997; 103 Rao (B22) 2013 Jahanshahi (B12) 2003 Amzica (B1) 1998; 107 Hortal (B10) 2015 Pennycott (B19) 2012; 9 López-Larraz (B16) 2014; 11 Bhagat (B5) 2014 Sburlea (B26) 2016 Daly (B7) 2008; 7 Planelles (B21) 2014; 14 Bai (B4) 2011; 122 Xu (B31) 2014; 61 Bulea (B6) 2014; 8 Sburlea (B25) 2015; 12 Jiang (B13) 2015; 126 Rodríguez-Ugarte (B23) 2016; 2016 Nam (B18) 2011; 122 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 193587 - Biol Psychol. 1977 Mar;5(1):47-82 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9 25505377 - Front Neurosci. 2014 Nov 25;8:376 26654594 - J Neuroeng Rehabil. 2015 Dec 12;12 :113 21095795 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4562-5 25268915 - Sensors (Basel). 2014 Sep 29;14(10):18172-86 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94 22953989 - J Neuroeng Rehabil. 2012 Sep 07;9:65 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72 17907818 - Behav Neurosci. 2007 Oct;121(5):854-70 9751278 - Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):69-83 18270008 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):713-20 28268610 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1496-1499 16443377 - Neuroimage. 2006 May 15;31(1):153-9 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 28291737 - J Neural Eng. 2017 Jun;14 (3):036004 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-4130 23055968 - Front Neuroeng. 2012 Jul 12;5:13 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153 17095557 - J Physiol. 2007 Mar 15;579(Pt 3):637-42 17967559 - Clin Neurophysiol. 2007 Dec;118(12):2637-55 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42 20800538 - Clin Neurophysiol. 2011 Mar;122(3):567-77 |
| References_xml | – volume: 12 start-page: 1 year: 2015 ident: B25 article-title: Detecting intention to walk in stroke patients from pre-movement EEG correlates publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0087-4 – volume-title: Support Vector Machines year: 2008 ident: B28 doi: 10.1007/978-0-387-77242-4 – volume: 579 start-page: 637 year: 2007 ident: B8 article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.123067 – volume: 2016 start-page: 1496 year: 2016 ident: B23 article-title: Detection of intention of pedaling start cycle through EEG signals publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. doi: 10.1109/embc.2016.7590993 – volume: 103 start-page: 386 year: 1997 ident: B17 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00022-2 – volume: 122 start-page: 567 year: 2011 ident: B18 article-title: Movement imagery-related lateralization of event-related (de) synchronization (ERD/ERS): motor-imagery duration effects publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.08.002 – year: 2016 ident: B26 article-title: Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects publication-title: arXiv preprint arXiv:1605.04533 – volume: 61 start-page: 288 year: 2014 ident: B31 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2294203 – volume: 5 start-page: 13 year: 2012 ident: B15 article-title: Detection of self-paced reaching movement intention from EEG signals publication-title: Front. Neuroeng. doi: 10.3389/fneng.2012.00013 – volume: 121 start-page: 854 year: 2007 ident: B30 article-title: Rethinking neural efficiency: effects of controlling for strategy use publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.121.5.854 – volume: 11 start-page: 1 year: 2014 ident: B16 article-title: Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-153 – start-page: 4127 volume-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2014 ident: B5 article-title: Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke doi: 10.1109/EMBC.2014.6944532 – volume: 55 start-page: 713 year: 2008 ident: B14 article-title: Online classification of single EEG trials during finger movements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.912653 – volume: 31 start-page: 153 year: 2006 ident: B20 article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 107 start-page: 69 year: 1998 ident: B1 article-title: Electrophysiological correlates of sleep delta waves publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00051-0 – volume: 122 start-page: 364 year: 2011 ident: B4 article-title: Prediction of human voluntary movement before it occurs publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.07.010 – volume: 9 start-page: 1 year: 2012 ident: B19 article-title: Towards more effective robotic gait training for stroke rehabilitation: a review publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-9-65 – start-page: 4562 volume-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology year: 2010 ident: B11 article-title: An asynchronous BMI system for online single-trial detection of movement intention doi: 10.1109/IEMBS.2010.5625947 – volume: 14 start-page: 18172 year: 2014 ident: B21 article-title: Evaluating classifiers to detect arm movement intention from EEG signals publication-title: Sensors doi: 10.3390/s141018172 – volume: 59 start-page: 133 year: 2013 ident: B24 article-title: Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2013.07.004 – volume-title: Cellular Substrates of Brain Rhythms year: 2005 ident: B29 – start-page: 141 volume-title: Advances in Neurotechnology, Electronics and Informatics year: 2016 ident: B9 article-title: Detection of gait initiation through a ERD-based brain-computer interface doi: 10.1007/978-3-319-26242-0_10 – volume: 118 start-page: 2637 year: 2007 ident: B3 article-title: Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.08.025 – volume-title: Brain-Computer Interfacing: An Introduction year: 2013 ident: B22 doi: 10.1017/CBO9781139032803 – volume: 8 start-page: 376 year: 2014 ident: B6 article-title: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00376 – volume: 7 start-page: 1032 year: 2008 ident: B7 article-title: Brain–computer interfaces in neurological rehabilitation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70223-0 – volume-title: The Bereitschaftspotential: Movement-related cortical potentials year: 2003 ident: B12 doi: 10.1007/978-1-4615-0189-3 – volume: 5 start-page: 47 year: 1977 ident: B27 article-title: EEG theta waves and psychological phenomena: a review and analysis publication-title: Biol. Psychol. doi: 10.1016/0301-0511(77)90028-X – start-page: 278 volume-title: International Work-Conference on the Interplay Between Natural and Artificial Computation year: 2015 ident: B10 article-title: Using EEG signals to detect the intention of walking initiation and stop – volume: 126 start-page: 154 year: 2015 ident: B13 article-title: A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.003 – volume: 7 start-page: 139 year: 2013 ident: B2 article-title: Brain-computer interface in stroke rehabilitation publication-title: J. Comput. Sci. Eng. doi: 10.5626/JCSE.2013.7.2.139 – reference: 17907818 - Behav Neurosci. 2007 Oct;121(5):854-70 – reference: 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9 – reference: 9751278 - Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):69-83 – reference: 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94 – reference: 26654594 - J Neuroeng Rehabil. 2015 Dec 12;12 :113 – reference: 17095557 - J Physiol. 2007 Mar 15;579(Pt 3):637-42 – reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43 – reference: 193587 - Biol Psychol. 1977 Mar;5(1):47-82 – reference: 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42 – reference: 28291737 - J Neural Eng. 2017 Jun;14 (3):036004 – reference: 22953989 - J Neuroeng Rehabil. 2012 Sep 07;9:65 – reference: 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-4130 – reference: 25268915 - Sensors (Basel). 2014 Sep 29;14(10):18172-86 – reference: 16443377 - Neuroimage. 2006 May 15;31(1):153-9 – reference: 18270008 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):713-20 – reference: 21095795 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4562-5 – reference: 23055968 - Front Neuroeng. 2012 Jul 12;5:13 – reference: 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72 – reference: 20800538 - Clin Neurophysiol. 2011 Mar;122(3):567-77 – reference: 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153 – reference: 28268610 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1496-1499 – reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96 – reference: 25505377 - Front Neurosci. 2014 Nov 25;8:376 – reference: 17967559 - Clin Neurophysiol. 2007 Dec;118(12):2637-55 |
| SSID | ssj0062657 |
| Score | 2.2618456 |
| Snippet | The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 45 |
| SubjectTerms | Algorithms EEG electrode configurations Electrodes Electroencephalography Exoskeleton feature extraction algorithms Gait Internet Neuroscience offline Patients pedaling intention personalized brain-computer interfaces pseudo-online Rehabilitation Stroke Walking |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB7k8MGXYq22q1UiiODDcndJdrP72FaLopz3YOHeQn5i4dyT7l6h_eudye4ddyL64usmgexMJvNNMvkG4I1BGOoQJufKi5BLX9q84sLm0pYTWxU4KCae2S9qNqsWi3q-U-qLcsJ6euBecOOKXtuUyqmIzt4inuUOMUdQRA0VpLW0-05UvQmm-j0YUXqh-ktJDMHqcWxQXZTHlfgK6enSjhNKXP1_Api_50nuOJ7Lx3AwIEZ21s_0EB6E5gkcnTUYLf-4Y29ZyuFMh-NH8Hm-wdb3wbOvMRKIZKbxbN6GtV_lPbMoO7_4xKgK2rJl3Yq9D3STwObBG3qczlJae_cUri4_fLv4mA_lEnIn60mX042gQPNyvkDM43HjwuiEqzJwX8WAtsq9MNGWyohIddOp4kVZWxReMNIVUTyDUbNqwgkwGYuyRmwlXcWl4KHizphCYGhkaiG8ymC8kZ92A5c4lbRYaowpSOI6SVyTxHWSeAbvtiN-9jwaf-l7TirZ9iMG7PQB14Ue1oX-17rI4HSjUD2YZas5r-U0UfZn8HrbjAZFtySmCat1qwnyKqJRkxkc9_rfziQVC0Bnn4HaWxl7U91vaa6_J9JujATR9VfP_8e_vYBHJC06Yp5OT2HU3azDS3jobrvr9uZVsoRfLwcLBQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28744212 https://www.proquest.com/docview/2294107031 https://www.proquest.com/docview/1923746364 https://pubmed.ncbi.nlm.nih.gov/PMC5504298 https://doaj.org/article/8654667c7f154b0492c193e70164e4bb |
| Volume | 11 |
| WOSCitedRecordID | wos000406561400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXXuVhKNEiISQOVpLdtdc-oaakooIGC4EUTpa9D6hU7BI7SHDgtzOztkODUC9cfMja0sbfzvqbx34D8KxAGqqRJofKCBtKE5dhwkUZyjKelEmEDzmvM_tWLRbJcplmfcCt6csqhz3Rb9Sm1hQjH3OeyqlXW3958S2krlGUXe1baOzAHjKbKTlfpzwbdmLk6pHqUpPoiKVjVyFoVM3lVQvpANOlT5FX7P8Xzfy7WvLS5-f41v9O_Dbc7IknO-xWyh24Zqu7sH9YodP99Qd7znwpqI-x78ObbKDoP61h75wjLsqKyrCssWtTh51AKZsdnTBqpnbesLZmrywlJFhmTUFn3Jmvjm_vwcfj-Yej12HfdSHUMp20ISUWBVqpNhFSJ4P7Hzo5XMWWm8RZNHluROHKWBXCUft1apwRp-VEpbaQOnLiPuxWdWUfApMuilOkaFInXApuE66LIhLoYRWpEEYFMB4AyHUvSU6dMc5zdE0IstxDlhNkuYcsgBebJy46OY4r7p0Rppv7SEjb_1CvPue9XeYJHeaKlVYOuWSJ7hLX-PetIuUxK8sygIMB1by37ib_A2kATzfDaJeUbCkqW6-bnJizIjU2GcCDbgFtZuJ7DiBnCEBtLa2tqW6PVGdfvPY3OpTIIJJHV0_rMdyg90Ax6On0AHbb1do-gev6e3vWrEawo5bJCPZm80X2fuSjECNvOHRV_vprjuPZyWn26TceTyGR |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQXvsqHocAiARIHK8l67bUPCPWDqlHSkEORetuud9dQqdgldkDlR_EbmVnHoUGotx64xna0tt_OvvHMvgfwSiMNNUiTQ2kjFwqb5GHKozwUedLP0xgvKrzO7FhOJunRUTZdg1_dXhhqq-xiog_UtjL0jbzHeSYGXm39_dm3kFyjqLraWWi0sBi58x-YstXvhrv4fl9zvvfhcGc_XLgKhEZk_SakwlmEKDQ2RmpgcX4jiecycdymhUNIcxvpIk-kjgqyFydjiCTL-zJzWpi4iPB_r8F1gSshOSYc8GkX-TE3iGVbCsXEL-sVJYKEuse8SiJtmLqw9HmHgH_R2r-7My8sd3t3_rcHdRduL4g122pnwj1Yc-V92NgqdVN9PWdvmG919TWEDRhNuxTkp7PsY1EQ12a6tGxau7mtwlaAlW3vDBmZxZ3WrKnYrqOCC5s6q2kPP_Pd_80D-HQlt_UQ1suqdI-BiSJOMqSgwqRcRNyl3GgdR5hB6iyKrAyg171wZRaS6-T8caow9SKIKA8RRRBRHiIBvF1ecdbKjVxy7jZhaHkeCYX7H6rZZ7WIOyqlzWqJNLJArpxjOsgN3r6TpKzmRJ4HsNmhSC2iV63-QCiAl8vDGHeomKRLV81rRZmBJLU5EcCjFrDLkXhPBeREAcgVKK8MdfVIefLFa5tjwowMKX1y-bBewM39w4OxGg8no6dwi54JfW8fDDZhvZnN3TO4Yb43J_XsuZ-gDI6vGui_AQMCdTs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMrDUGCRAImDlWTX9toHhJqmEVGqECGQejNr7y5UKnaJHVD5afw6ZtZ2aBDqrQeufmltfzv7zc7MNwDPFdLQHGmyL7UwfqCjzI-5yPwgiwZZHOJN1unMHsr5PD46ShZb8KurhaG0ys4mOkOty5z2yPucJ8HQqa33bZsWsRhP3px-86mDFEVau3YaDURm5uwHum_V6-kY__ULzicHH_bf-m2HAT8PkkHtUxBNICJzHSJN0DjXkdBzGRmuY2sQ3lwLZbNIKmGp1Tg1iYiSbCATo4I8tAKfewW2pUiGQQ-2RwfzxftuHUBPIZRNYBTdwKRvC4QM5ZI5zUQqnzq3ELp-Af8iuX_nap5b_CY3_-fPdgtutJSb7TVz5DZsmeIO7OwVqi6_nrGXzCXBuujCDswWnXPy02j2zlpi4UwVmi0qs9Kl30izstH-lFEbuZOK1SUbGwrFsIXRiqr7masLqO_Cx0t5rXvQK8rCPAAW2DBKkJwGecwDwU3Mc6VCgb6lSoTQ0oN-9_PTvBVjp54gJyk6ZQSX1MElJbikDi4evFrfcdoIkVxw7YjwtL6OJMTdgXL5OW0tUhpTGVskc2mRRWfoKPIcX99I0lwzQZZ5sNshKm3tWpX-gZMHz9an0SJRmEkVplxVKfkMknToAg_uN-Bdj8R1W0C25IHcgPXGUDfPFMdfnOo5utLIneKHFw_rKVxDfKeH0_nsEVynT0Ib8cPhLvTq5co8hqv59_q4Wj5pZyuDT5eN9N9HY39V |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Offline+and+Pseudo-Online+BCI+Models+to+Detect+Pedaling+Intent&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Rodr%C3%ADguez-Ugarte%2C+Marisol&rft.au=I%C3%A1%C3%B1ez%2C+Eduardo&rft.au=Ort%C3%ADz%2C+Mario&rft.au=Azor%C3%ADn%2C+Jose+M.&rft.date=2017-07-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=11&rft_id=info:doi/10.3389%2Ffninf.2017.00045&rft_id=info%3Apmid%2F28744212&rft.externalDocID=PMC5504298 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |