Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent

The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode confi...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics Vol. 11; p. 45
Main Authors: Rodríguez-Ugarte, Marisol, Iáñez, Eduardo, Ortíz, Mario, Azorín, Jose M.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 11.07.2017
Frontiers Media S.A
Subjects:
ISSN:1662-5196, 1662-5196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.
AbstractList The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.
The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many possible BCI models for each subject. The choice was between different processing windows, feature extraction algorithms and electrode configurations. Moreover, data was analyzed offline and pseudo-online (in a way suitable for real-time applications), with a preference for the latter case. A process for selecting the best BCI model was described in detail. Results for the pseudo-online processing with the best BCI model of each subject were on average 76.7% of true positive rate, 4.94 false positives per minute and 55.1% of accuracy. The personalized BCI model approach was also found to be significantly advantageous when compared to the typical approach of using a fixed feature extraction algorithm and electrode configuration. The resulting approach could be used to more robustly interface with lower limb exoskeletons in the context of the rehabilitation of stroke patients.
Author Iáñez, Eduardo
Ortíz, Mario
Rodríguez-Ugarte, Marisol
Azorín, Jose M.
AuthorAffiliation Brain-Machine Interface Systems Lab, Systems Engineering and Automation Department, Miguel Hernández University of Elche Elche, Spain
AuthorAffiliation_xml – name: Brain-Machine Interface Systems Lab, Systems Engineering and Automation Department, Miguel Hernández University of Elche Elche, Spain
Author_xml – sequence: 1
  givenname: Marisol
  surname: Rodríguez-Ugarte
  fullname: Rodríguez-Ugarte, Marisol
– sequence: 2
  givenname: Eduardo
  surname: Iáñez
  fullname: Iáñez, Eduardo
– sequence: 3
  givenname: Mario
  surname: Ortíz
  fullname: Ortíz, Mario
– sequence: 4
  givenname: Jose M.
  surname: Azorín
  fullname: Azorín, Jose M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28744212$$D View this record in MEDLINE/PubMed
BookMark eNp1ks-PEyEcxYlZ4_7QuycziRcvrfwaGC4mWn9s45r2oGfCwJdKM4V1YEz0r5e2u5vdTTxB4L0PD3jn6CSmCAi9JHjOWKfe-hiin1NM5BxjzNsn6IwIQWctUeLk3vwUnee8xVhQ0cpn6JR2knNK6Bn6uoYxp2iG8Bdcs_J-CBEaE12zzjC5NFvFw8qHxbL5lhwMuSmp-QgFbGnW4KoxbpplLBDLc_TUmyHDi5vxAv34_On74nJ2tfqyXLy_mlmucKmBiGJScetaRZUzzimBqRRAXeeBY0wdM74X0jBPMaOEtUyoHksFhtvWswu0PHJdMlt9PYadGf_oZII-LKRxo81Ygh1Ad6LlQkgrPWl5j7mith4OEhPBgfd9Zb07sq6nfgfO1muMZngAfbgTw0-9Sb9122JOVVcBb24AY_o1QS56F7KFYTAR0pQ1UZRJLpjgVfr6kXSbprG-fdaUKk6wxIxU1av7ie6i3P5ZFYijwI4p5xG8tqGYEtI-YBg0wXpfDn0oh96XQx_KUY34kfGW_V_LP6VmusQ
CitedBy_id crossref_primary_10_1109_TNSRE_2020_2974056
crossref_primary_10_4995_riai_2018_9861
crossref_primary_10_1088_1741_2552_ac77be
crossref_primary_10_1088_1741_2552_ad171a
crossref_primary_10_3390_jpm13010046
crossref_primary_10_1088_2057_1976_ad2e35
crossref_primary_10_3390_app12010415
crossref_primary_10_3389_fnbot_2022_971547
crossref_primary_10_3389_fninf_2022_961089
crossref_primary_10_3390_bios12121134
crossref_primary_10_1088_1741_2552_ab08c8
crossref_primary_10_1109_TNSRE_2024_3434983
crossref_primary_10_3389_fnins_2017_00660
crossref_primary_10_1016_j_compbiomed_2023_107658
crossref_primary_10_1145_3757732
crossref_primary_10_3390_s21144754
Cites_doi 10.1186/s12984-015-0087-4
10.1007/978-0-387-77242-4
10.1113/jphysiol.2006.123067
10.1109/embc.2016.7590993
10.1016/S0013-4694(97)00022-2
10.1016/j.clinph.2010.08.002
10.1109/TBME.2013.2294203
10.3389/fneng.2012.00013
10.1037/0735-7044.121.5.854
10.1186/1743-0003-11-153
10.1109/EMBC.2014.6944532
10.1109/TBME.2007.912653
10.1016/j.neuroimage.2005.12.003
10.1016/S0013-4694(98)00051-0
10.1016/j.clinph.2010.07.010
10.1186/1743-0003-9-65
10.1109/IEMBS.2010.5625947
10.3390/s141018172
10.1016/j.artmed.2013.07.004
10.1007/978-3-319-26242-0_10
10.1016/j.clinph.2007.08.025
10.1017/CBO9781139032803
10.3389/fnins.2014.00376
10.1016/S1474-4422(08)70223-0
10.1007/978-1-4615-0189-3
10.1016/0301-0511(77)90028-X
10.1016/j.clinph.2014.05.003
10.5626/JCSE.2013.7.2.139
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín. 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín. 2017 Rodríguez-Ugarte, Iáñez, Ortíz and Azorín
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2017.00045
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_8654667c7f154b0492c193e70164e4bb
PMC5504298
28744212
10_3389_fninf_2017_00045
Genre Journal Article
GeographicLocations New York
Spain
GeographicLocations_xml – name: New York
– name: Spain
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: DPI2014-58431-C4-2-R
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-51193794cd5929dadd960276e2d8fe4002d3afb67a3f2032135369b079ea4c5f3
IEDL.DBID M2P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406561400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Mon Nov 10 04:32:07 EST 2025
Tue Nov 04 01:59:20 EST 2025
Thu Sep 04 16:50:17 EDT 2025
Fri Jul 25 11:53:17 EDT 2025
Thu Jan 02 22:42:06 EST 2025
Sat Nov 29 07:46:56 EST 2025
Tue Nov 18 22:16:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords offline
electrode configurations
pedaling intention
personalized brain-computer interfaces
feature extraction algorithms
pseudo-online
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-51193794cd5929dadd960276e2d8fe4002d3afb67a3f2032135369b079ea4c5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Jose Manuel Ferrandez, Universidad Politécnica de Cartagena, Spain
Reviewed by: Monzurul Alam, Hong Kong Polytechnic University, Hong Kong; Miguel Almonacid, Universidad Politécnica de Cartagena, Spain
OpenAccessLink https://www.proquest.com/docview/2294107031?pq-origsite=%requestingapplication%
PMID 28744212
PQID 2294107031
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_8654667c7f154b0492c193e70164e4bb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5504298
proquest_miscellaneous_1923746364
proquest_journals_2294107031
pubmed_primary_28744212
crossref_citationtrail_10_3389_fninf_2017_00045
crossref_primary_10_3389_fninf_2017_00045
PublicationCentury 2000
PublicationDate 2017-07-11
PublicationDateYYYYMMDD 2017-07-11
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-11
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Schacter (B27) 1977; 5
Lew (B15) 2012; 5
Ibáñez (B11) 2010
Lehtonen (B14) 2008; 55
Rohm (B24) 2013; 59
Toffanin (B30) 2007; 121
Ang (B2) 2013; 7
Bai (B3) 2007; 118
Dobkin (B8) 2007; 579
Pfurtscheller (B20) 2006; 31
Hortal (B9) 2016
Steriade (B29) 2005
Steinwart (B28) 2008
McFarland (B17) 1997; 103
Rao (B22) 2013
Jahanshahi (B12) 2003
Amzica (B1) 1998; 107
Hortal (B10) 2015
Pennycott (B19) 2012; 9
López-Larraz (B16) 2014; 11
Bhagat (B5) 2014
Sburlea (B26) 2016
Daly (B7) 2008; 7
Planelles (B21) 2014; 14
Bai (B4) 2011; 122
Xu (B31) 2014; 61
Bulea (B6) 2014; 8
Sburlea (B25) 2015; 12
Jiang (B13) 2015; 126
Rodríguez-Ugarte (B23) 2016; 2016
Nam (B18) 2011; 122
24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
193587 - Biol Psychol. 1977 Mar;5(1):47-82
24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9
25505377 - Front Neurosci. 2014 Nov 25;8:376
26654594 - J Neuroeng Rehabil. 2015 Dec 12;12 :113
21095795 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4562-5
25268915 - Sensors (Basel). 2014 Sep 29;14(10):18172-86
9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94
22953989 - J Neuroeng Rehabil. 2012 Sep 07;9:65
20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72
17907818 - Behav Neurosci. 2007 Oct;121(5):854-70
9751278 - Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):69-83
18270008 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):713-20
28268610 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1496-1499
16443377 - Neuroimage. 2006 May 15;31(1):153-9
18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
28291737 - J Neural Eng. 2017 Jun;14 (3):036004
25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-4130
23055968 - Front Neuroeng. 2012 Jul 12;5:13
25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153
17095557 - J Physiol. 2007 Mar 15;579(Pt 3):637-42
17967559 - Clin Neurophysiol. 2007 Dec;118(12):2637-55
24064256 - Artif Intell Med. 2013 Oct;59(2):133-42
20800538 - Clin Neurophysiol. 2011 Mar;122(3):567-77
References_xml – volume: 12
  start-page: 1
  year: 2015
  ident: B25
  article-title: Detecting intention to walk in stroke patients from pre-movement EEG correlates
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0087-4
– volume-title: Support Vector Machines
  year: 2008
  ident: B28
  doi: 10.1007/978-0-387-77242-4
– volume: 579
  start-page: 637
  year: 2007
  ident: B8
  article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.123067
– volume: 2016
  start-page: 1496
  year: 2016
  ident: B23
  article-title: Detection of intention of pedaling start cycle through EEG signals
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/embc.2016.7590993
– volume: 103
  start-page: 386
  year: 1997
  ident: B17
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 122
  start-page: 567
  year: 2011
  ident: B18
  article-title: Movement imagery-related lateralization of event-related (de) synchronization (ERD/ERS): motor-imagery duration effects
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.08.002
– year: 2016
  ident: B26
  article-title: Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects
  publication-title: arXiv preprint arXiv:1605.04533
– volume: 61
  start-page: 288
  year: 2014
  ident: B31
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2294203
– volume: 5
  start-page: 13
  year: 2012
  ident: B15
  article-title: Detection of self-paced reaching movement intention from EEG signals
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2012.00013
– volume: 121
  start-page: 854
  year: 2007
  ident: B30
  article-title: Rethinking neural efficiency: effects of controlling for strategy use
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.121.5.854
– volume: 11
  start-page: 1
  year: 2014
  ident: B16
  article-title: Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-153
– start-page: 4127
  volume-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2014
  ident: B5
  article-title: Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke
  doi: 10.1109/EMBC.2014.6944532
– volume: 55
  start-page: 713
  year: 2008
  ident: B14
  article-title: Online classification of single EEG trials during finger movements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.912653
– volume: 31
  start-page: 153
  year: 2006
  ident: B20
  article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 107
  start-page: 69
  year: 1998
  ident: B1
  article-title: Electrophysiological correlates of sleep delta waves
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00051-0
– volume: 122
  start-page: 364
  year: 2011
  ident: B4
  article-title: Prediction of human voluntary movement before it occurs
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.07.010
– volume: 9
  start-page: 1
  year: 2012
  ident: B19
  article-title: Towards more effective robotic gait training for stroke rehabilitation: a review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-65
– start-page: 4562
  volume-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
  year: 2010
  ident: B11
  article-title: An asynchronous BMI system for online single-trial detection of movement intention
  doi: 10.1109/IEMBS.2010.5625947
– volume: 14
  start-page: 18172
  year: 2014
  ident: B21
  article-title: Evaluating classifiers to detect arm movement intention from EEG signals
  publication-title: Sensors
  doi: 10.3390/s141018172
– volume: 59
  start-page: 133
  year: 2013
  ident: B24
  article-title: Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2013.07.004
– volume-title: Cellular Substrates of Brain Rhythms
  year: 2005
  ident: B29
– start-page: 141
  volume-title: Advances in Neurotechnology, Electronics and Informatics
  year: 2016
  ident: B9
  article-title: Detection of gait initiation through a ERD-based brain-computer interface
  doi: 10.1007/978-3-319-26242-0_10
– volume: 118
  start-page: 2637
  year: 2007
  ident: B3
  article-title: Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.08.025
– volume-title: Brain-Computer Interfacing: An Introduction
  year: 2013
  ident: B22
  doi: 10.1017/CBO9781139032803
– volume: 8
  start-page: 376
  year: 2014
  ident: B6
  article-title: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00376
– volume: 7
  start-page: 1032
  year: 2008
  ident: B7
  article-title: Brain–computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70223-0
– volume-title: The Bereitschaftspotential: Movement-related cortical potentials
  year: 2003
  ident: B12
  doi: 10.1007/978-1-4615-0189-3
– volume: 5
  start-page: 47
  year: 1977
  ident: B27
  article-title: EEG theta waves and psychological phenomena: a review and analysis
  publication-title: Biol. Psychol.
  doi: 10.1016/0301-0511(77)90028-X
– start-page: 278
  volume-title: International Work-Conference on the Interplay Between Natural and Artificial Computation
  year: 2015
  ident: B10
  article-title: Using EEG signals to detect the intention of walking initiation and stop
– volume: 126
  start-page: 154
  year: 2015
  ident: B13
  article-title: A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.003
– volume: 7
  start-page: 139
  year: 2013
  ident: B2
  article-title: Brain-computer interface in stroke rehabilitation
  publication-title: J. Comput. Sci. Eng.
  doi: 10.5626/JCSE.2013.7.2.139
– reference: 17907818 - Behav Neurosci. 2007 Oct;121(5):854-70
– reference: 24910150 - Clin Neurophysiol. 2015 Jan;126(1):154-9
– reference: 9751278 - Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):69-83
– reference: 9305287 - Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94
– reference: 26654594 - J Neuroeng Rehabil. 2015 Dec 12;12 :113
– reference: 17095557 - J Physiol. 2007 Mar 15;579(Pt 3):637-42
– reference: 18835541 - Lancet Neurol. 2008 Nov;7(11):1032-43
– reference: 193587 - Biol Psychol. 1977 Mar;5(1):47-82
– reference: 24064256 - Artif Intell Med. 2013 Oct;59(2):133-42
– reference: 28291737 - J Neural Eng. 2017 Jun;14 (3):036004
– reference: 22953989 - J Neuroeng Rehabil. 2012 Sep 07;9:65
– reference: 25570900 - Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4127-4130
– reference: 25268915 - Sensors (Basel). 2014 Sep 29;14(10):18172-86
– reference: 16443377 - Neuroimage. 2006 May 15;31(1):153-9
– reference: 18270008 - IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):713-20
– reference: 21095795 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4562-5
– reference: 23055968 - Front Neuroeng. 2012 Jul 12;5:13
– reference: 20675187 - Clin Neurophysiol. 2011 Feb;122(2):364-72
– reference: 20800538 - Clin Neurophysiol. 2011 Mar;122(3):567-77
– reference: 25398273 - J Neuroeng Rehabil. 2014 Nov 15;11:153
– reference: 28268610 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:1496-1499
– reference: 24448593 - IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96
– reference: 25505377 - Front Neurosci. 2014 Nov 25;8:376
– reference: 17967559 - Clin Neurophysiol. 2007 Dec;118(12):2637-55
SSID ssj0062657
Score 2.2618456
Snippet The aim of this work was to design a personalized BCI model to detect pedaling intention through EEG signals. The approach sought to select the best among many...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 45
SubjectTerms Algorithms
EEG
electrode configurations
Electrodes
Electroencephalography
Exoskeleton
feature extraction algorithms
Gait
Internet
Neuroscience
offline
Patients
pedaling intention
personalized brain-computer interfaces
pseudo-online
Rehabilitation
Stroke
Walking
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB7k8MGXYq22q1UiiODDcndJdrP72FaLopz3YOHeQn5i4dyT7l6h_eudye4ddyL64usmgexMJvNNMvkG4I1BGOoQJufKi5BLX9q84sLm0pYTWxU4KCae2S9qNqsWi3q-U-qLcsJ6euBecOOKXtuUyqmIzt4inuUOMUdQRA0VpLW0-05UvQmm-j0YUXqh-ktJDMHqcWxQXZTHlfgK6enSjhNKXP1_Api_50nuOJ7Lx3AwIEZ21s_0EB6E5gkcnTUYLf-4Y29ZyuFMh-NH8Hm-wdb3wbOvMRKIZKbxbN6GtV_lPbMoO7_4xKgK2rJl3Yq9D3STwObBG3qczlJae_cUri4_fLv4mA_lEnIn60mX042gQPNyvkDM43HjwuiEqzJwX8WAtsq9MNGWyohIddOp4kVZWxReMNIVUTyDUbNqwgkwGYuyRmwlXcWl4KHizphCYGhkaiG8ymC8kZ92A5c4lbRYaowpSOI6SVyTxHWSeAbvtiN-9jwaf-l7TirZ9iMG7PQB14Ue1oX-17rI4HSjUD2YZas5r-U0UfZn8HrbjAZFtySmCat1qwnyKqJRkxkc9_rfziQVC0Bnn4HaWxl7U91vaa6_J9JujATR9VfP_8e_vYBHJC06Yp5OT2HU3azDS3jobrvr9uZVsoRfLwcLBQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Personalized Offline and Pseudo-Online BCI Models to Detect Pedaling Intent
URI https://www.ncbi.nlm.nih.gov/pubmed/28744212
https://www.proquest.com/docview/2294107031
https://www.proquest.com/docview/1923746364
https://pubmed.ncbi.nlm.nih.gov/PMC5504298
https://doaj.org/article/8654667c7f154b0492c193e70164e4bb
Volume 11
WOSCitedRecordID wos000406561400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXXuVhKNEiISQOVpLdtdc-oaakooIGC4EUTpa9D6hU7BI7SHDgtzOztkODUC9cfMja0sbfzvqbx34D8KxAGqqRJofKCBtKE5dhwkUZyjKelEmEDzmvM_tWLRbJcplmfcCt6csqhz3Rb9Sm1hQjH3OeyqlXW3958S2krlGUXe1baOzAHjKbKTlfpzwbdmLk6pHqUpPoiKVjVyFoVM3lVQvpANOlT5FX7P8Xzfy7WvLS5-f41v9O_Dbc7IknO-xWyh24Zqu7sH9YodP99Qd7znwpqI-x78ObbKDoP61h75wjLsqKyrCssWtTh51AKZsdnTBqpnbesLZmrywlJFhmTUFn3Jmvjm_vwcfj-Yej12HfdSHUMp20ISUWBVqpNhFSJ4P7Hzo5XMWWm8RZNHluROHKWBXCUft1apwRp-VEpbaQOnLiPuxWdWUfApMuilOkaFInXApuE66LIhLoYRWpEEYFMB4AyHUvSU6dMc5zdE0IstxDlhNkuYcsgBebJy46OY4r7p0Rppv7SEjb_1CvPue9XeYJHeaKlVYOuWSJ7hLX-PetIuUxK8sygIMB1by37ib_A2kATzfDaJeUbCkqW6-bnJizIjU2GcCDbgFtZuJ7DiBnCEBtLa2tqW6PVGdfvPY3OpTIIJJHV0_rMdyg90Ax6On0AHbb1do-gev6e3vWrEawo5bJCPZm80X2fuSjECNvOHRV_vprjuPZyWn26TceTyGR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQXvsqHocAiARIHK8l67bUPCPWDqlHSkEORetuud9dQqdgldkDlR_EbmVnHoUGotx64xna0tt_OvvHMvgfwSiMNNUiTQ2kjFwqb5GHKozwUedLP0xgvKrzO7FhOJunRUTZdg1_dXhhqq-xiog_UtjL0jbzHeSYGXm39_dm3kFyjqLraWWi0sBi58x-YstXvhrv4fl9zvvfhcGc_XLgKhEZk_SakwlmEKDQ2RmpgcX4jiecycdymhUNIcxvpIk-kjgqyFydjiCTL-zJzWpi4iPB_r8F1gSshOSYc8GkX-TE3iGVbCsXEL-sVJYKEuse8SiJtmLqw9HmHgH_R2r-7My8sd3t3_rcHdRduL4g122pnwj1Yc-V92NgqdVN9PWdvmG919TWEDRhNuxTkp7PsY1EQ12a6tGxau7mtwlaAlW3vDBmZxZ3WrKnYrqOCC5s6q2kPP_Pd_80D-HQlt_UQ1suqdI-BiSJOMqSgwqRcRNyl3GgdR5hB6iyKrAyg171wZRaS6-T8caow9SKIKA8RRRBRHiIBvF1ecdbKjVxy7jZhaHkeCYX7H6rZZ7WIOyqlzWqJNLJArpxjOsgN3r6TpKzmRJ4HsNmhSC2iV63-QCiAl8vDGHeomKRLV81rRZmBJLU5EcCjFrDLkXhPBeREAcgVKK8MdfVIefLFa5tjwowMKX1y-bBewM39w4OxGg8no6dwi54JfW8fDDZhvZnN3TO4Yb43J_XsuZ-gDI6vGui_AQMCdTs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMrDUGCRAImDlWTX9toHhJqmEVGqECGQejNr7y5UKnaJHVD5afw6ZtZ2aBDqrQeufmltfzv7zc7MNwDPFdLQHGmyL7UwfqCjzI-5yPwgiwZZHOJN1unMHsr5PD46ShZb8KurhaG0ys4mOkOty5z2yPucJ8HQqa33bZsWsRhP3px-86mDFEVau3YaDURm5uwHum_V6-kY__ULzicHH_bf-m2HAT8PkkHtUxBNICJzHSJN0DjXkdBzGRmuY2sQ3lwLZbNIKmGp1Tg1iYiSbCATo4I8tAKfewW2pUiGQQ-2RwfzxftuHUBPIZRNYBTdwKRvC4QM5ZI5zUQqnzq3ELp-Af8iuX_nap5b_CY3_-fPdgtutJSb7TVz5DZsmeIO7OwVqi6_nrGXzCXBuujCDswWnXPy02j2zlpi4UwVmi0qs9Kl30izstH-lFEbuZOK1SUbGwrFsIXRiqr7masLqO_Cx0t5rXvQK8rCPAAW2DBKkJwGecwDwU3Mc6VCgb6lSoTQ0oN-9_PTvBVjp54gJyk6ZQSX1MElJbikDi4evFrfcdoIkVxw7YjwtL6OJMTdgXL5OW0tUhpTGVskc2mRRWfoKPIcX99I0lwzQZZ5sNshKm3tWpX-gZMHz9an0SJRmEkVplxVKfkMknToAg_uN-Bdj8R1W0C25IHcgPXGUDfPFMdfnOo5utLIneKHFw_rKVxDfKeH0_nsEVynT0Ib8cPhLvTq5co8hqv59_q4Wj5pZyuDT5eN9N9HY39V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Offline+and+Pseudo-Online+BCI+Models+to+Detect+Pedaling+Intent&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Rodr%C3%ADguez-Ugarte%2C+Marisol&rft.au=I%C3%A1%C3%B1ez%2C+Eduardo&rft.au=Ort%C3%ADz%2C+Mario&rft.au=Azor%C3%ADn%2C+Jose+M.&rft.date=2017-07-11&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=11&rft_id=info:doi/10.3389%2Ffninf.2017.00045&rft_id=info%3Apmid%2F28744212&rft.externalDocID=PMC5504298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon