Maintenance optimization with duration-dependent costs
High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mit...
Uložené v:
| Vydané v: | Annals of operations research Ročník 224; číslo 1; s. 1 - 23 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.01.2015
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0254-5330, 1572-9338, 1572-9338 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel
k
-out-of-
n
multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction. |
|---|---|
| AbstractList | High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction. High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k -out-of- n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction. High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39% lower when using optimization. For multi-unit systems, average savings were 19%. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11% of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7% average cost reduction. Keywords Maintenance optimization * Integer programming * Multi-unit maintenance Issue Title: Optimization of Maintenance Activities - Models, Methods, and Applications High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction. |
| Audience | Academic |
| Author | Bohlin, Markus Wärja, Mathias |
| Author_xml | – sequence: 1 givenname: Markus surname: Bohlin fullname: Bohlin, Markus email: markus.bohlin@sics.se organization: Swedish Institute of Computer Science – sequence: 2 givenname: Mathias surname: Wärja fullname: Wärja, Mathias organization: Siemens Industrial Turbomachinery AB |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-17452$$DView record from Swedish Publication Index (Mälardalens högskola) |
| BookMark | eNp9kV1vFCEUhompidvqD_BuE2-86FQOMB9cbqq2JjXeqLeEZQ6zNDMwApOm_nrZbqNto4YEDvC8B855j8mRDx4JeQ30DCht3yWgopUVBVYBlACekRXULask590RWVFWi6rmnL4gxyldU0oBunpFms_a-Yxee4PrMGc3uZ86u-DXNy7v1v0S73ZVjzP6Hn1em5ByekmeWz0mfHW_npBvHz98Pb-srr5cfDrfXFVGSJorbiUYgLpnAMz22GkpaFvrpkMJANLahoHdyhZMy7otR9NJboGVS8GklfyEnB7yphucl62ao5t0vFVBO_Xefd-oEAc19TsFrahZwd8e8DmGHwumrCaXDI6j9hiWpKBpKK2F4Lygb56g12GJvhRTKMFq3knG_lCDHlE5b0OO2uyTqk2ppGkk7fa5zv5CldHj5Ewxyrpy_khw-kCwXZLzmMqU3LDLadBLSo9xOOAmhpQi2t99AKr29quD_arYr_b2Kyia9onGuHznZfmbG_-rZPc9L6_4AeODzvxT9AvK78JA |
| CitedBy_id | crossref_primary_10_1016_j_ress_2018_11_028 crossref_primary_10_1007_s10479_020_03845_9 crossref_primary_10_1016_j_psep_2017_02_015 crossref_primary_10_1007_s10479_019_03371_3 crossref_primary_10_1016_j_compchemeng_2023_108477 crossref_primary_10_1007_s10479_014_1543_4 crossref_primary_10_1007_s13198_017_0627_3 crossref_primary_10_1016_j_psep_2017_04_016 crossref_primary_10_1016_j_cie_2024_110460 crossref_primary_10_1007_s10479_017_2617_x crossref_primary_10_1016_j_jrtpm_2020_100177 |
| Cites_doi | 10.1016/S0098-1354(97)88493-1 10.1016/0951-8320(95)00076-3 10.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A 10.1016/S0951-8320(03)00166-2 10.1057/jors.1985.202 10.1016/0377-2217(94)00260-J 10.1007/BF01194788 10.1016/0377-2217(91)90141-H 10.1016/j.ijpe.2008.09.012 10.1016/j.compind.2004.06.005 10.1016/j.ress.2007.03.036 10.1016/0377-2217(94)00363-7 10.1109/TPAS.1983.317771 10.1016/S0951-8320(02)00043-1 10.1016/S0377-2217(96)00320-7 10.1002/9780470451793 10.1016/S0377-2217(97)00319-6 10.1016/j.ress.2006.12.002 10.1111/j.1937-5956.1998.tb00128.x 10.1016/j.ress.2006.01.006 10.1016/S0951-8320(00)00047-8 10.1115/GT2009-59935 10.1016/S0377-2217(96)00316-5 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2012 COPYRIGHT 2015 Springer Springer Science+Business Media New York 2015 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2012 – notice: COPYRIGHT 2015 Springer – notice: Springer Science+Business Media New York 2015 |
| DBID | AAYXX CITATION N95 3V. 7TA 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JG9 JQ2 K60 K6~ K7- KR7 L.- L6V M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTPV AOWAS DF7 |
| DOI | 10.1007/s10479-012-1179-1 |
| DatabaseName | CrossRef Gale Business Insights ProQuest Central (Corporate) Materials Business File Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SwePub SwePub Articles SWEPUB Mälardalens högskola |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Materials Business File ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Economics |
| EISSN | 1572-9338 |
| EndPage | 23 |
| ExternalDocumentID | oai_DiVA_org_mdh_17452 3547189311 A407669083 10_1007_s10479_012_1179_1 |
| Genre | Feature |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBO EBS EBU EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEA IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 Z8N Z8U Z92 ZL0 ZMTXR ZYFGU ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7TA 7TB 7XB 8AL 8FD 8FK FR3 JG9 JQ2 KR7 L.- PKEHL PQEST PQUKI PRINS Q9U PUEGO ADTPV AOWAS DF7 |
| ID | FETCH-LOGICAL-c490t-3f91c115d2112fde8a94075a68e91119ff621fb971c728b3ec893f12911429f93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347528500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-5330 1572-9338 |
| IngestDate | Thu Oct 30 11:23:26 EDT 2025 Fri Sep 05 09:46:33 EDT 2025 Wed Nov 05 14:38:29 EST 2025 Sat Nov 29 13:30:54 EST 2025 Sun Nov 23 08:58:56 EST 2025 Sat Nov 29 09:02:02 EST 2025 Sat Nov 29 02:36:28 EST 2025 Tue Nov 18 22:37:03 EST 2025 Fri Feb 21 02:36:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Integer programming Multi-unit maintenance Maintenance optimization |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-3f91c115d2112fde8a94075a68e91119ff621fb971c728b3ec893f12911429f93 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1642538922 |
| PQPubID | 25585 |
| PageCount | 23 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mdh_17452 proquest_miscellaneous_1660054433 proquest_journals_1642538922 gale_infotracmisc_A407669083 gale_infotracacademiconefile_A407669083 gale_businessinsightsgauss_A407669083 crossref_primary_10_1007_s10479_012_1179_1 crossref_citationtrail_10_1007_s10479_012_1179_1 springer_journals_10_1007_s10479_012_1179_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: New York |
| PublicationTitle | Annals of operations research |
| PublicationTitleAbbrev | Ann Oper Res |
| PublicationYear | 2015 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | MarseguerraM.ZioE.PodofilliniL.Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulationReliability Engineering and System Safety200277215116510.1016/S0951-8320(02)00043-1 BevilacquaM.BragliaM.The analytic hierarchy process applied to maintenance strategy selectionReliability Engineering & Systems Safety2000701718310.1016/S0951-8320(00)00047-8 DekkerR.ScarfP.On the impact of optimisation models in maintenance decision making: the state of the artReliability Engineering & Systems Safety1998609111119 ChoD. I.ParlarM.A survey of maintenance models for multi-unit systemsEuropean Journal of Operational Research199151112310.1016/0377-2217(91)90141-H van DijkhuizenG.van HartenA.Optimal clustering of frequency-constrained maintenance jobs with shared set-upsEuropean Journal of Operational Research199799355256410.1016/S0377-2217(96)00320-7 Bohlin, M., Wärja, M., Holst, A., Slottner, P., & Doganay, K. (2009). Optimization of condition-based maintenance for industrial gas turbines: requirements and results. In Proceedings of the ASME turbo expo. Paper no. GT2009-59935. Nicolai, R., & Dekker, R. (2006). Optimal maintenance of multi-component systems: a review. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-26. Bohlin, M., & Wärja, M. (2010). Optimization maintenance for multi-unit industrial gas turbine installations. In ASME turbo expo 2010: power for land, sea and air, Paper no. GT2010-23398. SortrakulN.NachtmannH.CassadyC.Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machineComputers in Industry200556216116810.1016/j.compind.2004.06.005 Almgren, T., Andréasson, N., Patriksson, M., Strömberg, A.-B., & Wojciechowski, A. (2009). The replacement problem: a polyhedral and complexity analysis. Technical report preprint 2009:4. Göteborg: Chalmers University. Wärja, M., Slottner, P., & Bohlin, M. (2008). Customer adapted maintenance plan (CAMP), a process for optimization of gas turbine maintenance. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-50240. BrisR.ChâteletE.YalaouiF.New method to minimize the preventive maintenance cost of series-parallel systemsReliability Engineering & Systems Safety200382324725510.1016/S0951-8320(03)00166-2 GoyalS. K.KusyM. I.Determining economic maintenance frequency for a family of machinesJournal of the Operational Research Society198536121125112810.1057/jors.1985.202 Budai-Balke, G., Dekker, R., & Nicolai, R. (2006). A review of planning models for maintenance and production. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-44. CoetzeeJ.Maintenance2004VictoriaTrafford Publishing DickmanB.EpsteinS.WilamowskyY.A mixed integer linear programming formulation for multi-component deterministic opportunistic replacementJournal of the Operational Research Society India199128165175 ZhouX.XiL.LeeJ.Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradationReliability Engineering & Systems Safety200792453053410.1016/j.ress.2006.01.006 YamayeeZ.SidenbladK.YoshimuraM.A computationally efficient optimal maintenance scheduling methodIEEE Transactions on Power Apparatus and Systems1983PAS-102233033810.1109/TPAS.1983.317771 DekkerR.Applications of maintenance optimization models: a review and analysisReliability Engineering & Systems Safety19965122924010.1016/0951-8320(95)00076-3 MaggardB.RhyneD.Total productive maintenance: a timely integration of production and maintenanceProduction and Inventory Management Journal1992334610 ZhouX.XiL.LeeJ.Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programmingInternational Journal of Production Economics2009118236136610.1016/j.ijpe.2008.09.012 BrisR.Parallel simulation algorithm for maintenance optimization based on directed acyclic graphReliability Engineering & Systems Safety200893687488410.1016/j.ress.2007.03.036 DekkerR.WildemanR. E.van EgmondR.Joint replacement in an operational planning phaseEuropean Journal of Operational Research1996911748810.1016/0377-2217(94)00363-7 Slottner, P., & Wärja, M. (2008). Knowledge based prognostics models for gas turbine core components. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-51276. DekkerR.Integrating optimisation, priority setting, planning and combining of maintenance activitiesEuropean Journal of Operational Research199582222524010.1016/0377-2217(94)00260-J PascualR.MeruaneV.ReyP.On the effect of downtime costs and budget constraint on preventive and replacement policiesReliability Engineering and System Safety200893114415110.1016/j.ress.2006.12.002 DekkerR.WildemanR. E.van der Duyn SchoutenF. A.A review of multi-component maintenance models with economic dependenceMathematical Methods of Operations Research199745341143510.1007/BF01194788 TanJ. S.KramerM. A.A general framework for preventive maintenance optimization in chemical process operationsComputers & Chemical Engineering199721121451146910.1016/S0098-1354(97)88493-1 WildemanR. E.DekkerR.Dynamic influences in multi-component maintenanceQuality and Reliability Engineering International199713419920710.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A BakerK. R.TrietschD.Principles of sequencing and scheduling2009New YorkWiley10.1002/9780470451793 ScarfP. A.On the application of mathematical models in maintenanceEuropean Journal of Operational Research199799349350610.1016/S0377-2217(96)00316-5 WiremanT.World class maintenance management1990New YorkIndustrial Press WildemanR. E.DekkerR.SmitA. C. J. M.A dynamic policy for grouping maintenance activitiesEuropean Journal of Operational Research199799353055110.1016/S0377-2217(97)00319-6 McKoneK.WeissE.TPM: planned and autonomous maintenance: bridging the gap between practice and researchJournal of Operations & Production Management19987433535110.1111/j.1937-5956.1998.tb00128.x R. Dekker (1179_CR13) 1998; 60 X. Zhou (1179_CR33) 2007; 92 1179_CR21 K. R. Baker (1179_CR2) 2009 1179_CR24 M. Marseguerra (1179_CR19) 2002; 77 Z. Yamayee (1179_CR32) 1983; PAS-102 D. I. Cho (1179_CR9) 1991; 51 S. K. Goyal (1179_CR17) 1985; 36 R. Pascual (1179_CR22) 2008; 93 R. E. Wildeman (1179_CR29) 1997; 99 X. Zhou (1179_CR34) 2009; 118 1179_CR31 R. Dekker (1179_CR12) 1996; 51 K. McKone (1179_CR20) 1998; 7 M. Bevilacqua (1179_CR3) 2000; 70 R. Bris (1179_CR7) 2003; 82 B. Maggard (1179_CR18) 1992; 33 T. Wireman (1179_CR30) 1990 R. Dekker (1179_CR11) 1995; 82 R. Dekker (1179_CR15) 1996; 91 R. Bris (1179_CR6) 2008; 93 1179_CR1 P. A. Scarf (1179_CR23) 1997; 99 G. Dijkhuizen van (1179_CR27) 1997; 99 R. Dekker (1179_CR14) 1997; 45 J. Coetzee (1179_CR10) 2004 J. S. Tan (1179_CR26) 1997; 21 1179_CR8 1179_CR4 R. E. Wildeman (1179_CR28) 1997; 13 1179_CR5 B. Dickman (1179_CR16) 1991; 28 N. Sortrakul (1179_CR25) 2005; 56 |
| References_xml | – reference: BakerK. R.TrietschD.Principles of sequencing and scheduling2009New YorkWiley10.1002/9780470451793 – reference: Budai-Balke, G., Dekker, R., & Nicolai, R. (2006). A review of planning models for maintenance and production. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-44. – reference: van DijkhuizenG.van HartenA.Optimal clustering of frequency-constrained maintenance jobs with shared set-upsEuropean Journal of Operational Research199799355256410.1016/S0377-2217(96)00320-7 – reference: DekkerR.WildemanR. E.van der Duyn SchoutenF. A.A review of multi-component maintenance models with economic dependenceMathematical Methods of Operations Research199745341143510.1007/BF01194788 – reference: DekkerR.Integrating optimisation, priority setting, planning and combining of maintenance activitiesEuropean Journal of Operational Research199582222524010.1016/0377-2217(94)00260-J – reference: GoyalS. K.KusyM. I.Determining economic maintenance frequency for a family of machinesJournal of the Operational Research Society198536121125112810.1057/jors.1985.202 – reference: PascualR.MeruaneV.ReyP.On the effect of downtime costs and budget constraint on preventive and replacement policiesReliability Engineering and System Safety200893114415110.1016/j.ress.2006.12.002 – reference: Almgren, T., Andréasson, N., Patriksson, M., Strömberg, A.-B., & Wojciechowski, A. (2009). The replacement problem: a polyhedral and complexity analysis. Technical report preprint 2009:4. Göteborg: Chalmers University. – reference: MaggardB.RhyneD.Total productive maintenance: a timely integration of production and maintenanceProduction and Inventory Management Journal1992334610 – reference: WiremanT.World class maintenance management1990New YorkIndustrial Press – reference: YamayeeZ.SidenbladK.YoshimuraM.A computationally efficient optimal maintenance scheduling methodIEEE Transactions on Power Apparatus and Systems1983PAS-102233033810.1109/TPAS.1983.317771 – reference: McKoneK.WeissE.TPM: planned and autonomous maintenance: bridging the gap between practice and researchJournal of Operations & Production Management19987433535110.1111/j.1937-5956.1998.tb00128.x – reference: DekkerR.Applications of maintenance optimization models: a review and analysisReliability Engineering & Systems Safety19965122924010.1016/0951-8320(95)00076-3 – reference: ZhouX.XiL.LeeJ.Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programmingInternational Journal of Production Economics2009118236136610.1016/j.ijpe.2008.09.012 – reference: CoetzeeJ.Maintenance2004VictoriaTrafford Publishing – reference: TanJ. S.KramerM. A.A general framework for preventive maintenance optimization in chemical process operationsComputers & Chemical Engineering199721121451146910.1016/S0098-1354(97)88493-1 – reference: WildemanR. E.DekkerR.Dynamic influences in multi-component maintenanceQuality and Reliability Engineering International199713419920710.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A – reference: BevilacquaM.BragliaM.The analytic hierarchy process applied to maintenance strategy selectionReliability Engineering & Systems Safety2000701718310.1016/S0951-8320(00)00047-8 – reference: ZhouX.XiL.LeeJ.Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradationReliability Engineering & Systems Safety200792453053410.1016/j.ress.2006.01.006 – reference: DekkerR.WildemanR. E.van EgmondR.Joint replacement in an operational planning phaseEuropean Journal of Operational Research1996911748810.1016/0377-2217(94)00363-7 – reference: Slottner, P., & Wärja, M. (2008). Knowledge based prognostics models for gas turbine core components. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-51276. – reference: BrisR.ChâteletE.YalaouiF.New method to minimize the preventive maintenance cost of series-parallel systemsReliability Engineering & Systems Safety200382324725510.1016/S0951-8320(03)00166-2 – reference: SortrakulN.NachtmannH.CassadyC.Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machineComputers in Industry200556216116810.1016/j.compind.2004.06.005 – reference: WildemanR. E.DekkerR.SmitA. C. J. M.A dynamic policy for grouping maintenance activitiesEuropean Journal of Operational Research199799353055110.1016/S0377-2217(97)00319-6 – reference: Bohlin, M., Wärja, M., Holst, A., Slottner, P., & Doganay, K. (2009). Optimization of condition-based maintenance for industrial gas turbines: requirements and results. In Proceedings of the ASME turbo expo. Paper no. GT2009-59935. – reference: DickmanB.EpsteinS.WilamowskyY.A mixed integer linear programming formulation for multi-component deterministic opportunistic replacementJournal of the Operational Research Society India199128165175 – reference: Bohlin, M., & Wärja, M. (2010). Optimization maintenance for multi-unit industrial gas turbine installations. In ASME turbo expo 2010: power for land, sea and air, Paper no. GT2010-23398. – reference: DekkerR.ScarfP.On the impact of optimisation models in maintenance decision making: the state of the artReliability Engineering & Systems Safety1998609111119 – reference: Nicolai, R., & Dekker, R. (2006). Optimal maintenance of multi-component systems: a review. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-26. – reference: ScarfP. A.On the application of mathematical models in maintenanceEuropean Journal of Operational Research199799349350610.1016/S0377-2217(96)00316-5 – reference: MarseguerraM.ZioE.PodofilliniL.Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulationReliability Engineering and System Safety200277215116510.1016/S0951-8320(02)00043-1 – reference: BrisR.Parallel simulation algorithm for maintenance optimization based on directed acyclic graphReliability Engineering & Systems Safety200893687488410.1016/j.ress.2007.03.036 – reference: Wärja, M., Slottner, P., & Bohlin, M. (2008). Customer adapted maintenance plan (CAMP), a process for optimization of gas turbine maintenance. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-50240. – reference: ChoD. I.ParlarM.A survey of maintenance models for multi-unit systemsEuropean Journal of Operational Research199151112310.1016/0377-2217(91)90141-H – ident: 1179_CR24 – volume: 21 start-page: 1451 issue: 12 year: 1997 ident: 1179_CR26 publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(97)88493-1 – volume: 51 start-page: 229 year: 1996 ident: 1179_CR12 publication-title: Reliability Engineering & Systems Safety doi: 10.1016/0951-8320(95)00076-3 – volume: 13 start-page: 199 issue: 4 year: 1997 ident: 1179_CR28 publication-title: Quality and Reliability Engineering International doi: 10.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A – volume: 82 start-page: 247 issue: 3 year: 2003 ident: 1179_CR7 publication-title: Reliability Engineering & Systems Safety doi: 10.1016/S0951-8320(03)00166-2 – volume: 36 start-page: 1125 issue: 12 year: 1985 ident: 1179_CR17 publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1985.202 – ident: 1179_CR4 – volume-title: Maintenance year: 2004 ident: 1179_CR10 – ident: 1179_CR8 – volume: 82 start-page: 225 issue: 2 year: 1995 ident: 1179_CR11 publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)00260-J – volume: 45 start-page: 411 issue: 3 year: 1997 ident: 1179_CR14 publication-title: Mathematical Methods of Operations Research doi: 10.1007/BF01194788 – volume: 51 start-page: 1 issue: 1 year: 1991 ident: 1179_CR9 publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(91)90141-H – volume: 118 start-page: 361 issue: 2 year: 2009 ident: 1179_CR34 publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2008.09.012 – volume: 56 start-page: 161 issue: 2 year: 2005 ident: 1179_CR25 publication-title: Computers in Industry doi: 10.1016/j.compind.2004.06.005 – volume: 93 start-page: 874 issue: 6 year: 2008 ident: 1179_CR6 publication-title: Reliability Engineering & Systems Safety doi: 10.1016/j.ress.2007.03.036 – volume: 91 start-page: 74 issue: 1 year: 1996 ident: 1179_CR15 publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)00363-7 – volume: 60 start-page: 111 issue: 9 year: 1998 ident: 1179_CR13 publication-title: Reliability Engineering & Systems Safety – volume: PAS-102 start-page: 330 issue: 2 year: 1983 ident: 1179_CR32 publication-title: IEEE Transactions on Power Apparatus and Systems doi: 10.1109/TPAS.1983.317771 – volume: 77 start-page: 151 issue: 2 year: 2002 ident: 1179_CR19 publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(02)00043-1 – volume-title: World class maintenance management year: 1990 ident: 1179_CR30 – volume: 33 start-page: 6 issue: 4 year: 1992 ident: 1179_CR18 publication-title: Production and Inventory Management Journal – volume: 99 start-page: 552 issue: 3 year: 1997 ident: 1179_CR27 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00320-7 – ident: 1179_CR21 – volume-title: Principles of sequencing and scheduling year: 2009 ident: 1179_CR2 doi: 10.1002/9780470451793 – volume: 99 start-page: 530 issue: 3 year: 1997 ident: 1179_CR29 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00319-6 – volume: 93 start-page: 144 issue: 1 year: 2008 ident: 1179_CR22 publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2006.12.002 – volume: 28 start-page: 165 year: 1991 ident: 1179_CR16 publication-title: Journal of the Operational Research Society India – volume: 7 start-page: 335 issue: 4 year: 1998 ident: 1179_CR20 publication-title: Journal of Operations & Production Management doi: 10.1111/j.1937-5956.1998.tb00128.x – volume: 92 start-page: 530 issue: 4 year: 2007 ident: 1179_CR33 publication-title: Reliability Engineering & Systems Safety doi: 10.1016/j.ress.2006.01.006 – ident: 1179_CR1 – volume: 70 start-page: 71 issue: 1 year: 2000 ident: 1179_CR3 publication-title: Reliability Engineering & Systems Safety doi: 10.1016/S0951-8320(00)00047-8 – ident: 1179_CR5 doi: 10.1115/GT2009-59935 – volume: 99 start-page: 493 issue: 3 year: 1997 ident: 1179_CR23 publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(96)00316-5 – ident: 1179_CR31 |
| SSID | ssj0001185 |
| Score | 2.174844 |
| Snippet | High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the... Issue Title: Optimization of Maintenance Activities - Models, Methods, and Applications High levels of availability and reliability are essential in many... |
| SourceID | swepub proquest gale crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Breakdown Breakdowns Business and Management Combinatorics Cost control Costs Economics Engineering research Gas pipelines Gas turbines Inclusions Integer programming Maintenance Maintenance costs Maintenance management Mathematical optimization Mathematical research Operations research Operations Research/Decision Theory Optimization Planning Preventive maintenance Stochastic analysis Studies Theory of Computation Turbines Water flooding Working hours |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgeWliK2D5QkEBIIIuN13n4VK1aKg606gFQb5bjR6nUbso629_fmcTZ7vawFy5RpIyd2J6ZzIzH3wB8rErab3KalWlRoIOS4R1dpBOiqtBBMFl7UPhncXZWXlzI8xhwCzGtsteJraK2taEY-Tc06zkKp-T88PYfo6pRtLsaS2g8hWdo2aSU0nXKzxeaGI3nNoURnSBGWZT9rmZ3dE4UlCnEGYGisXTlv_RYOy9tkz6CFG1_Qyfb_zuAV7AVDdBk0nHMa3jipgN40ee_D2C7r_OQRLEfwOYSaOEbyE81YUwQUIdLatQ4N_EoZ0Ix3cTOO55ifXndJjF1aMIO_D75_uvoB4vVF5gRctSwsceFwlm16CJyb12pJTp_mc5LRwpSep_z1FeySE3By2rsDJo-Hs0HOp0rvRy_hY1pPXXvIBEjLwx6RsbKkdACO7JaeKNtmlrsMh3CqJ97ZSI0OVXIuFYPoMq0XAqXi9DJpcImXxZNbjtcjnXEn2hBVazriZdAkY9wqechqAkOK88l2qJD-NzSkWzj-42ORxRwFISStUK5v0KJMmlWH_c8oKJOCOqBAYbwYfGYWlKe29TVc6LJyYgWY-zia89yS12sGWHHlYvJINjw46s_E1XPLtWN_avQ9cz47voP24OXaBBmXYhpHzaa2dwdwHNz11yF2ftWuO4BWIsm1g priority: 102 providerName: ProQuest |
| Title | Maintenance optimization with duration-dependent costs |
| URI | https://link.springer.com/article/10.1007/s10479-012-1179-1 https://www.proquest.com/docview/1642538922 https://www.proquest.com/docview/1660054433 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-17452 |
| Volume | 224 |
| WOSCitedRecordID | wos000347528500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: 7WY dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: M0C dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: P5Z dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: K7- dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: M7S dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1572-9338 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: M2P dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001185 issn: 1572-9338 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED7BhhA8MChDFEYVJBASKFLiOnH8WMYmJFhVbTAGL5bj2GMSa1CT8vu5S-zSTmgSvJxaxb7Wju98Z999B_CiLOi-yeq4SIVAByXDT0Sk5bws0UEwWZco_FFMp8XZmZz5PO4mRLuHK8lOU68lu3FBsT0sJhizGF2ebdztCqrXcHxyulK_aDF3cYvo-cQUOhmuMv_GYmMzuqqS1-5Gr-CIdnvP4c5__ev7cM-bmtGkXxsP4IadD-B2iHQfwE6o6BB5AR_A3TV4woeQH2lCkyBIDhvVqFsufdJmRKe3UbXsV08cCum2kambttmFz4cHn_bfx77OQmy4TNp47PCVoGVYoTPIXGULLdHNy3ReWFKF0rmcpa6UIjWCFeXYGjRyHBoKlIcrnRw_gq15PbePIeKJ4wZ9IFPJhGuOjCrNndFVmlbIMh1CEiZcGQ9CTrUwfqg_8Mk0YQonjHDIpcIur1ddfvYIHNc1fklvUfkKnkgaOuNozvWyadQEh5XnEq3OIbzq2pEU4-8b7ZMRcBSEh7XRcm-jJUqf2Xwc1ovy0t8odEEZbiSSsSE8Xz2mnhTRNrf1ktrkZC7zMbJ4E5bOGotrRtgvxdVkEED4u4vTiaoX5-qy-q7QyczYk3_i-hTuoCWY9WdLe7DVLpb2Gdwyv9qLZjGCm-LL1xFsvz2Yzo7x2wcRIz1K9omyGVFxgnSWfRt1wvgbsFcjew |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE4tBBAhBYwEhUSyCLerB97QCiiVK2aRj0U1Nti76Ot1MYl64D4U_2NnbG9adJDbj1wsSJ5duO157k78w3A-yKj8yaTh1mUphigxPiLLsJwXhQYIKi4LhQepqNRdnwsDlfgytfCUFql14m1otaloj3yz-jWMxROwdjXy98hdY2i01XfQqNhi33z7y-GbO7L3jZ-3y3Gdr4ffdsN264CoeKiV4V9iw-AfpDG0IdZbbJcYFAT50lmSPCFtQmLbCHSSKUsK_pGoUm3aBap6lRYAl9ClX-PE7IYpQqyw5nmR2e9TpnEoCukrE1_itqU6vGUMpNYSCBsYbRgB29bg7lj2VsQprXZ21n_317YE1hrHexg0EjEU1gx4w488Pn9HVj3fSyCVq114PEcKOMzSA5ywtAgIBITlKhRL9pS1YD2rAM9bWQm9O2Dq0CVrnLP4cedLOsFrI7LsXkJAe9ZrjDyU1r0eM5xIp1zq3IdRRqnjLrQ899aqhZ6nTqAnMsb0GhiD4nsQejrQuKQj7Mhlw3uyDLiLWIg2fYtxYujnR13kk-dkwNcVpII9LW78KGmI92F_6_ytgQDV0EoYAuUmwuUqHPU4m3Pc7LVeU7eMFwX3s1u00jK4xubcko0CQUJvI9TfPIsPjfFkhU2UjB7GQSLvn32cyDLyYm80KcSQ-uYvVr-YG_h4e7RwVAO90b7G_AInd-42U7bhNVqMjWv4b76U525yZtasAP4ddeCcQ3t8YDW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBVVwoBBABAoYiQoJtGq8WT_2gFBEiKhaohwAVVy29j5KpTZuYwfEX-PXMWN706SH3HrgYkXy7MZrz3N35huA13lK5002Y2mYJBigRPiLLtIKkecYIOioLhQ-TMbj9OhITjbgr6-FobRKrxNrRW0KTXvke-jWcxROyfmea9MiJsPRh4tLRh2k6KTVt9NoWOTA_vmN4Vv5fn-I33qX89Gnrx8_s7bDANNC9irWd_gw6BMZDIO4MzbNJAY4URanlpSAdC7moctlEuqEp3nfajTvDk0kVaBKR0BMqP5vJRhjUjrhJPqxsALouNfpkxiAMcrg9CeqTdmeSChLiTMCZGPhik28bhmWjmivwZnWJnC0_T-_vPtwr3W8g0EjKQ9gw047sOXz_juw7ftbBK2668DdJbDGhxB_yQhbgwBKbFCgpj1vS1gD2ssOzLyRJebbCleBLsqqfATfbmRZj2FzWkztEwhEzwmNEaE2sicygROZTDidmTA0OGXYhZ7_7kq3kOzUGeRMXYFJE6soZBVCZZcKh7xdDLlo8EjWEe8SM6m2nyleStrxKU-yeVmqAS4rjiX64F14U9ORTsP_11lbmoGrIHSwFcqdFUrURXr1tuc_1erCUl0xXxdeLW7TSMrvm9piTjQxBQ-ij1O88-y-NMWaFTYSsXgZBJc-PP0-UMXsRJ2bnwpD7og_Xf9gL2EL5UEd7o8PnsEd9ImjZpdtBzar2dw-h9v6V3Vazl7UMh7A8U3LxT_6E4nC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+optimization+with+duration-dependent+costs&rft.jtitle=Annals+of+operations+research&rft.au=Bohlin%2C+Markus&rft.au=W%C3%A4rja%2C+Mathias&rft.date=2015-01-01&rft.pub=Springer+US&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=224&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2Fs10479-012-1179-1&rft.externalDocID=10_1007_s10479_012_1179_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon |