Maintenance optimization with duration-dependent costs

High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of operations research Ročník 224; číslo 1; s. 1 - 23
Hlavní autori: Bohlin, Markus, Wärja, Mathias
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.01.2015
Springer
Springer Nature B.V
Predmet:
ISSN:0254-5330, 1572-9338, 1572-9338
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k -out-of- n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction.
AbstractList High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction.
High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k -out-of- n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction.
High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39% lower when using optimization. For multi-unit systems, average savings were 19%. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11% of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7% average cost reduction. Keywords Maintenance optimization * Integer programming * Multi-unit maintenance
Issue Title: Optimization of Maintenance Activities - Models, Methods, and Applications High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the mechanical drive in natural gas pipelines and power generation on oil platforms, where gas turbines are commonly used as a power source. To mitigate the effects of service outages and increase overall reliability, it is also possible to use one or more redundant units serving as cold standby backup units. In this paper, we consider preventive maintenance optimization for parallel k-out-of-n multi-unit systems, where production at a reduced level is possible when some of the units are still operational. In such systems, there are both positive and negative effects of grouping activities together. The positive effects come from parallel execution of maintenance activities and shared setup costs, while the negative effects come from the limited number of units which can be maintained at the same time. To show the possible economic effects, we evaluate the approach on models of two production environments under a no-fault assumption. We conclude that savings were substantial in our experiments on preventive maintenance, compared to a traditional preventive maintenance plan. For single-unit systems, costs were on average 39 % lower when using optimization. For multi-unit systems, average savings were 19 %. We also used the optimization models to evaluate the effects of re-planning at breakdown and effects due to modeling of inclusion relations. Breakdown re-planning saved between 0 and 11 % of the maintenance costs, depending on which component failed, while inclusion relation modeling resulted in an 7 % average cost reduction.
Audience Academic
Author Bohlin, Markus
Wärja, Mathias
Author_xml – sequence: 1
  givenname: Markus
  surname: Bohlin
  fullname: Bohlin, Markus
  email: markus.bohlin@sics.se
  organization: Swedish Institute of Computer Science
– sequence: 2
  givenname: Mathias
  surname: Wärja
  fullname: Wärja, Mathias
  organization: Siemens Industrial Turbomachinery AB
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-17452$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNp9kV1vFCEUhompidvqD_BuE2-86FQOMB9cbqq2JjXeqLeEZQ6zNDMwApOm_nrZbqNto4YEDvC8B855j8mRDx4JeQ30DCht3yWgopUVBVYBlACekRXULask590RWVFWi6rmnL4gxyldU0oBunpFms_a-Yxee4PrMGc3uZ86u-DXNy7v1v0S73ZVjzP6Hn1em5ByekmeWz0mfHW_npBvHz98Pb-srr5cfDrfXFVGSJorbiUYgLpnAMz22GkpaFvrpkMJANLahoHdyhZMy7otR9NJboGVS8GklfyEnB7yphucl62ao5t0vFVBO_Xefd-oEAc19TsFrahZwd8e8DmGHwumrCaXDI6j9hiWpKBpKK2F4Lygb56g12GJvhRTKMFq3knG_lCDHlE5b0OO2uyTqk2ppGkk7fa5zv5CldHj5Ewxyrpy_khw-kCwXZLzmMqU3LDLadBLSo9xOOAmhpQi2t99AKr29quD_arYr_b2Kyia9onGuHznZfmbG_-rZPc9L6_4AeODzvxT9AvK78JA
CitedBy_id crossref_primary_10_1016_j_ress_2018_11_028
crossref_primary_10_1007_s10479_020_03845_9
crossref_primary_10_1016_j_psep_2017_02_015
crossref_primary_10_1007_s10479_019_03371_3
crossref_primary_10_1016_j_compchemeng_2023_108477
crossref_primary_10_1007_s10479_014_1543_4
crossref_primary_10_1007_s13198_017_0627_3
crossref_primary_10_1016_j_psep_2017_04_016
crossref_primary_10_1016_j_cie_2024_110460
crossref_primary_10_1007_s10479_017_2617_x
crossref_primary_10_1016_j_jrtpm_2020_100177
Cites_doi 10.1016/S0098-1354(97)88493-1
10.1016/0951-8320(95)00076-3
10.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A
10.1016/S0951-8320(03)00166-2
10.1057/jors.1985.202
10.1016/0377-2217(94)00260-J
10.1007/BF01194788
10.1016/0377-2217(91)90141-H
10.1016/j.ijpe.2008.09.012
10.1016/j.compind.2004.06.005
10.1016/j.ress.2007.03.036
10.1016/0377-2217(94)00363-7
10.1109/TPAS.1983.317771
10.1016/S0951-8320(02)00043-1
10.1016/S0377-2217(96)00320-7
10.1002/9780470451793
10.1016/S0377-2217(97)00319-6
10.1016/j.ress.2006.12.002
10.1111/j.1937-5956.1998.tb00128.x
10.1016/j.ress.2006.01.006
10.1016/S0951-8320(00)00047-8
10.1115/GT2009-59935
10.1016/S0377-2217(96)00316-5
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2012
COPYRIGHT 2015 Springer
Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media, LLC 2012
– notice: COPYRIGHT 2015 Springer
– notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTPV
AOWAS
DF7
DOI 10.1007/s10479-012-1179-1
DatabaseName CrossRef
Gale Business Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Mälardalens högskola
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Materials Research Database


Materials Research Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Economics
EISSN 1572-9338
EndPage 23
ExternalDocumentID oai_DiVA_org_mdh_17452
3547189311
A407669083
10_1007_s10479_012_1179_1
Genre Feature
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ADTPV
AOWAS
DF7
ID FETCH-LOGICAL-c490t-3f91c115d2112fde8a94075a68e91119ff621fb971c728b3ec893f12911429f93
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347528500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
1572-9338
IngestDate Thu Oct 30 11:23:26 EDT 2025
Fri Sep 05 09:46:33 EDT 2025
Wed Nov 05 14:38:29 EST 2025
Sat Nov 29 13:30:54 EST 2025
Sun Nov 23 08:58:56 EST 2025
Sat Nov 29 09:02:02 EST 2025
Sat Nov 29 02:36:28 EST 2025
Tue Nov 18 22:37:03 EST 2025
Fri Feb 21 02:36:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integer programming
Multi-unit maintenance
Maintenance optimization
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-3f91c115d2112fde8a94075a68e91119ff621fb971c728b3ec893f12911429f93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1642538922
PQPubID 25585
PageCount 23
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_17452
proquest_miscellaneous_1660054433
proquest_journals_1642538922
gale_infotracmisc_A407669083
gale_infotracacademiconefile_A407669083
gale_businessinsightsgauss_A407669083
crossref_primary_10_1007_s10479_012_1179_1
crossref_citationtrail_10_1007_s10479_012_1179_1
springer_journals_10_1007_s10479_012_1179_1
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2015
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References MarseguerraM.ZioE.PodofilliniL.Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulationReliability Engineering and System Safety200277215116510.1016/S0951-8320(02)00043-1
BevilacquaM.BragliaM.The analytic hierarchy process applied to maintenance strategy selectionReliability Engineering & Systems Safety2000701718310.1016/S0951-8320(00)00047-8
DekkerR.ScarfP.On the impact of optimisation models in maintenance decision making: the state of the artReliability Engineering & Systems Safety1998609111119
ChoD. I.ParlarM.A survey of maintenance models for multi-unit systemsEuropean Journal of Operational Research199151112310.1016/0377-2217(91)90141-H
van DijkhuizenG.van HartenA.Optimal clustering of frequency-constrained maintenance jobs with shared set-upsEuropean Journal of Operational Research199799355256410.1016/S0377-2217(96)00320-7
Bohlin, M., Wärja, M., Holst, A., Slottner, P., & Doganay, K. (2009). Optimization of condition-based maintenance for industrial gas turbines: requirements and results. In Proceedings of the ASME turbo expo. Paper no. GT2009-59935.
Nicolai, R., & Dekker, R. (2006). Optimal maintenance of multi-component systems: a review. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-26.
Bohlin, M., & Wärja, M. (2010). Optimization maintenance for multi-unit industrial gas turbine installations. In ASME turbo expo 2010: power for land, sea and air, Paper no. GT2010-23398.
SortrakulN.NachtmannH.CassadyC.Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machineComputers in Industry200556216116810.1016/j.compind.2004.06.005
Almgren, T., Andréasson, N., Patriksson, M., Strömberg, A.-B., & Wojciechowski, A. (2009). The replacement problem: a polyhedral and complexity analysis. Technical report preprint 2009:4. Göteborg: Chalmers University.
Wärja, M., Slottner, P., & Bohlin, M. (2008). Customer adapted maintenance plan (CAMP), a process for optimization of gas turbine maintenance. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-50240.
BrisR.ChâteletE.YalaouiF.New method to minimize the preventive maintenance cost of series-parallel systemsReliability Engineering & Systems Safety200382324725510.1016/S0951-8320(03)00166-2
GoyalS. K.KusyM. I.Determining economic maintenance frequency for a family of machinesJournal of the Operational Research Society198536121125112810.1057/jors.1985.202
Budai-Balke, G., Dekker, R., & Nicolai, R. (2006). A review of planning models for maintenance and production. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-44.
CoetzeeJ.Maintenance2004VictoriaTrafford Publishing
DickmanB.EpsteinS.WilamowskyY.A mixed integer linear programming formulation for multi-component deterministic opportunistic replacementJournal of the Operational Research Society India199128165175
ZhouX.XiL.LeeJ.Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradationReliability Engineering & Systems Safety200792453053410.1016/j.ress.2006.01.006
YamayeeZ.SidenbladK.YoshimuraM.A computationally efficient optimal maintenance scheduling methodIEEE Transactions on Power Apparatus and Systems1983PAS-102233033810.1109/TPAS.1983.317771
DekkerR.Applications of maintenance optimization models: a review and analysisReliability Engineering & Systems Safety19965122924010.1016/0951-8320(95)00076-3
MaggardB.RhyneD.Total productive maintenance: a timely integration of production and maintenanceProduction and Inventory Management Journal1992334610
ZhouX.XiL.LeeJ.Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programmingInternational Journal of Production Economics2009118236136610.1016/j.ijpe.2008.09.012
BrisR.Parallel simulation algorithm for maintenance optimization based on directed acyclic graphReliability Engineering & Systems Safety200893687488410.1016/j.ress.2007.03.036
DekkerR.WildemanR. E.van EgmondR.Joint replacement in an operational planning phaseEuropean Journal of Operational Research1996911748810.1016/0377-2217(94)00363-7
Slottner, P., & Wärja, M. (2008). Knowledge based prognostics models for gas turbine core components. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-51276.
DekkerR.Integrating optimisation, priority setting, planning and combining of maintenance activitiesEuropean Journal of Operational Research199582222524010.1016/0377-2217(94)00260-J
PascualR.MeruaneV.ReyP.On the effect of downtime costs and budget constraint on preventive and replacement policiesReliability Engineering and System Safety200893114415110.1016/j.ress.2006.12.002
DekkerR.WildemanR. E.van der Duyn SchoutenF. A.A review of multi-component maintenance models with economic dependenceMathematical Methods of Operations Research199745341143510.1007/BF01194788
TanJ. S.KramerM. A.A general framework for preventive maintenance optimization in chemical process operationsComputers & Chemical Engineering199721121451146910.1016/S0098-1354(97)88493-1
WildemanR. E.DekkerR.Dynamic influences in multi-component maintenanceQuality and Reliability Engineering International199713419920710.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A
BakerK. R.TrietschD.Principles of sequencing and scheduling2009New YorkWiley10.1002/9780470451793
ScarfP. A.On the application of mathematical models in maintenanceEuropean Journal of Operational Research199799349350610.1016/S0377-2217(96)00316-5
WiremanT.World class maintenance management1990New YorkIndustrial Press
WildemanR. E.DekkerR.SmitA. C. J. M.A dynamic policy for grouping maintenance activitiesEuropean Journal of Operational Research199799353055110.1016/S0377-2217(97)00319-6
McKoneK.WeissE.TPM: planned and autonomous maintenance: bridging the gap between practice and researchJournal of Operations & Production Management19987433535110.1111/j.1937-5956.1998.tb00128.x
R. Dekker (1179_CR13) 1998; 60
X. Zhou (1179_CR33) 2007; 92
1179_CR21
K. R. Baker (1179_CR2) 2009
1179_CR24
M. Marseguerra (1179_CR19) 2002; 77
Z. Yamayee (1179_CR32) 1983; PAS-102
D. I. Cho (1179_CR9) 1991; 51
S. K. Goyal (1179_CR17) 1985; 36
R. Pascual (1179_CR22) 2008; 93
R. E. Wildeman (1179_CR29) 1997; 99
X. Zhou (1179_CR34) 2009; 118
1179_CR31
R. Dekker (1179_CR12) 1996; 51
K. McKone (1179_CR20) 1998; 7
M. Bevilacqua (1179_CR3) 2000; 70
R. Bris (1179_CR7) 2003; 82
B. Maggard (1179_CR18) 1992; 33
T. Wireman (1179_CR30) 1990
R. Dekker (1179_CR11) 1995; 82
R. Dekker (1179_CR15) 1996; 91
R. Bris (1179_CR6) 2008; 93
1179_CR1
P. A. Scarf (1179_CR23) 1997; 99
G. Dijkhuizen van (1179_CR27) 1997; 99
R. Dekker (1179_CR14) 1997; 45
J. Coetzee (1179_CR10) 2004
J. S. Tan (1179_CR26) 1997; 21
1179_CR8
1179_CR4
R. E. Wildeman (1179_CR28) 1997; 13
1179_CR5
B. Dickman (1179_CR16) 1991; 28
N. Sortrakul (1179_CR25) 2005; 56
References_xml – reference: BakerK. R.TrietschD.Principles of sequencing and scheduling2009New YorkWiley10.1002/9780470451793
– reference: Budai-Balke, G., Dekker, R., & Nicolai, R. (2006). A review of planning models for maintenance and production. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-44.
– reference: van DijkhuizenG.van HartenA.Optimal clustering of frequency-constrained maintenance jobs with shared set-upsEuropean Journal of Operational Research199799355256410.1016/S0377-2217(96)00320-7
– reference: DekkerR.WildemanR. E.van der Duyn SchoutenF. A.A review of multi-component maintenance models with economic dependenceMathematical Methods of Operations Research199745341143510.1007/BF01194788
– reference: DekkerR.Integrating optimisation, priority setting, planning and combining of maintenance activitiesEuropean Journal of Operational Research199582222524010.1016/0377-2217(94)00260-J
– reference: GoyalS. K.KusyM. I.Determining economic maintenance frequency for a family of machinesJournal of the Operational Research Society198536121125112810.1057/jors.1985.202
– reference: PascualR.MeruaneV.ReyP.On the effect of downtime costs and budget constraint on preventive and replacement policiesReliability Engineering and System Safety200893114415110.1016/j.ress.2006.12.002
– reference: Almgren, T., Andréasson, N., Patriksson, M., Strömberg, A.-B., & Wojciechowski, A. (2009). The replacement problem: a polyhedral and complexity analysis. Technical report preprint 2009:4. Göteborg: Chalmers University.
– reference: MaggardB.RhyneD.Total productive maintenance: a timely integration of production and maintenanceProduction and Inventory Management Journal1992334610
– reference: WiremanT.World class maintenance management1990New YorkIndustrial Press
– reference: YamayeeZ.SidenbladK.YoshimuraM.A computationally efficient optimal maintenance scheduling methodIEEE Transactions on Power Apparatus and Systems1983PAS-102233033810.1109/TPAS.1983.317771
– reference: McKoneK.WeissE.TPM: planned and autonomous maintenance: bridging the gap between practice and researchJournal of Operations & Production Management19987433535110.1111/j.1937-5956.1998.tb00128.x
– reference: DekkerR.Applications of maintenance optimization models: a review and analysisReliability Engineering & Systems Safety19965122924010.1016/0951-8320(95)00076-3
– reference: ZhouX.XiL.LeeJ.Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programmingInternational Journal of Production Economics2009118236136610.1016/j.ijpe.2008.09.012
– reference: CoetzeeJ.Maintenance2004VictoriaTrafford Publishing
– reference: TanJ. S.KramerM. A.A general framework for preventive maintenance optimization in chemical process operationsComputers & Chemical Engineering199721121451146910.1016/S0098-1354(97)88493-1
– reference: WildemanR. E.DekkerR.Dynamic influences in multi-component maintenanceQuality and Reliability Engineering International199713419920710.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A
– reference: BevilacquaM.BragliaM.The analytic hierarchy process applied to maintenance strategy selectionReliability Engineering & Systems Safety2000701718310.1016/S0951-8320(00)00047-8
– reference: ZhouX.XiL.LeeJ.Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradationReliability Engineering & Systems Safety200792453053410.1016/j.ress.2006.01.006
– reference: DekkerR.WildemanR. E.van EgmondR.Joint replacement in an operational planning phaseEuropean Journal of Operational Research1996911748810.1016/0377-2217(94)00363-7
– reference: Slottner, P., & Wärja, M. (2008). Knowledge based prognostics models for gas turbine core components. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-51276.
– reference: BrisR.ChâteletE.YalaouiF.New method to minimize the preventive maintenance cost of series-parallel systemsReliability Engineering & Systems Safety200382324725510.1016/S0951-8320(03)00166-2
– reference: SortrakulN.NachtmannH.CassadyC.Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machineComputers in Industry200556216116810.1016/j.compind.2004.06.005
– reference: WildemanR. E.DekkerR.SmitA. C. J. M.A dynamic policy for grouping maintenance activitiesEuropean Journal of Operational Research199799353055110.1016/S0377-2217(97)00319-6
– reference: Bohlin, M., Wärja, M., Holst, A., Slottner, P., & Doganay, K. (2009). Optimization of condition-based maintenance for industrial gas turbines: requirements and results. In Proceedings of the ASME turbo expo. Paper no. GT2009-59935.
– reference: DickmanB.EpsteinS.WilamowskyY.A mixed integer linear programming formulation for multi-component deterministic opportunistic replacementJournal of the Operational Research Society India199128165175
– reference: Bohlin, M., & Wärja, M. (2010). Optimization maintenance for multi-unit industrial gas turbine installations. In ASME turbo expo 2010: power for land, sea and air, Paper no. GT2010-23398.
– reference: DekkerR.ScarfP.On the impact of optimisation models in maintenance decision making: the state of the artReliability Engineering & Systems Safety1998609111119
– reference: Nicolai, R., & Dekker, R. (2006). Optimal maintenance of multi-component systems: a review. Technical report, Erasmus University Rotterdam, Econometric Institute. Econometric Institute Report 2006-26.
– reference: ScarfP. A.On the application of mathematical models in maintenanceEuropean Journal of Operational Research199799349350610.1016/S0377-2217(96)00316-5
– reference: MarseguerraM.ZioE.PodofilliniL.Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulationReliability Engineering and System Safety200277215116510.1016/S0951-8320(02)00043-1
– reference: BrisR.Parallel simulation algorithm for maintenance optimization based on directed acyclic graphReliability Engineering & Systems Safety200893687488410.1016/j.ress.2007.03.036
– reference: Wärja, M., Slottner, P., & Bohlin, M. (2008). Customer adapted maintenance plan (CAMP), a process for optimization of gas turbine maintenance. In ASME turbo expo 2010: power for land, sea and air. Paper no. GT2008-50240.
– reference: ChoD. I.ParlarM.A survey of maintenance models for multi-unit systemsEuropean Journal of Operational Research199151112310.1016/0377-2217(91)90141-H
– ident: 1179_CR24
– volume: 21
  start-page: 1451
  issue: 12
  year: 1997
  ident: 1179_CR26
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/S0098-1354(97)88493-1
– volume: 51
  start-page: 229
  year: 1996
  ident: 1179_CR12
  publication-title: Reliability Engineering & Systems Safety
  doi: 10.1016/0951-8320(95)00076-3
– volume: 13
  start-page: 199
  issue: 4
  year: 1997
  ident: 1179_CR28
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/(SICI)1099-1638(199707)13:4<199::AID-QRE118>3.0.CO;2-A
– volume: 82
  start-page: 247
  issue: 3
  year: 2003
  ident: 1179_CR7
  publication-title: Reliability Engineering & Systems Safety
  doi: 10.1016/S0951-8320(03)00166-2
– volume: 36
  start-page: 1125
  issue: 12
  year: 1985
  ident: 1179_CR17
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1985.202
– ident: 1179_CR4
– volume-title: Maintenance
  year: 2004
  ident: 1179_CR10
– ident: 1179_CR8
– volume: 82
  start-page: 225
  issue: 2
  year: 1995
  ident: 1179_CR11
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)00260-J
– volume: 45
  start-page: 411
  issue: 3
  year: 1997
  ident: 1179_CR14
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/BF01194788
– volume: 51
  start-page: 1
  issue: 1
  year: 1991
  ident: 1179_CR9
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(91)90141-H
– volume: 118
  start-page: 361
  issue: 2
  year: 2009
  ident: 1179_CR34
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2008.09.012
– volume: 56
  start-page: 161
  issue: 2
  year: 2005
  ident: 1179_CR25
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2004.06.005
– volume: 93
  start-page: 874
  issue: 6
  year: 2008
  ident: 1179_CR6
  publication-title: Reliability Engineering & Systems Safety
  doi: 10.1016/j.ress.2007.03.036
– volume: 91
  start-page: 74
  issue: 1
  year: 1996
  ident: 1179_CR15
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)00363-7
– volume: 60
  start-page: 111
  issue: 9
  year: 1998
  ident: 1179_CR13
  publication-title: Reliability Engineering & Systems Safety
– volume: PAS-102
  start-page: 330
  issue: 2
  year: 1983
  ident: 1179_CR32
  publication-title: IEEE Transactions on Power Apparatus and Systems
  doi: 10.1109/TPAS.1983.317771
– volume: 77
  start-page: 151
  issue: 2
  year: 2002
  ident: 1179_CR19
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(02)00043-1
– volume-title: World class maintenance management
  year: 1990
  ident: 1179_CR30
– volume: 33
  start-page: 6
  issue: 4
  year: 1992
  ident: 1179_CR18
  publication-title: Production and Inventory Management Journal
– volume: 99
  start-page: 552
  issue: 3
  year: 1997
  ident: 1179_CR27
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00320-7
– ident: 1179_CR21
– volume-title: Principles of sequencing and scheduling
  year: 2009
  ident: 1179_CR2
  doi: 10.1002/9780470451793
– volume: 99
  start-page: 530
  issue: 3
  year: 1997
  ident: 1179_CR29
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00319-6
– volume: 93
  start-page: 144
  issue: 1
  year: 2008
  ident: 1179_CR22
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2006.12.002
– volume: 28
  start-page: 165
  year: 1991
  ident: 1179_CR16
  publication-title: Journal of the Operational Research Society India
– volume: 7
  start-page: 335
  issue: 4
  year: 1998
  ident: 1179_CR20
  publication-title: Journal of Operations & Production Management
  doi: 10.1111/j.1937-5956.1998.tb00128.x
– volume: 92
  start-page: 530
  issue: 4
  year: 2007
  ident: 1179_CR33
  publication-title: Reliability Engineering & Systems Safety
  doi: 10.1016/j.ress.2006.01.006
– ident: 1179_CR1
– volume: 70
  start-page: 71
  issue: 1
  year: 2000
  ident: 1179_CR3
  publication-title: Reliability Engineering & Systems Safety
  doi: 10.1016/S0951-8320(00)00047-8
– ident: 1179_CR5
  doi: 10.1115/GT2009-59935
– volume: 99
  start-page: 493
  issue: 3
  year: 1997
  ident: 1179_CR23
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(96)00316-5
– ident: 1179_CR31
SSID ssj0001185
Score 2.174844
Snippet High levels of availability and reliability are essential in many industries where production is subject to high costs due to downtime. Examples include the...
Issue Title: Optimization of Maintenance Activities - Models, Methods, and Applications High levels of availability and reliability are essential in many...
SourceID swepub
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Breakdown
Breakdowns
Business and Management
Combinatorics
Cost control
Costs
Economics
Engineering research
Gas pipelines
Gas turbines
Inclusions
Integer programming
Maintenance
Maintenance costs
Maintenance management
Mathematical optimization
Mathematical research
Operations research
Operations Research/Decision Theory
Optimization
Planning
Preventive maintenance
Stochastic analysis
Studies
Theory of Computation
Turbines
Water flooding
Working hours
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgeWliK2D5QkEBIIIuN13n4VK1aKg606gFQb5bjR6nUbso629_fmcTZ7vawFy5RpIyd2J6ZzIzH3wB8rErab3KalWlRoIOS4R1dpBOiqtBBMFl7UPhncXZWXlzI8xhwCzGtsteJraK2taEY-Tc06zkKp-T88PYfo6pRtLsaS2g8hWdo2aSU0nXKzxeaGI3nNoURnSBGWZT9rmZ3dE4UlCnEGYGisXTlv_RYOy9tkz6CFG1_Qyfb_zuAV7AVDdBk0nHMa3jipgN40ee_D2C7r_OQRLEfwOYSaOEbyE81YUwQUIdLatQ4N_EoZ0Ix3cTOO55ifXndJjF1aMIO_D75_uvoB4vVF5gRctSwsceFwlm16CJyb12pJTp_mc5LRwpSep_z1FeySE3By2rsDJo-Hs0HOp0rvRy_hY1pPXXvIBEjLwx6RsbKkdACO7JaeKNtmlrsMh3CqJ97ZSI0OVXIuFYPoMq0XAqXi9DJpcImXxZNbjtcjnXEn2hBVazriZdAkY9wqechqAkOK88l2qJD-NzSkWzj-42ORxRwFISStUK5v0KJMmlWH_c8oKJOCOqBAYbwYfGYWlKe29TVc6LJyYgWY-zia89yS12sGWHHlYvJINjw46s_E1XPLtWN_avQ9cz47voP24OXaBBmXYhpHzaa2dwdwHNz11yF2ftWuO4BWIsm1g
  priority: 102
  providerName: ProQuest
Title Maintenance optimization with duration-dependent costs
URI https://link.springer.com/article/10.1007/s10479-012-1179-1
https://www.proquest.com/docview/1642538922
https://www.proquest.com/docview/1660054433
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-17452
Volume 224
WOSCitedRecordID wos000347528500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 1572-9338
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED7BhhA8MChDFEYVJBASKFLiOnH8WMYmJFhVbTAGL5bj2GMSa1CT8vu5S-zSTmgSvJxaxb7Wju98Z999B_CiLOi-yeq4SIVAByXDT0Sk5bws0UEwWZco_FFMp8XZmZz5PO4mRLuHK8lOU68lu3FBsT0sJhizGF2ebdztCqrXcHxyulK_aDF3cYvo-cQUOhmuMv_GYmMzuqqS1-5Gr-CIdnvP4c5__ev7cM-bmtGkXxsP4IadD-B2iHQfwE6o6BB5AR_A3TV4woeQH2lCkyBIDhvVqFsufdJmRKe3UbXsV08cCum2kambttmFz4cHn_bfx77OQmy4TNp47PCVoGVYoTPIXGULLdHNy3ReWFKF0rmcpa6UIjWCFeXYGjRyHBoKlIcrnRw_gq15PbePIeKJ4wZ9IFPJhGuOjCrNndFVmlbIMh1CEiZcGQ9CTrUwfqg_8Mk0YQonjHDIpcIur1ddfvYIHNc1fklvUfkKnkgaOuNozvWyadQEh5XnEq3OIbzq2pEU4-8b7ZMRcBSEh7XRcm-jJUqf2Xwc1ovy0t8odEEZbiSSsSE8Xz2mnhTRNrf1ktrkZC7zMbJ4E5bOGotrRtgvxdVkEED4u4vTiaoX5-qy-q7QyczYk3_i-hTuoCWY9WdLe7DVLpb2Gdwyv9qLZjGCm-LL1xFsvz2Yzo7x2wcRIz1K9omyGVFxgnSWfRt1wvgbsFcjew
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE4tBBAhBYwEhUSyCLerB97QCiiVK2aRj0U1Nti76Ot1MYl64D4U_2NnbG9adJDbj1wsSJ5duO157k78w3A-yKj8yaTh1mUphigxPiLLsJwXhQYIKi4LhQepqNRdnwsDlfgytfCUFql14m1otaloj3yz-jWMxROwdjXy98hdY2i01XfQqNhi33z7y-GbO7L3jZ-3y3Gdr4ffdsN264CoeKiV4V9iw-AfpDG0IdZbbJcYFAT50lmSPCFtQmLbCHSSKUsK_pGoUm3aBap6lRYAl9ClX-PE7IYpQqyw5nmR2e9TpnEoCukrE1_itqU6vGUMpNYSCBsYbRgB29bg7lj2VsQprXZ21n_317YE1hrHexg0EjEU1gx4w488Pn9HVj3fSyCVq114PEcKOMzSA5ywtAgIBITlKhRL9pS1YD2rAM9bWQm9O2Dq0CVrnLP4cedLOsFrI7LsXkJAe9ZrjDyU1r0eM5xIp1zq3IdRRqnjLrQ899aqhZ6nTqAnMsb0GhiD4nsQejrQuKQj7Mhlw3uyDLiLWIg2fYtxYujnR13kk-dkwNcVpII9LW78KGmI92F_6_ytgQDV0EoYAuUmwuUqHPU4m3Pc7LVeU7eMFwX3s1u00jK4xubcko0CQUJvI9TfPIsPjfFkhU2UjB7GQSLvn32cyDLyYm80KcSQ-uYvVr-YG_h4e7RwVAO90b7G_AInd-42U7bhNVqMjWv4b76U525yZtasAP4ddeCcQ3t8YDW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBVVwoBBABAoYiQoJtGq8WT_2gFBEiKhaohwAVVy29j5KpTZuYwfEX-PXMWN706SH3HrgYkXy7MZrz3N35huA13lK5002Y2mYJBigRPiLLtIKkecYIOioLhQ-TMbj9OhITjbgr6-FobRKrxNrRW0KTXvke-jWcxROyfmea9MiJsPRh4tLRh2k6KTVt9NoWOTA_vmN4Vv5fn-I33qX89Gnrx8_s7bDANNC9irWd_gw6BMZDIO4MzbNJAY4URanlpSAdC7moctlEuqEp3nfajTvDk0kVaBKR0BMqP5vJRhjUjrhJPqxsALouNfpkxiAMcrg9CeqTdmeSChLiTMCZGPhik28bhmWjmivwZnWJnC0_T-_vPtwr3W8g0EjKQ9gw047sOXz_juw7ftbBK2668DdJbDGhxB_yQhbgwBKbFCgpj1vS1gD2ssOzLyRJebbCleBLsqqfATfbmRZj2FzWkztEwhEzwmNEaE2sicygROZTDidmTA0OGXYhZ7_7kq3kOzUGeRMXYFJE6soZBVCZZcKh7xdDLlo8EjWEe8SM6m2nyleStrxKU-yeVmqAS4rjiX64F14U9ORTsP_11lbmoGrIHSwFcqdFUrURXr1tuc_1erCUl0xXxdeLW7TSMrvm9piTjQxBQ-ij1O88-y-NMWaFTYSsXgZBJc-PP0-UMXsRJ2bnwpD7og_Xf9gL2EL5UEd7o8PnsEd9ImjZpdtBzar2dw-h9v6V3Vazl7UMh7A8U3LxT_6E4nC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintenance+optimization+with+duration-dependent+costs&rft.jtitle=Annals+of+operations+research&rft.au=Bohlin%2C+Markus&rft.au=W%C3%A4rja%2C+Mathias&rft.date=2015-01-01&rft.pub=Springer+US&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=224&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1007%2Fs10479-012-1179-1&rft.externalDocID=10_1007_s10479_012_1179_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon