Feature selection approach for evolving reactive scheduling policies for dynamic job shop scheduling problem using gene expression programming
Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High comput...
Gespeichert in:
| Veröffentlicht in: | International Journal of Production Research Jg. 61; H. 15; S. 5029 - 5052 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Taylor & Francis
03.08.2023
Informa UK Limited Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0020-7543, 1366-588X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High computational requirements and difficulty in interpreting generated rules are limitations of literature methods. Also, feature selection approaches in the field of automated design of scheduling policies have been developed for the tree-based GP approach only. Therefore, the aim of this study is to propose a feature selection approach for the Gene Expression Programming (GEP) algorithm to evolve high-quality rules in simple structures with an affordable computational budget. This integration speeds up the search process by restricting the GP search space using the linear representation of the GEP algorithm and creates concise rules with only meaningful features using the feature selection approach. The proposed algorithm is compared with five algorithms and 30 rules from the literature under different processing conditions. Three performance measures are considered including total weighted tardiness, mean tardiness, and mean flow time. The results show that the proposed algorithm can generate smaller rules with high interpretability in a much shorter training time. |
|---|---|
| AbstractList | Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High computational requirements and difficulty in interpreting generated rules are limitations of literature methods. Also, feature selection approaches in the field of automated design of scheduling policies have been developed for the tree-based GP approach only. Therefore, the aim of this study is to propose a feature selection approach for the Gene Expression Programming (GEP) algorithm to evolve high-quality rules in simple structures with an affordable computational budget. This integration speeds up the search process by restricting the GP search space using the linear representation of the GEP algorithm and creates concise rules with only meaningful features using the feature selection approach. The proposed algorithm is compared with five algorithms and 30 rules from the literature under different processing conditions. Three performance measures are considered including total weighted tardiness, mean tardiness, and mean flow time. The results show that the proposed algorithm can generate smaller rules with high interpretability in a much shorter training time. |
| Author | Fujii, Nobutada Shady, Salama Kaihara, Toshiya Kokuryo, Daisuke |
| Author_xml | – sequence: 1 givenname: Salama surname: Shady fullname: Shady, Salama email: shady.salama@kaede.cs.kobe-u.ac.jp organization: Kobe University – sequence: 2 givenname: Toshiya surname: Kaihara fullname: Kaihara, Toshiya organization: Kobe University – sequence: 3 givenname: Nobutada surname: Fujii fullname: Fujii, Nobutada organization: Kobe University – sequence: 4 givenname: Daisuke surname: Kokuryo fullname: Kokuryo, Daisuke organization: Kobe University |
| BackLink | https://cir.nii.ac.jp/crid/1872553967729226112$$DView record in CiNii |
| BookMark | eNqFkM1u1DAUhS3USkxbHgEpEmxT_BMnjtiAKlqQKrEBiZ1149zMeOTYwU6mzEv0mXGYsoAFeHEt-3znHulckDMfPBLyktFrRhV9QymnjazENaec59FyWrFnZMNEXZdSqW9nZLMy5Qo9Jxcp7Wk-UlUb8niLMC8Ri4QOzWyDL2CaYgCzK4YQCzwEd7B-W0SELB8yaHbYL279m4KzxmL6RfZHD6M1xT50RdqF6Q8whs7hWCxpfW3RY4E_pogprYFZ3UYYx6xdkfMBXMIXT_cl-Xr74cvNx_L-892nm_f3palaOpdCDkb2FRhlej50tZQ1SBAUoKmNUqJta9M3rDJd28sB6UAFdoq2knHJgIK4JK9Oe3P29wXTrPdhiT5Haq54o7hQUmVKnigTQ0oRBz1FO0I8akb1Wr3-Xb1eq9dP1Wff2798xs6wljtHsO6_7tcnt7c2G9fJVMOlFG3dNLzlvGaMZ-zdCbM-1z_CQ4iu1zMcXYhDBG9s0uLfST8BK1OsbQ |
| CitedBy_id | crossref_primary_10_1016_j_cirp_2025_04_095 crossref_primary_10_26599_TST_2023_9010141 crossref_primary_10_1108_IMDS_02_2023_0126 crossref_primary_10_1002_cpe_8153 crossref_primary_10_1080_00207543_2025_2497961 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1007_s10462_024_11059_9 crossref_primary_10_1109_TEVC_2023_3334626 crossref_primary_10_1038_s41598_023_34951_w crossref_primary_10_1016_j_jmsy_2024_01_002 crossref_primary_10_1016_j_cie_2025_111305 crossref_primary_10_1016_j_eswa_2024_125002 crossref_primary_10_1016_j_swevo_2025_101970 crossref_primary_10_3390_app13116631 |
| Cites_doi | 10.1007/978-3-030-85906-0_70 10.1007/11729976_7 10.1145/3321707.3321790 10.1007/978-1-4614-2361-4 10.1080/00207543.2018.1543964 10.1109/CEC.2011.5949719 10.1162/evco_a_00230 10.1109/TEVC.2013.2248159 10.1162/evco.2010.18.2.18206 10.1016/j.cie.2007.08.008 10.1007/s00170-010-2518-5 10.1007/s40747-017-0036-x 10.1007/978-981-16-4859-5 10.1007/s10845-012-0626-9 10.1109/CSCWD.2011.5960088 10.1007/3-540-44629-x_11 10.1007/s10845-017-1350-2 10.1080/00207543.2019.1620362 10.1145/2908812.2908822 10.1007/978-3-642-39304-4_10 10.1109/TCYB.2020.3024849 10.1145/1388969.1389075 10.1109/TEVC.2015.2429314 10.1080/00207543.2011.611539 10.1109/TETCI.2017.2743758 10.1016/S0925-5273(96)00068-0 10.1109/CEC.2016.7743797 10.1007/s10951-008-0090-8 10.1007/978-3-319-68759-9_36 10.1007/s12559-018-9595-4 10.1145/1830483.1830530 10.1109/TEVC.2014.2319051 10.1162/EVCO_a_00131 10.1162/evco.2006.14.3.309 10.1162/EVCO_a_00133 10.1109/TCYB.2016.2562674 10.1057/jors.2013.71 10.1016/j.cie.2013.05.023 10.1177/0020294020946352 10.1016/j.procir.2021.11.069 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | RYH AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/00207543.2022.2092041 |
| DatabaseName | CiNii Complete CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1366-588X |
| EndPage | 5052 |
| ExternalDocumentID | 10_1080_00207543_2022_2092041 2092041 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ RYH AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c490t-35fc5d4ac8cd2fb6556a5a30aa76c883996cd714cb9d5fe0f03eb80951251a0a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819556100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7543 |
| IngestDate | Wed Aug 13 11:16:30 EDT 2025 Tue Nov 18 21:02:30 EST 2025 Sat Nov 29 05:36:23 EST 2025 Mon Nov 10 09:18:12 EST 2025 Mon Oct 20 23:46:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-35fc5d4ac8cd2fb6556a5a30aa76c883996cd714cb9d5fe0f03eb80951251a0a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-4299-5611 0000-0001-7653-1236 |
| PQID | 2827823858 |
| PQPubID | 30924 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2827823858 crossref_primary_10_1080_00207543_2022_2092041 nii_cinii_1872553967729226112 informaworld_taylorfrancis_310_1080_00207543_2022_2092041 crossref_citationtrail_10_1080_00207543_2022_2092041 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-03 |
| PublicationDateYYYYMMDD | 2023-08-03 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International Journal of Production Research |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Informa UK Limited Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Informa UK Limited – name: Taylor & Francis LLC |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 Shady Salama (CIT0033) 2020 CIT0034 CIT0011 Whigham Peter A. (CIT0039) 1995; 16 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 Ferreira Candida. (CIT0006) 2001; 13 CIT0017 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0045 CIT0022 CIT0044 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0035 doi: 10.1007/978-3-030-85906-0_70 – ident: CIT0011 doi: 10.1007/11729976_7 – ident: CIT0042 doi: 10.1145/3321707.3321790 – ident: CIT0030 doi: 10.1007/978-1-4614-2361-4 – ident: CIT0029 doi: 10.1080/00207543.2018.1543964 – ident: CIT0007 doi: 10.1109/CEC.2011.5949719 – ident: CIT0019 doi: 10.1162/evco_a_00230 – ident: CIT0022 doi: 10.1109/TEVC.2013.2248159 – start-page: 248 volume-title: Proceedings of the 64th Annual Conference of the Institute of systems, Control and information Engineers (ISCIE) year: 2020 ident: CIT0033 – ident: CIT0001 doi: 10.1162/evco.2010.18.2.18206 – ident: CIT0037 doi: 10.1016/j.cie.2007.08.008 – ident: CIT0027 doi: 10.1007/s00170-010-2518-5 – ident: CIT0020 doi: 10.1007/s40747-017-0036-x – ident: CIT0043 doi: 10.1007/978-981-16-4859-5 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: CIT0006 publication-title: Complex Systems – ident: CIT0024 doi: 10.1007/s10845-012-0626-9 – ident: CIT0026 doi: 10.1109/CSCWD.2011.5960088 – ident: CIT0005 doi: 10.1007/3-540-44629-x_11 – ident: CIT0040 doi: 10.1007/s10845-017-1350-2 – ident: CIT0045 doi: 10.1080/00207543.2019.1620362 – ident: CIT0017 doi: 10.1145/2908812.2908822 – ident: CIT0021 doi: 10.1007/978-3-642-39304-4_10 – volume: 16 start-page: 33 year: 1995 ident: CIT0039 publication-title: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications – ident: CIT0041 doi: 10.1109/TCYB.2020.3024849 – ident: CIT0018 doi: 10.1145/1388969.1389075 – ident: CIT0003 doi: 10.1109/TEVC.2015.2429314 – ident: CIT0032 doi: 10.1080/00207543.2011.611539 – ident: CIT0012 – ident: CIT0015 doi: 10.1109/TETCI.2017.2743758 – ident: CIT0010 doi: 10.1016/S0925-5273(96)00068-0 – ident: CIT0014 doi: 10.1109/CEC.2016.7743797 – ident: CIT0028 doi: 10.1007/s10951-008-0090-8 – ident: CIT0016 doi: 10.1007/978-3-319-68759-9_36 – ident: CIT0038 doi: 10.1007/s12559-018-9595-4 – ident: CIT0009 doi: 10.1145/1830483.1830530 – ident: CIT0031 doi: 10.1109/TEVC.2014.2319051 – ident: CIT0002 doi: 10.1162/EVCO_a_00131 – ident: CIT0013 doi: 10.1162/evco.2006.14.3.309 – ident: CIT0034 – ident: CIT0008 doi: 10.1162/EVCO_a_00133 – ident: CIT0023 doi: 10.1109/TCYB.2016.2562674 – ident: CIT0004 doi: 10.1057/jors.2013.71 – ident: CIT0025 doi: 10.1016/j.cie.2013.05.023 – ident: CIT0044 doi: 10.1177/0020294020946352 – ident: CIT0036 doi: 10.1016/j.procir.2021.11.069 |
| SSID | ssj0000584 ssib053833677 ssib004836719 |
| Score | 2.471515 |
| Snippet | Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems.... |
| SourceID | proquest crossref nii informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5029 |
| SubjectTerms | Algorithms Automation discrete event simulation Dispatching rules dynamic job shop scheduling Feature selection Gene expression gene expression programming genetic programming Job shop scheduling Job shops Lateness Policies Scheduling Search process System effectiveness |
| Title | Feature selection approach for evolving reactive scheduling policies for dynamic job shop scheduling problem using gene expression programming |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2092041 https://cir.nii.ac.jp/crid/1872553967729226112 https://www.proquest.com/docview/2827823858 |
| Volume | 61 |
| WOSCitedRecordID | wos000819556100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: TFW dateStart: 19610101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IE1yInjJB4RomJCDCC6RY4fUARp1RTEr-A3c-c4hQqhDrBEieJLHPt8951zD0JOTWEt0yqLjNIsAg0to0LCmXaJzOOEKW61LzaRX18Xg4G8Cd6ETXCrRBvatYkivKzGxa2qpvOIwwhuUHQpB-suwVgqmTAfug6qH5fmbf_-SxaLIuRhZhGSdDE8vz1lTjvN5S4F3VMPhz8ktldD_Y1_-IBNsh4wKD1vmWaLLNl6m6x9y0y4Qz4QGr5OLG18nRyYPNplH6fQW2pBquFWBAXM6SUmBSsZtBYGt1Ms_AAio_EtTVvynj6NKto8jsZzDdtqNhSd7x8osLKl9j145tY0uI69wL1dcte_vL24ikLphkinkk0jLpwWJlW60CZxVSZEpoTiTKk80wWAMplpk8eprqQRzjLHuK0KhHuAtxRwyB5Zrke13SeUiUpq4BvJY5MawZTRFTQXeSWUcE71SNpNWalDXnMsr_FcxrP0p-1wlzjcZRjuHjmbkY3bxB6LCOR3fiinfkfFteVPSr6A9hiYB7qHx7jIwY7jMkPDBtAvIN4eOerYqgwypCnBGAb4hj9uD_7w6kOyCpfc-yzyI7I8nbzaY7Ki36bDZnLiV8sn41QPzQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQhsR42BgbotCCH3gNcuI4iR_RtKoTo09F65vl-AOKRlo1KeKv4G_mzklGq2nqA3uJItnOh3O--51z9ztCPtjCOWZ0FlltWAQWWkaFhDPjE5nHCdPcmVBsIp9Oi_lcbufCYFgl-tC-JYoIuhoXN25G9yFxmMINli7l4N4lmEwlE4a564cCbC3y58_GN_-0sSg6JmYW4Zg-i-ehy-zYpx32UrA-1WJxT2cHQzQ-eYxXeEGOOxhKP7Vyc0qeuOoleb5FTnhG_iA63KwdrUOpHPh-tCcgp_C41IFiw90ICrAzKE0KjjIYLsxvp1j7AbRGHXratuo9_bEsaf19udrp2Ba0oRh__42CNDvqfnfBuRXtosd-Qts5-Tq-nF1Moq56Q2RSyZqIC2-ETbUpjE18mQmRaaE50zrPTAG4TGbG5nFqSmmFd8wz7soCER9ALg1C8oocVMvKvSaUiVIaEB3JY5tawbQ1JXQXeSm08F4PSNp_M2U6anOssHGr4jsG1Ha6FU636qZ7QD7eDVu13B77BshtgVBN2FTxbQUUxfeMHYH0wOPhMS5ycOW4zNC3AQAMoHdAhr1cqU6N1Ar8YUBw-O_2zX_c-j15Npl9uVbXV9PPb8kRNPEQwsiH5KBZb9yIPDW_mkW9fheWzl8WDBP3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQRagcCrRU3RaoD70GOXGcxMeqZQVqtdrDVnCzHD_KIsiuNgvqr-hv7ozjACuEONBLFMmexLHHM9848yDki62cY0YXidWGJaChZVJJuDM-k2WaMc2dCcUmytGoOj-X4-hN2Ea3SrShfZcoIshq3Nxz63uPOIzgBkWXc7DuMoylkhnD0PVXAJ0LZPLJ8OxeGIsqJmJmCdL0QTxPPWZFPa0kLwXl00ynj0R20EPD7f_wBTvkTQSh9GvHNbtkzTVvydaD1ITvyF_EhjcLR9tQKAdWj_bpxymMljoQa3gWQQF0BpFJwUwGtYXR7RQrP4DMaENP29W8p5ezmrYXs_lKx66cDUXv-98UeNlR9ye65jY0-o5dQ9se-TU8nnw7SWLthsTkki0TLrwRNtemMjbzdSFEoYXmTOuyMBWgMlkYW6a5qaUV3jHPuKsrxHsAuDSwyHuy3swa94FQJmppgHEkT21uBdPW1NBdlLXQwns9IHm_ZMrExOZYX-NKpXf5T7vpVjjdKk73gBzdkc27zB7PEciH_KCW4UjFd_VPFH-G9gCYB4aH17QqwZDjskDLBuAvQN4B2e_ZSkUh0iqwhgG_4Z_bjy949WeyOf4-VD9PRz8-kdfQwoP_It8n68vFjTsgG-Z2OW0Xh2Hj_AO-0hKp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+approach+for+evolving+reactive+scheduling+policies+for+dynamic+job+shop+scheduling+problem+using+gene+expression+programming&rft.jtitle=International+journal+of+production+research&rft.au=Salama+Shady&rft.au=Kaihara%2C+Toshiya&rft.au=Fujii%2C+Nobutada&rft.au=Kokuryo%2C+Daisuke&rft.date=2023-08-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=61&rft.issue=15&rft.spage=5029&rft.epage=5052&rft_id=info:doi/10.1080%2F00207543.2022.2092041&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |