Feature selection approach for evolving reactive scheduling policies for dynamic job shop scheduling problem using gene expression programming

Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Production Research Jg. 61; H. 15; S. 5029 - 5052
Hauptverfasser: Shady, Salama, Kaihara, Toshiya, Fujii, Nobutada, Kokuryo, Daisuke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis 03.08.2023
Informa UK Limited
Taylor & Francis LLC
Schlagworte:
ISSN:0020-7543, 1366-588X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High computational requirements and difficulty in interpreting generated rules are limitations of literature methods. Also, feature selection approaches in the field of automated design of scheduling policies have been developed for the tree-based GP approach only. Therefore, the aim of this study is to propose a feature selection approach for the Gene Expression Programming (GEP) algorithm to evolve high-quality rules in simple structures with an affordable computational budget. This integration speeds up the search process by restricting the GP search space using the linear representation of the GEP algorithm and creates concise rules with only meaningful features using the feature selection approach. The proposed algorithm is compared with five algorithms and 30 rules from the literature under different processing conditions. Three performance measures are considered including total weighted tardiness, mean tardiness, and mean flow time. The results show that the proposed algorithm can generate smaller rules with high interpretability in a much shorter training time.
AbstractList Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems. Hence, the automated design of effective rules has been an important subject in the scheduling literature for the past several years. High computational requirements and difficulty in interpreting generated rules are limitations of literature methods. Also, feature selection approaches in the field of automated design of scheduling policies have been developed for the tree-based GP approach only. Therefore, the aim of this study is to propose a feature selection approach for the Gene Expression Programming (GEP) algorithm to evolve high-quality rules in simple structures with an affordable computational budget. This integration speeds up the search process by restricting the GP search space using the linear representation of the GEP algorithm and creates concise rules with only meaningful features using the feature selection approach. The proposed algorithm is compared with five algorithms and 30 rules from the literature under different processing conditions. Three performance measures are considered including total weighted tardiness, mean tardiness, and mean flow time. The results show that the proposed algorithm can generate smaller rules with high interpretability in a much shorter training time.
Author Fujii, Nobutada
Shady, Salama
Kaihara, Toshiya
Kokuryo, Daisuke
Author_xml – sequence: 1
  givenname: Salama
  surname: Shady
  fullname: Shady, Salama
  email: shady.salama@kaede.cs.kobe-u.ac.jp
  organization: Kobe University
– sequence: 2
  givenname: Toshiya
  surname: Kaihara
  fullname: Kaihara, Toshiya
  organization: Kobe University
– sequence: 3
  givenname: Nobutada
  surname: Fujii
  fullname: Fujii, Nobutada
  organization: Kobe University
– sequence: 4
  givenname: Daisuke
  surname: Kokuryo
  fullname: Kokuryo, Daisuke
  organization: Kobe University
BackLink https://cir.nii.ac.jp/crid/1872553967729226112$$DView record in CiNii
BookMark eNqFkM1u1DAUhS3USkxbHgEpEmxT_BMnjtiAKlqQKrEBiZ1149zMeOTYwU6mzEv0mXGYsoAFeHEt-3znHulckDMfPBLyktFrRhV9QymnjazENaec59FyWrFnZMNEXZdSqW9nZLMy5Qo9Jxcp7Wk-UlUb8niLMC8Ri4QOzWyDL2CaYgCzK4YQCzwEd7B-W0SELB8yaHbYL279m4KzxmL6RfZHD6M1xT50RdqF6Q8whs7hWCxpfW3RY4E_pogprYFZ3UYYx6xdkfMBXMIXT_cl-Xr74cvNx_L-892nm_f3palaOpdCDkb2FRhlej50tZQ1SBAUoKmNUqJta9M3rDJd28sB6UAFdoq2knHJgIK4JK9Oe3P29wXTrPdhiT5Haq54o7hQUmVKnigTQ0oRBz1FO0I8akb1Wr3-Xb1eq9dP1Wff2798xs6wljtHsO6_7tcnt7c2G9fJVMOlFG3dNLzlvGaMZ-zdCbM-1z_CQ4iu1zMcXYhDBG9s0uLfST8BK1OsbQ
CitedBy_id crossref_primary_10_1016_j_cirp_2025_04_095
crossref_primary_10_26599_TST_2023_9010141
crossref_primary_10_1108_IMDS_02_2023_0126
crossref_primary_10_1002_cpe_8153
crossref_primary_10_1080_00207543_2025_2497961
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_1109_TEVC_2023_3334626
crossref_primary_10_1038_s41598_023_34951_w
crossref_primary_10_1016_j_jmsy_2024_01_002
crossref_primary_10_1016_j_cie_2025_111305
crossref_primary_10_1016_j_eswa_2024_125002
crossref_primary_10_1016_j_swevo_2025_101970
crossref_primary_10_3390_app13116631
Cites_doi 10.1007/978-3-030-85906-0_70
10.1007/11729976_7
10.1145/3321707.3321790
10.1007/978-1-4614-2361-4
10.1080/00207543.2018.1543964
10.1109/CEC.2011.5949719
10.1162/evco_a_00230
10.1109/TEVC.2013.2248159
10.1162/evco.2010.18.2.18206
10.1016/j.cie.2007.08.008
10.1007/s00170-010-2518-5
10.1007/s40747-017-0036-x
10.1007/978-981-16-4859-5
10.1007/s10845-012-0626-9
10.1109/CSCWD.2011.5960088
10.1007/3-540-44629-x_11
10.1007/s10845-017-1350-2
10.1080/00207543.2019.1620362
10.1145/2908812.2908822
10.1007/978-3-642-39304-4_10
10.1109/TCYB.2020.3024849
10.1145/1388969.1389075
10.1109/TEVC.2015.2429314
10.1080/00207543.2011.611539
10.1109/TETCI.2017.2743758
10.1016/S0925-5273(96)00068-0
10.1109/CEC.2016.7743797
10.1007/s10951-008-0090-8
10.1007/978-3-319-68759-9_36
10.1007/s12559-018-9595-4
10.1145/1830483.1830530
10.1109/TEVC.2014.2319051
10.1162/EVCO_a_00131
10.1162/evco.2006.14.3.309
10.1162/EVCO_a_00133
10.1109/TCYB.2016.2562674
10.1057/jors.2013.71
10.1016/j.cie.2013.05.023
10.1177/0020294020946352
10.1016/j.procir.2021.11.069
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID RYH
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2022.2092041
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 5052
ExternalDocumentID 10_1080_00207543_2022_2092041
2092041
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
RYH
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c490t-35fc5d4ac8cd2fb6556a5a30aa76c883996cd714cb9d5fe0f03eb80951251a0a3
IEDL.DBID TFW
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819556100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7543
IngestDate Wed Aug 13 11:16:30 EDT 2025
Tue Nov 18 21:02:30 EST 2025
Sat Nov 29 05:36:23 EST 2025
Mon Nov 10 09:18:12 EST 2025
Mon Oct 20 23:46:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-35fc5d4ac8cd2fb6556a5a30aa76c883996cd714cb9d5fe0f03eb80951251a0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4299-5611
0000-0001-7653-1236
PQID 2827823858
PQPubID 30924
PageCount 24
ParticipantIDs proquest_journals_2827823858
crossref_primary_10_1080_00207543_2022_2092041
nii_cinii_1872553967729226112
informaworld_taylorfrancis_310_1080_00207543_2022_2092041
crossref_citationtrail_10_1080_00207543_2022_2092041
PublicationCentury 2000
PublicationDate 2023-08-03
PublicationDateYYYYMMDD 2023-08-03
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International Journal of Production Research
PublicationYear 2023
Publisher Taylor & Francis
Informa UK Limited
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
Shady Salama (CIT0033) 2020
CIT0034
CIT0011
Whigham Peter A. (CIT0039) 1995; 16
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
Ferreira Candida. (CIT0006) 2001; 13
CIT0017
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
CIT0044
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0035
  doi: 10.1007/978-3-030-85906-0_70
– ident: CIT0011
  doi: 10.1007/11729976_7
– ident: CIT0042
  doi: 10.1145/3321707.3321790
– ident: CIT0030
  doi: 10.1007/978-1-4614-2361-4
– ident: CIT0029
  doi: 10.1080/00207543.2018.1543964
– ident: CIT0007
  doi: 10.1109/CEC.2011.5949719
– ident: CIT0019
  doi: 10.1162/evco_a_00230
– ident: CIT0022
  doi: 10.1109/TEVC.2013.2248159
– start-page: 248
  volume-title: Proceedings of the 64th Annual Conference of the Institute of systems, Control and information Engineers (ISCIE)
  year: 2020
  ident: CIT0033
– ident: CIT0001
  doi: 10.1162/evco.2010.18.2.18206
– ident: CIT0037
  doi: 10.1016/j.cie.2007.08.008
– ident: CIT0027
  doi: 10.1007/s00170-010-2518-5
– ident: CIT0020
  doi: 10.1007/s40747-017-0036-x
– ident: CIT0043
  doi: 10.1007/978-981-16-4859-5
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: CIT0006
  publication-title: Complex Systems
– ident: CIT0024
  doi: 10.1007/s10845-012-0626-9
– ident: CIT0026
  doi: 10.1109/CSCWD.2011.5960088
– ident: CIT0005
  doi: 10.1007/3-540-44629-x_11
– ident: CIT0040
  doi: 10.1007/s10845-017-1350-2
– ident: CIT0045
  doi: 10.1080/00207543.2019.1620362
– ident: CIT0017
  doi: 10.1145/2908812.2908822
– ident: CIT0021
  doi: 10.1007/978-3-642-39304-4_10
– volume: 16
  start-page: 33
  year: 1995
  ident: CIT0039
  publication-title: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications
– ident: CIT0041
  doi: 10.1109/TCYB.2020.3024849
– ident: CIT0018
  doi: 10.1145/1388969.1389075
– ident: CIT0003
  doi: 10.1109/TEVC.2015.2429314
– ident: CIT0032
  doi: 10.1080/00207543.2011.611539
– ident: CIT0012
– ident: CIT0015
  doi: 10.1109/TETCI.2017.2743758
– ident: CIT0010
  doi: 10.1016/S0925-5273(96)00068-0
– ident: CIT0014
  doi: 10.1109/CEC.2016.7743797
– ident: CIT0028
  doi: 10.1007/s10951-008-0090-8
– ident: CIT0016
  doi: 10.1007/978-3-319-68759-9_36
– ident: CIT0038
  doi: 10.1007/s12559-018-9595-4
– ident: CIT0009
  doi: 10.1145/1830483.1830530
– ident: CIT0031
  doi: 10.1109/TEVC.2014.2319051
– ident: CIT0002
  doi: 10.1162/EVCO_a_00131
– ident: CIT0013
  doi: 10.1162/evco.2006.14.3.309
– ident: CIT0034
– ident: CIT0008
  doi: 10.1162/EVCO_a_00133
– ident: CIT0023
  doi: 10.1109/TCYB.2016.2562674
– ident: CIT0004
  doi: 10.1057/jors.2013.71
– ident: CIT0025
  doi: 10.1016/j.cie.2013.05.023
– ident: CIT0044
  doi: 10.1177/0020294020946352
– ident: CIT0036
  doi: 10.1016/j.procir.2021.11.069
SSID ssj0000584
ssib053833677
ssib004836719
Score 2.471515
Snippet Dispatching rules are one of the most widely applied methods for solving Dynamic Job Shop Scheduling problems (DJSSP) in real-world manufacturing systems....
SourceID proquest
crossref
nii
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5029
SubjectTerms Algorithms
Automation
discrete event simulation
Dispatching rules
dynamic job shop scheduling
Feature selection
Gene expression
gene expression programming
genetic programming
Job shop scheduling
Job shops
Lateness
Policies
Scheduling
Search process
System effectiveness
Title Feature selection approach for evolving reactive scheduling policies for dynamic job shop scheduling problem using gene expression programming
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2092041
https://cir.nii.ac.jp/crid/1872553967729226112
https://www.proquest.com/docview/2827823858
Volume 61
WOSCitedRecordID wos000819556100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: TFW
  dateStart: 19610101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IE1yInjJB4RomJCDCC6RY4fUARp1RTEr-A3c-c4hQqhDrBEieJLHPt8951zD0JOTWEt0yqLjNIsAg0to0LCmXaJzOOEKW61LzaRX18Xg4G8Cd6ETXCrRBvatYkivKzGxa2qpvOIwwhuUHQpB-suwVgqmTAfug6qH5fmbf_-SxaLIuRhZhGSdDE8vz1lTjvN5S4F3VMPhz8ktldD_Y1_-IBNsh4wKD1vmWaLLNl6m6x9y0y4Qz4QGr5OLG18nRyYPNplH6fQW2pBquFWBAXM6SUmBSsZtBYGt1Ms_AAio_EtTVvynj6NKto8jsZzDdtqNhSd7x8osLKl9j145tY0uI69wL1dcte_vL24ikLphkinkk0jLpwWJlW60CZxVSZEpoTiTKk80wWAMplpk8eprqQRzjLHuK0KhHuAtxRwyB5Zrke13SeUiUpq4BvJY5MawZTRFTQXeSWUcE71SNpNWalDXnMsr_FcxrP0p-1wlzjcZRjuHjmbkY3bxB6LCOR3fiinfkfFteVPSr6A9hiYB7qHx7jIwY7jMkPDBtAvIN4eOerYqgwypCnBGAb4hj9uD_7w6kOyCpfc-yzyI7I8nbzaY7Ki36bDZnLiV8sn41QPzQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQhsR42BgbotCCH3gNcuI4iR_RtKoTo09F65vl-AOKRlo1KeKv4G_mzklGq2nqA3uJItnOh3O--51z9ztCPtjCOWZ0FlltWAQWWkaFhDPjE5nHCdPcmVBsIp9Oi_lcbufCYFgl-tC-JYoIuhoXN25G9yFxmMINli7l4N4lmEwlE4a564cCbC3y58_GN_-0sSg6JmYW4Zg-i-ehy-zYpx32UrA-1WJxT2cHQzQ-eYxXeEGOOxhKP7Vyc0qeuOoleb5FTnhG_iA63KwdrUOpHPh-tCcgp_C41IFiw90ICrAzKE0KjjIYLsxvp1j7AbRGHXratuo9_bEsaf19udrp2Ba0oRh__42CNDvqfnfBuRXtosd-Qts5-Tq-nF1Moq56Q2RSyZqIC2-ETbUpjE18mQmRaaE50zrPTAG4TGbG5nFqSmmFd8wz7soCER9ALg1C8oocVMvKvSaUiVIaEB3JY5tawbQ1JXQXeSm08F4PSNp_M2U6anOssHGr4jsG1Ha6FU636qZ7QD7eDVu13B77BshtgVBN2FTxbQUUxfeMHYH0wOPhMS5ycOW4zNC3AQAMoHdAhr1cqU6N1Ar8YUBw-O_2zX_c-j15Npl9uVbXV9PPb8kRNPEQwsiH5KBZb9yIPDW_mkW9fheWzl8WDBP3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQRagcCrRU3RaoD70GOXGcxMeqZQVqtdrDVnCzHD_KIsiuNgvqr-hv7ozjACuEONBLFMmexLHHM9848yDki62cY0YXidWGJaChZVJJuDM-k2WaMc2dCcUmytGoOj-X4-hN2Ea3SrShfZcoIshq3Nxz63uPOIzgBkWXc7DuMoylkhnD0PVXAJ0LZPLJ8OxeGIsqJmJmCdL0QTxPPWZFPa0kLwXl00ynj0R20EPD7f_wBTvkTQSh9GvHNbtkzTVvydaD1ITvyF_EhjcLR9tQKAdWj_bpxymMljoQa3gWQQF0BpFJwUwGtYXR7RQrP4DMaENP29W8p5ezmrYXs_lKx66cDUXv-98UeNlR9ye65jY0-o5dQ9se-TU8nnw7SWLthsTkki0TLrwRNtemMjbzdSFEoYXmTOuyMBWgMlkYW6a5qaUV3jHPuKsrxHsAuDSwyHuy3swa94FQJmppgHEkT21uBdPW1NBdlLXQwns9IHm_ZMrExOZYX-NKpXf5T7vpVjjdKk73gBzdkc27zB7PEciH_KCW4UjFd_VPFH-G9gCYB4aH17QqwZDjskDLBuAvQN4B2e_ZSkUh0iqwhgG_4Z_bjy949WeyOf4-VD9PRz8-kdfQwoP_It8n68vFjTsgG-Z2OW0Xh2Hj_AO-0hKp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+approach+for+evolving+reactive+scheduling+policies+for+dynamic+job+shop+scheduling+problem+using+gene+expression+programming&rft.jtitle=International+journal+of+production+research&rft.au=Salama+Shady&rft.au=Kaihara%2C+Toshiya&rft.au=Fujii%2C+Nobutada&rft.au=Kokuryo%2C+Daisuke&rft.date=2023-08-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=61&rft.issue=15&rft.spage=5029&rft.epage=5052&rft_id=info:doi/10.1080%2F00207543.2022.2092041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon