Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters
Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depe...
Uložené v:
| Vydané v: | Frontiers in neuroinformatics Ročník 10; s. 10 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Research Foundation
15.03.2016
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1662-5196, 1662-5196 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. |
|---|---|
| AbstractList | Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CV_WM), the coefficient of variation of gray matter (CV_GM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CV_WM and CV_GM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. |
| Author | Mantini, Dante Wenderoth, Nicole Ganzetti, Marco |
| AuthorAffiliation | 1 Neural Control of Movement Laboratory, ETH Zurich Zurich, Switzerland 2 Department of Experimental Psychology, University of Oxford Oxford, UK 3 Laboratory of Movement Control and Neuroplasticity, Katholieke Universiteit Leuven Leuven, Belgium |
| AuthorAffiliation_xml | – name: 1 Neural Control of Movement Laboratory, ETH Zurich Zurich, Switzerland – name: 2 Department of Experimental Psychology, University of Oxford Oxford, UK – name: 3 Laboratory of Movement Control and Neuroplasticity, Katholieke Universiteit Leuven Leuven, Belgium |
| Author_xml | – sequence: 1 givenname: Marco surname: Ganzetti fullname: Ganzetti, Marco – sequence: 2 givenname: Nicole surname: Wenderoth fullname: Wenderoth, Nicole – sequence: 3 givenname: Dante surname: Mantini fullname: Mantini, Dante |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27014050$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kktvGyEUhVGVqknc7ruqkLrpxi6PGZjpopJl92EpVas-1ggzFxtrBlxgUuXfF9tplETqCric--lyOJfozAcPCL2kZMZ507613nk7Y4SKGSGEkifoggrBpjVtxdm9_Tm6TGlHiGCils_QOZOEVqQmF-jPymfwyeUbvPLbMIQNeDicFiFGMNkFj4PFP3IcTR6j7vGX73g16A2kd3iOlzrr6TK6a_B4vt_HoM0W54CXYJ2HgtyPGc_7TYgubwf8TUc9QIaYnqOnVvcJXtyuE_Tr44efi8_Tq6-fVov51dRULclT1tnWCEqpMZys-Vq3NbMtcGIaYTsiiTHScM1kA2tqOOi2Ylp30lZMSiIln6DVidsFvVP76AYdb1TQTh0LIW6UjtmZHlSlu5p1FRWmmMOBNbZu15pz0tXCyIYX1vsTaz-uB-gM-FwMeQB9eOPdVm3CtapkS3khTNCbW0AMv0dIWQ0uGeh77SGMSVEpBWlkTVmRvn4k3YUx-mKVYqytK143hTlBr-5PdDfKv_8tAnISmBhSimDvJJSoQ4TUMULqECF1jFBpEY9ajMv6EITyJtf_v_Ev_n7MrQ |
| CitedBy_id | crossref_primary_10_3389_fnins_2019_01052 crossref_primary_10_3390_a17070281 crossref_primary_10_1162_imag_a_00306 crossref_primary_10_1088_1741_2552_aafdd1 crossref_primary_10_1088_1361_6560_abb31f crossref_primary_10_1002_hbm_25096 crossref_primary_10_1016_j_nicl_2021_102565 crossref_primary_10_1177_0271678X241238935 crossref_primary_10_3233_VES_230076 crossref_primary_10_1002_hbm_23906 crossref_primary_10_1007_s10334_024_01200_8 crossref_primary_10_1038_s41597_019_0338_5 crossref_primary_10_1038_s41597_025_04803_5 crossref_primary_10_1016_j_media_2024_103282 crossref_primary_10_3389_fncom_2024_1367148 crossref_primary_10_1038_s41597_021_00870_6 crossref_primary_10_1016_j_dcn_2021_101028 crossref_primary_10_1016_j_compmedimag_2020_101748 crossref_primary_10_1093_cercor_bhad396 crossref_primary_10_3389_fncom_2022_887633 crossref_primary_10_1002_mrm_30212 crossref_primary_10_1007_s00429_024_02852_x crossref_primary_10_3389_fnhum_2024_1276057 crossref_primary_10_1016_j_mri_2021_11_018 crossref_primary_10_1016_j_nicl_2022_102972 crossref_primary_10_1038_sdata_2019_40 crossref_primary_10_1371_journal_pone_0301132 crossref_primary_10_1038_s41597_025_04901_4 crossref_primary_10_1038_s41597_019_0035_4 crossref_primary_10_1007_s12021_018_9355_3 crossref_primary_10_3389_fnins_2021_694645 crossref_primary_10_1016_j_imu_2024_101592 crossref_primary_10_1002_jmri_26691 crossref_primary_10_1007_s00521_024_10749_3 crossref_primary_10_1038_s41597_023_02396_5 crossref_primary_10_3389_fnins_2023_1217079 crossref_primary_10_1002_mpr_1931 crossref_primary_10_1162_IMAG_a_4 crossref_primary_10_1016_j_mri_2019_04_011 crossref_primary_10_1016_j_neuroimage_2023_120119 |
| Cites_doi | 10.1109/42.712135 10.1007/s12021-015-9277-2 10.1109/42.816072 10.1016/0730-725X(94)00124-L 10.1109/TMI.2006.891486 10.1109/42.668698 10.1118/1.4860954 10.1006/nimg.2001.0786 10.1016/j.neuroimage.2007.10.026 10.1002/jmri.21768 10.1176/appi.ajp.161.2.322 10.1088/0031-9155/49/17/020 10.1016/j.neuroimage.2005.02.018 10.1002/mrm.1910320117 10.1006/nimg.2000.0582 10.1002/jmri.20698 10.1109/42.251128 10.1016/j.mcna.2013.05.007 10.1002/mrm.1910350217 10.1016/j.media.2005.09.004 10.1006/jmra.1993.1133 10.1016/j.neuroimage.2006.03.020 10.1016/j.nicl.2012.08.002 10.1177/1756285613478870 10.1002/mrm.20708 10.1007/BF02592235 10.1016/S1076-6332(03)00671-8 10.1038/mp.2009.146 10.1016/j.neuroimage.2010.11.047 10.1118/1.598357 10.1016/j.compmedimag.2008.09.004 10.1109/42.974934 10.1055/s-0033-1350406 10.1016/j.neuroimage.2009.06.039 10.1016/S0167-8655(98)00121-4 10.1016/j.neuroimage.2010.10.023 10.1006/nimg.2001.0756 10.3233/JAD-2011-0040 10.1063/1.1854291 10.1002/nbm.1794 10.1109/TMI.2010.2046908 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Ganzetti, Wenderoth and Mantini. 2016 Ganzetti, Wenderoth and Mantini |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Ganzetti, Wenderoth and Mantini. 2016 Ganzetti, Wenderoth and Mantini |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fninf.2016.00010 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_4ad52d416c0143e28f59ba330d56c783 PMC4791378 27014050 10_3389_fninf_2016_00010 |
| Genre | Journal Article |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-2df9c6111cc30b3ba952f9e30c86fd070cc7c3a278eb1c3ea942aad7f42770773 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372122000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5196 |
| IngestDate | Mon Nov 10 04:33:13 EST 2025 Tue Nov 04 01:59:24 EST 2025 Fri Sep 05 11:18:33 EDT 2025 Fri Jul 25 11:44:14 EDT 2025 Thu Apr 03 07:02:21 EDT 2025 Tue Nov 18 22:29:44 EST 2025 Sat Nov 29 02:31:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | intensity non-uniformity magnetic resonance imaging bias correction bias field RF inhomogeneities |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-2df9c6111cc30b3ba952f9e30c86fd070cc7c3a278eb1c3ea942aad7f42770773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Graham J. Galloway, The University of Queensland, Australia; Miriam H. A. Bauer, University of Marburg, Germany Edited by: Arjen Van Ooyen, Vrije Universiteit Amsterdam, Netherlands |
| OpenAccessLink | https://doaj.org/article/4ad52d416c0143e28f59ba330d56c783 |
| PMID | 27014050 |
| PQID | 2295435891 |
| PQPubID | 4424404 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4ad52d416c0143e28f59ba330d56c783 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791378 proquest_miscellaneous_1776087512 proquest_journals_2295435891 pubmed_primary_27014050 crossref_primary_10_3389_fninf_2016_00010 crossref_citationtrail_10_3389_fninf_2016_00010 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-15 |
| PublicationDateYYYYMMDD | 2016-03-15 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Arnold (B1) 2001; 13 Ying (B40) 2009; 33 Vovk (B35) 2004; 49 Weiskopf (B39) 2011; 54 Landman (B18) 2011; 54 Mihara (B20) 1998; 7 Buchanan (B7) 2004; 161 Tustison (B30) 2010; 29 Van De Moortele (B33) 2005; 54 Vovk (B36) 2005; Vol. 1–7 Clarke (B10) 1995; 13 Pham (B23) 1999; 20 Likar (B19) 2001; 20 Canu (B8) 2011; 26(Suppl. 3) Tillema (B29) 2013; 6 Mihara (B21) 2005; 97 Vovk (B37) 2006; 32 Collins (B11) 1998; 17 Simmons (B26) 1994; 32 Uwano (B32) 2014; 41 Pomarol-Clotet (B24) 2010; 15 Stollberger (B28) 1996; 35 Zheng (B41) 2009; 48 Sappenfield (B25) 2013; 97 Moser (B22) 2012; 25 Ashburner (B2) 2000; 11 Bernstein (B5) 2006; 24 Ashburner (B3) 2005; 26 Kwan (B17) 1999; 18 Dawant (B12) 1993; 12 Sled (B27) 1998; 17 Velthuizen (B34) 1998; 25 Insko (B15) 1993; 103 Ganzetti (B13) 2016; 14 Irimia (B16) 2012; 1 Belaroussi (B4) 2006; 10 Umutlu (B31) 2014; 186 Zou (B42) 2004; 11 Chua (B9) 2009; 29 Good (B14) 2001; 14 Vovk (B38) 2007; 26 Boyes (B6) 2008; 39 |
| References_xml | – volume: 17 start-page: 463 year: 1998 ident: B11 article-title: Design and construction of a realistic digital brain phantom. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.712135 – volume: 14 start-page: 5 year: 2016 ident: B13 article-title: Quantitative evaluation of intensity inhomogeneity correction methods for structural MR brain images. publication-title: Neuroinformatics doi: 10.1007/s12021-015-9277-2 – volume: 18 start-page: 1085 year: 1999 ident: B17 article-title: MRI simulation-based evaluation of image-processing and classification methods. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816072 – volume: 13 start-page: 343 year: 1995 ident: B10 article-title: MRI segmentation: methods and applications. publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(94)00124-L – volume: 26 start-page: 405 year: 2007 ident: B38 article-title: A review of methods for correction of intensity inhomogeneity in MRI. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.891486 – volume: 17 start-page: 87 year: 1998 ident: B27 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 41 issue: 022302 year: 2014 ident: B32 article-title: Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T. publication-title: Med. Phys. doi: 10.1118/1.4860954 – volume: 14 start-page: 21 year: 2001 ident: B14 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains. publication-title: Neuroimage doi: 10.1006/nimg.2001.0786 – volume: 39 start-page: 1752 year: 2008 ident: B6 article-title: Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.026 – volume: 29 start-page: 1271 year: 2009 ident: B9 article-title: Evaluation of performance metrics for bias field correction in MR brain images. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21768 – volume: 161 start-page: 322 year: 2004 ident: B7 article-title: Morphometric assessment of the heteromodal association cortex in schizophrenia. publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.161.2.322 – volume: 49 start-page: 4119 year: 2004 ident: B35 article-title: MRI intensity inhomogeneity correction by combining intensity and spatial information. publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/17/020 – volume: 26 start-page: 839 year: 2005 ident: B3 article-title: Unified segmentation. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 32 start-page: 121 year: 1994 ident: B26 article-title: Sources of intensity nonuniformity in spin echo images at 1.5 T. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910320117 – volume: 11 start-page: 805 year: 2000 ident: B2 article-title: Voxel-based morphometry–the methods. publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 24 start-page: 735 year: 2006 ident: B5 article-title: Imaging artifacts at 3.0T. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20698 – volume: 12 start-page: 770 year: 1993 ident: B12 article-title: Correction of intensity variations in MR images for computer-aided tissue classification. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.251128 – volume: 97 start-page: 993 year: 2013 ident: B25 article-title: Patients with disease of brain, cerebral vasculature, and Spine. publication-title: Med. Clin. North Am. doi: 10.1016/j.mcna.2013.05.007 – volume: 35 start-page: 246 year: 1996 ident: B28 article-title: Imaging of the active B1 field in vivo. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910350217 – volume: 10 start-page: 234 year: 2006 ident: B4 article-title: Intensity non-uniformity correction in MRI: existing methods and their validation. publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.09.004 – volume: 103 start-page: 82 year: 1993 ident: B15 article-title: Mapping of the radiofrequency field. publication-title: J. Magn. Reson. A doi: 10.1006/jmra.1993.1133 – volume: 32 start-page: 54 year: 2006 ident: B37 article-title: Intensity inhomogeneity correction of multispectral MR images. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.03.020 – volume: 1 start-page: 1 year: 2012 ident: B16 article-title: Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2012.08.002 – volume: 6 start-page: 249 year: 2013 ident: B29 article-title: Neuroradiological evaluation of demyelinating disease. publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756285613478870 – volume: 54 start-page: 1503 year: 2005 ident: B33 article-title: B-1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20708 – volume: 7 start-page: 115 year: 1998 ident: B20 article-title: A method of RF inhomogeneity correction in MR imaging. publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/BF02592235 – volume: 11 start-page: 178 year: 2004 ident: B42 article-title: Statistical validation of image segmentation quality based on a spatial overlap index. publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)00671-8 – volume: 15 start-page: 823 year: 2010 ident: B24 article-title: Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. publication-title: Mol. Psychiatry doi: 10.1038/mp.2009.146 – volume: 54 start-page: 2854 year: 2011 ident: B18 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.047 – volume: 25 start-page: 1655 year: 1998 ident: B34 article-title: Review and evaluation of MRI nonuniformity corrections for brain tumor response measurements. publication-title: Med. Phys. doi: 10.1118/1.598357 – volume: Vol. 1–7 start-page: 4290 year: 2005 ident: B36 article-title: Simultaneous correction of intensity inhomogeneity in multi-channel MR images publication-title: Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 33 start-page: 7 year: 2009 ident: B40 article-title: Image background inhomogeneity correction in MRI via intensity standardization. publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.09.004 – volume: 20 start-page: 1398 year: 2001 ident: B19 article-title: Retrospective correction of MR intensity inhomogeneity by information minimization. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.974934 – volume: 186 start-page: 121 year: 2014 ident: B31 article-title: 7 Tesla MR imaging: opportunities and challenges. publication-title: Rofo doi: 10.1055/s-0033-1350406 – volume: 48 start-page: 73 year: 2009 ident: B41 article-title: Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.039 – volume: 20 start-page: 57 year: 1999 ident: B23 article-title: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(98)00121-4 – volume: 54 start-page: 2116 year: 2011 ident: B39 article-title: Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.023 – volume: 13 start-page: 931 year: 2001 ident: B1 article-title: Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. publication-title: Neuroimage doi: 10.1006/nimg.2001.0756 – volume: 26(Suppl. 3) start-page: 263 year: 2011 ident: B8 article-title: Mapping the structural brain changes in Alzheimer’s disease: the independent contribution of two imaging modalities. publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-0040 – volume: 97 issue: 10 year: 2005 ident: B21 article-title: Imaging of the dielectric resonance effect in high field magnetic resonance imaging. publication-title: J. Appl. Phys. doi: 10.1063/1.1854291 – volume: 25 start-page: 695 year: 2012 ident: B22 article-title: 7-T MR-from research to clinical applications? publication-title: NMR Biomed. doi: 10.1002/nbm.1794 – volume: 29 start-page: 1310 year: 2010 ident: B30 article-title: N4ITK: improved N3 bias correction. publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 |
| SSID | ssj0062657 |
| Score | 2.2767642 |
| Snippet | Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 10 |
| SubjectTerms | Algorithms Bias Correction Bias field intensity non-uniformity Magnetic resonance imaging Medical imaging Neuroimaging Neuroscience NMR Nuclear magnetic resonance RF inhomogeneities Substantia alba Substantia grisea Variation |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCq1AWCjISQuIQrR9JHHNBoUtFD61WPKTeIsexu5W6ybJJQf33zHi9SxehXjgmsaNJ5uEZz_gbQt7wAnTGizphrrZJam2eGNNkiee69oJ54wsbmk2ok5Pi9FRP44ZbH8sq1zYxGOqms7hHPsa207C0F5p_WPxIsGsUZldjC43b5A54NhxLuo7FdG2JwVfP1Co1CYGYHvsWmIbVXJh_YHhm9tpSFBD7_-Vm_l0teW35OXzwv4Q_JPej40nLlaQ8Irdc-5jsli0E3fMr-paGUtCwx75LfsXC9uGKHrWzbt6BlDm8OsBeHuEkBO08_RqwZxG3gx5_oUdzME39e1rSiRlMMlmiHaVlxCynQ0cnzoNPC69cXA60vDgDKofZnE4NFoghyucT8v3w07eDz0ns0JDYVLMhEY3XNgdzaa1ktayNzoTXTjJb5L4Ba2KtstIIVcCSYKUzOhUgCsqnQimmlHxKdtqudc8IVTnTznsrMydSJSAw5zJtnLRc1nnm2IiM18yqbIQvxy4aFxWEMcjeKrC3QvaGjDrMeLeZsVhBd9ww9iPyfzMOQbfDjW55VkUdrlIQYtGAB2sRFNGJwme6NlKyJsutKuSI7K8loIqWoK_-sH9EXm8egw5jYsa0rrvsK67g6yFw5GJE9lbCtqFEKIyBM6BQbYnhFqnbT9rzWcAJT5XmUhXPbybrBbmH_wHr6ni2T3ZAdNxLctf-HM775augUL8BR10uEg priority: 102 providerName: ProQuest |
| Title | Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27014050 https://www.proquest.com/docview/2295435891 https://www.proquest.com/docview/1776087512 https://pubmed.ncbi.nlm.nih.gov/PMC4791378 https://doaj.org/article/4ad52d416c0143e28f59ba330d56c783 |
| Volume | 10 |
| WOSCitedRecordID | wos000372122000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ri9QwEA56-uCLqKfe6rlEEMGHsmnSNo1vd7KHPuxSDoX1qaRp4hau7bHtKffib3cm7S67IvriS6BNUiaZyWSmmXxDyJswhTXjeBEwW5ggMiYJtC7jwIWqcJw57VLjk03I5TJdrVS2l-oLY8IGeOBh4mYR9OQlmA0GkegsT12sCg1eeBknRqYe55NJtXWmBh0MVnosh0NJcMHUzDXALozjwpMHhrdl9zYhj9X_JwPz9zjJvY3n4hF5OFqM9Gyg9DG5Y5sn5PisAW-5vqVvqY_h9D_Hj8mPMSK9v6VVs27rFsTD4pPBJBz-CgNtHR1AYxFwgy4uaVWDTuneU00xXDQoN6gA6RZsnPYthXkGYxQ-eX3TU331rd1U_bqmCBteYzhN95R8uZh__vAxGFMrBCZSrA946ZRJQM8ZI1ghCq1i7pQVzKSJK0ENGCON0FymoMuNsFpFHHgoXcSlZFKKZ-SoaRt7QqhMmLLOGRFbHkkOHnUootIKE4oiiS2bkNl2rnMz4o5j-ourHPwP5E7uuZMjd_xROPR4t-txPWBu_KXtObJv1w7Rsv0LkKF8lKH8XzI0Iadb5ufjEu5yzHMOtmSqwgl5vauGxYcnKrqx7U2XhxJGDx5fyCfk-SArO0q4ROc1BgrlgRQdkHpY01RrD_AdSRUKmb74H2N7SR7gbGHYXBifkiMQMPuK3Dff-6rbTMlduUqn5N75fJldTv0agnLBMyylL3_OoT77tMi-_gKpyigH |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGhwQvfI2PwgAjARIPURM7iW0khMrKtGprVcGQtqfgOPY6aU1KmzH1n-Jv5C5NyorQ3vbAYxLbuji_O_ty598R8jqQoDOOpZ5vU-OFxsSe1lnkuUCljvlOO2mqYhNiOJRHR2q0QX41Z2EwrbKxiZWhzgqD_8g7WHYalnapgo_THx5WjcLoalNCYwmLfbu4AJdt_qHfg-_7hrHdz4c7e15dVcAzofJLj2VOmRhU3BjupzzVKmJOWe4bGbsMNMAYYbhmQoIZM9xqFTIQX7iQCeELwWHcG2QzBLD7LbI56g9Gx43tB-8gEstgKLh-quNygAnmj2HEw8dTupcWv6pGwL82tn_nZ15a8Hbv_m9TdY_cqbfWtLvUhftkw-YPyFY312UxWdC3tEp2raIIW-SiTt0vF7Sfj4tJAXpk8WoHq5VUZz1o4ejXil0XmUno4AvtT8D4zt_TLu3pUnu9Ga4UtFuzstOyoD3rYNcOQ07PS9o9O4FZKccTOtKYAoc8pg_Jt2uZgkeklRe5fUKoiH1lnTM8siwUTEoZ8DCz3AQ8jSPrt0mnAUdiaoJ2rBNyloCjhnBKKjglCKcqZwB6vFv1mC7JSa5o-wnxtmqHtOLVjWJ2ktRWKglBTVkGe3SDtI-WSRepVHPuZ1FshORtst0gLqlt3Tz5A7c2ebV6DFYKQ086t8X5PAkEvD24xgFrk8dLcK8kYQK9_AgkFGuwXxN1_Ul-Oq6Y0EOhAi7k06vFeklu7R0ODpKD_nD_GbmNc4JZhEG0TVoAI_uc3DQ_y9P57EWtzpR8v261-A06sI0q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv4zIuhQFGAiQeoiZ2EttICHXrKqpBVQ2Q9pY5jr1OWpOuzZj61_h1nJMmZUVob3vgMVc57ved49Pz-RxC3gQSOONY6vk2NV5oTOxpnUWeC1TqmO-0k6ZqNiGGQ3l0pEYb5FezFwZllY1NrAx1Vhj8j7yDbafBtUsVdFwtixj1-p-m5x52kMJMa9NOYwmRA7u4hPBt_nHQg9_6LWP9_e97n726w4BnQuWXHsucMjHQ3RjupzzVKmJOWe4bGbsM2GCMMFwzIcGkGW61Chl8inAhE8IXgsN7b5FNwSHoaZHN3f3h6LDxAxApRGKZGIUwUHVcDpBBLRlmP3zcsXvFEVb9Av61yP1bq3nF-fXv_c_Tdp9s1Utu2l1y5AHZsPlDst3NdVlMFvQdrUSwVXZhm1zWkv5yQQf5uJgUwC-LR3vYxaTaA0ILR79VVXexYgn9ekgHEzDK8w-0S3u61F5vhh6Edutq7bQsaM86WM3DK6cXJe2encCslOMJHWmUxmF900fkx41MwWPSyovcPiVUxL6yzhkeWRYKJqUMeJhZbgKexpH126TTACUxdeF27B9ylkAAh9BKKmglCK1KSwBPvF89MV0WLbnm3l3E3uo-LDdenShmJ0ltvZIQ6MsyWLsbLAdpmXSRSjXnfhbFRkjeJjsN-pLaBs6TP9Brk9ery2C9MCWlc1tczJNAwNdDyBywNnmyBPpqJExg9B_BCMUaBdaGun4lPx1XFdJDoQIu5LPrh_WK3AEuJF8Gw4Pn5C5OCYoLg2iHtABF9gW5bX6Wp_PZy5rZlBzfNCt-A5iolcQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensity+Inhomogeneity+Correction+of+Structural+MR+Images%3A+A+Data-Driven+Approach+to+Define+Input+Algorithm+Parameters&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Ganzetti%2C+Marco&rft.au=Wenderoth%2C+Nicole&rft.au=Mantini%2C+Dante&rft.date=2016-03-15&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=10&rft_id=info:doi/10.3389%2Ffninf.2016.00010&rft_id=info%3Apmid%2F27014050&rft.externalDocID=PMC4791378 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |