Delay chemical master equation: direct and closed-form solutions

The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equati...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 471; no. 2179; p. 20150049
Main Authors: Leier, Andre, Marquez-Lago, Tatiana T
Format: Journal Article
Language:English
Published: England 08.07.2015
Subjects:
ISSN:1364-5021
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.
AbstractList The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.
Author Leier, Andre
Marquez-Lago, Tatiana T
Author_xml – sequence: 1
  givenname: Andre
  surname: Leier
  fullname: Leier, Andre
  organization: Okinawa Institute of Science and Technology , Onna-son, Okinawa, Japan
– sequence: 2
  givenname: Tatiana T
  surname: Marquez-Lago
  fullname: Marquez-Lago, Tatiana T
  organization: Integrative Systems Biology Unit , Okinawa Institute of Science and Technology , Onna-son, Okinawa, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26345616$$D View this record in MEDLINE/PubMed
BookMark eNo1jztPwzAURj0U0QesjMgjS8r1I47DBCpPqRILzJFrX4sgJ07tZOi_p4gyfcvRd3SWZNbHHgm5YrBmUOvblAez5sDKNYCsZ2TBhJJFCZzNyTLnbwCoS12dkzlXQpaKqQW5f8RgDtR-YddaE2hn8oiJ4n4yYxv7O-rahHakpnfUhpjRFT6mjuYYpl8gX5Azb0LGy9OuyOfz08fmtdi-v7xtHraFlTWMBdcMhLDaMV1K0MjlTnpkSnhWVaC1ctpxrJUvlRXKsJ0A570xrjo2aCf5itz8_Q4p7ifMY9O12WIIpsc45YZprtTRUsMRvT6h065D1wyp7Uw6NP_V_AcgjliG
CitedBy_id crossref_primary_10_3847_1538_4357_acfa9c
crossref_primary_10_1016_j_bpj_2022_02_004
crossref_primary_10_1016_j_mbs_2020_108327
crossref_primary_10_1038_s41467_017_02737_0
crossref_primary_10_1088_1751_8121_abaf6d
crossref_primary_10_1038_s41467_021_22919_1
crossref_primary_10_1007_s11538_023_01213_9
crossref_primary_10_1016_j_jtbi_2021_110813
crossref_primary_10_1016_j_mbs_2020_108323
crossref_primary_10_1103_PhysRevResearch_6_L022026
crossref_primary_10_1016_j_physa_2016_07_060
crossref_primary_10_1038_s41598_022_13182_5
crossref_primary_10_1103_q5sd_tpms
crossref_primary_10_1049_syb2_12017
ContentType Journal Article
DBID NPM
7X8
DOI 10.1098/rspa.2015.0049
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 26345616
Genre Journal Article
GroupedDBID 18M
4.4
5VS
AACGO
AANCE
AAWIL
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACHIC
ACIPV
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADQXQ
ADULT
AEUPB
AEXZC
AFVYC
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
ALRMG
AQVQM
BTFSW
DCCCD
DQDLB
DSRWC
EBS
ECEWR
EJD
FRP
H13
HQ6
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JST
K-O
KQ8
MRS
MV1
NPM
NSAHA
RNS
RRY
SA0
TR2
V1E
W8F
XSW
YF5
~02
7X8
ID FETCH-LOGICAL-c490t-281033c8d185408e24b4fe163f1770886d8d2e96f56c36a1b30dffaad73648d42
IEDL.DBID 7X8
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361830300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-5021
IngestDate Fri Jul 11 15:39:01 EDT 2025
Thu Apr 03 07:04:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2179
Keywords delay stochastic simulation algorithm
delay chemical master equation
closed-form solution
direct solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-281033c8d185408e24b4fe163f1770886d8d2e96f56c36a1b30dffaad73648d42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4528653
PMID 26345616
PQID 1826628190
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826628190
pubmed_primary_26345616
PublicationCentury 2000
PublicationDate 2015-07-08
PublicationDateYYYYMMDD 2015-07-08
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
PublicationTitleAlternate Proc Math Phys Eng Sci
PublicationYear 2015
References 21210242 - Bull Math Biol. 2011 Sep;73(9):2231-47
16199522 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14593-8
17411109 - J Chem Phys. 2007 Mar 28;126(12):124108
18067349 - J Chem Phys. 2007 Dec 7;127(21):214107
16953443 - J Math Biol. 2007 Jan;54(1):1-26
19044893 - J Chem Phys. 2008 Sep 7;129(9):095105
20202198 - BMC Syst Biol. 2010 Mar 04;4:19
17228945 - J Chem Phys. 2007 Jan 14;126(2):024109
19355717 - J Chem Phys. 2009 Apr 7;130(13):134107
16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5
23514472 - J Chem Phys. 2013 Mar 14;138(10):104114
23679462 - Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042720
19154084 - IET Syst Biol. 2009 Jan;3(1):52-8
24694895 - J R Soc Interface. 2014 Apr 02;11(95):20140108
16965175 - PLoS Comput Biol. 2006 Sep 8;2(9):e117
References_xml – reference: 16965175 - PLoS Comput Biol. 2006 Sep 8;2(9):e117
– reference: 16199522 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14593-8
– reference: 23940327 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14261-5
– reference: 23514472 - J Chem Phys. 2013 Mar 14;138(10):104114
– reference: 20202198 - BMC Syst Biol. 2010 Mar 04;4:19
– reference: 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
– reference: 23679462 - Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042720
– reference: 19154084 - IET Syst Biol. 2009 Jan;3(1):52-8
– reference: 18067349 - J Chem Phys. 2007 Dec 7;127(21):214107
– reference: 17411109 - J Chem Phys. 2007 Mar 28;126(12):124108
– reference: 24694895 - J R Soc Interface. 2014 Apr 02;11(95):20140108
– reference: 21210242 - Bull Math Biol. 2011 Sep;73(9):2231-47
– reference: 19044893 - J Chem Phys. 2008 Sep 7;129(9):095105
– reference: 17228945 - J Chem Phys. 2007 Jan 14;126(2):024109
– reference: 19355717 - J Chem Phys. 2009 Apr 7;130(13):134107
– reference: 16953443 - J Math Biol. 2007 Jan;54(1):1-26
SSID ssj0009587
Score 2.2794888
Snippet The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 20150049
Title Delay chemical master equation: direct and closed-form solutions
URI https://www.ncbi.nlm.nih.gov/pubmed/26345616
https://www.proquest.com/docview/1826628190
Volume 471
WOSCitedRecordID wos000361830300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZYABaHmVl4zEAINFYruOwwIIqBho1QFQt8jxQ0IqSUsKEv8eO0kLE0JiyRbJOt_d9_nO_g7gREjCUkYJpjS0mImU41TJGBPp8UITxcq3Vc8PUb8vhsN4UBfcivpa5Swnlola58rXyM89D-a-6xNcjifYT43y3dV6hMYiNKijMj4wo6H4IbpbDsgLKWe448BsLtoozt2h0asOhb6iwn6hlyXMdNf_u8ANWKsJJrquPKIJCyZrwWpvrs5atKBZB3SBTmvV6bNNuLo1I_mJVC0ggF6ll1BAZlJpgV-gCvyQzDRSo7wwGnu-i-a-uwVP3bvHm3tcj1fAisXBFLu1BpQqoR1ks0AYv2nWOH5mwyhyyYdroYmJue1wRbkMUxpoa6XUkbOn0Ixsw1KWZ2YXELOE6jiIiX9uwqhOBRM85VEqpdW0E7XheGazxLmv70nIzOTvRfJttTbsVIZPxpXORkI49fSO7_3h731Y8btZXqQVB9CwLnjNISyrj-lL8XZU-oX79ge9LyJPwIk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay+chemical+master+equation%3A+direct+and+closed-form+solutions&rft.jtitle=Proceedings+of+the+Royal+Society.+A%2C+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Leier%2C+Andre&rft.au=Marquez-Lago%2C+Tatiana+T&rft.date=2015-07-08&rft.issn=1364-5021&rft.volume=471&rft.issue=2179&rft.spage=20150049&rft_id=info:doi/10.1098%2Frspa.2015.0049&rft_id=info%3Apmid%2F26345616&rft_id=info%3Apmid%2F26345616&rft.externalDocID=26345616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-5021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-5021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-5021&client=summon