s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroscience Ročník 10; s. 543
Hlavní autoři: Li, Ying, Qin, Jing, Hsin, Yue-Loong, Osher, Stanley, Liu, Wentai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 28.11.2016
Frontiers Media S.A
Témata:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ regularization is able to enhance sparsity and accelerate computations than ℓ regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.
AbstractList EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of the brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and l_(1-2) regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in image processing field. In order to handle 3D EEG source images, we propose a voxel-based TGV (vTGV) regularization that extends the definition of second-order TGV from 2D planar image to 3D irregular surfaces such as cortex surface. In addition, the l_(1-2) regularization is utilized to promote sparsity on the current density itself. We demonstrate that l_(1-2) regularization is able to enhance sparsity and accelerate computations than l_1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenario.
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ regularization is able to enhance sparsity and accelerate computations than ℓ regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1-2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1-2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1-2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1-2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1-2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1-2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages of the proposed method over other state-of-the-art methods in terms of total reconstruction accuracy, localization accuracy and focalization degree. The application to the source localization of event-related potential data further demonstrates the performance of the proposed method in real-world scenarios.
Author Hsin, Yue-Loong
Qin, Jing
Li, Ying
Osher, Stanley
Liu, Wentai
AuthorAffiliation 3 Department of Neurology, Chung Shan Medical University Taichung, Taiwan
5 California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA
1 Biomimetic Research Lab, Department of Bioengineering, University of California, Los Angeles Los Angeles, CA, USA
2 Department of Mathematical Sciences, Montana State University Bozeman, MT, USA
4 Department of Mathematics, University of California, Los Angeles Los Angeles, CA, USA
AuthorAffiliation_xml – name: 5 California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA
– name: 3 Department of Neurology, Chung Shan Medical University Taichung, Taiwan
– name: 1 Biomimetic Research Lab, Department of Bioengineering, University of California, Los Angeles Los Angeles, CA, USA
– name: 2 Department of Mathematical Sciences, Montana State University Bozeman, MT, USA
– name: 4 Department of Mathematics, University of California, Los Angeles Los Angeles, CA, USA
Author_xml – sequence: 1
  givenname: Ying
  surname: Li
  fullname: Li, Ying
– sequence: 2
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
– sequence: 3
  givenname: Yue-Loong
  surname: Hsin
  fullname: Hsin, Yue-Loong
– sequence: 4
  givenname: Stanley
  surname: Osher
  fullname: Osher, Stanley
– sequence: 5
  givenname: Wentai
  surname: Liu
  fullname: Liu, Wentai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27965529$$D View this record in MEDLINE/PubMed
BookMark eNp1ks-LEzEcxYOsuD_07kkGvHiZmt-ZeFB06f6AlR5awVvIZJI2ZSapyVTof79puyu7C54Skvc-vG_yzsFJiMEC8B7BCSGN_OyCD3mCIeITCBklr8AZ4hzXlJHfJ0_2p-A85zWEHDcUvwGnWEjOGJZn4Fuu5z9ns8XNl2q-0Sn7cVfp0FXzIcZxFWzO1TSsdDC2q6bT6-pH0j5UizjEZdKb1e4teO10n-27h_UC_LqaLi5v6rvZ9e3l97vaUAnHGlPGWgsxg9Zg7TrWWdMixiWUohGtbSlsUZmjcQRKKHgnmOVOEIY0NlQ05ALcHrld1Gu1SX7Qaaei9upwENNS6TR601vlHHG8M5g0SFJstEautYhyTjHlFpnC-npkbbbtYDtjw5h0_wz6_Cb4lVrGv4ohzAhkBfDpAZDin63Noxp8NrbvdbBxmxVqGOZCskYU6ccX0nXcplCeSuGCYkRKIYvqw9NE_6I8_lMR8KPApJhzsk4ZP-rRx31A3ysE1b4Q6lAItS-EOhSiGOEL4yP7v5Z70le3dw
CitedBy_id crossref_primary_10_1016_j_apm_2022_01_027
crossref_primary_10_1137_18M121993X
crossref_primary_10_1016_j_jvcir_2022_103588
crossref_primary_10_1109_TBDATA_2017_2756664
crossref_primary_10_1109_TCYB_2022_3173336
crossref_primary_10_3390_a15050169
Cites_doi 10.1016/j.pscychresns.2008.07.005
10.1016/j.pnpbp.2011.08.002
10.1109/10.81559
10.1162/jocn.1993.5.2.162
10.1002/mrm.22595
10.1016/j.neuroimage.2013.09.070
10.1155/2011/156869
10.1137/090769521
10.1016/j.neuroimage.2008.05.064
10.1016/j.neuroimage.2006.01.029
10.1007/s10915-012-9650-3
10.1007/s10915-014-9930-1
10.1109/10.568913
10.1088/0031-9155/57/21/6881
10.1088/0031-9155/32/1/004
10.1109/10.387200
10.1103/RevModPhys.65.413
10.1093/acprof:oso/9780195050387.001.0001
10.1109/10.678606
10.1088/0266-5611/21/1/022
10.4310/CIS.2014.v14.n2.a2
10.1137/13090540X
10.1016/j.neuroimage.2010.09.003
10.1137/120904263
10.1016/S1388-2457(03)00059-2
10.1207/s1532799xssr0803_1
10.1088/0031-9155/54/9/006
10.1016/j.neuroimage.2008.04.246
10.1007/s10851-016-0662-8
10.1016/0167-8760(84)90014-X
10.1016/j.neuroimage.2004.02.022
10.1109/10.141192
10.1016/j.neuroimage.2003.10.051
10.1016/0168-5597(86)90014-6
10.1109/ISBI.2013.6556473
10.1137/140952363
10.1016/S1388-2457(02)00030-5
10.1177/1073858405280524
10.1016/j.neuroimage.2010.05.013
10.1016/j.neuroimage.2008.05.063
10.1006/nimg.1999.0454
10.1016/j.clinph.2004.06.001
10.1109/79.962275
10.1016/j.clinph.2003.10.019
10.1088/0031-9155/57/7/1937
10.1137/120882706
10.1515/jip-2013-0068
10.1016/j.neuroimage.2016.05.064
10.1177/1550059413514389
10.1088/0031-9155/48/15/320
10.1093/cercor/9.8.815
10.1002/hbm.20448
10.1016/j.neuroimage.2010.11.037
10.1007/978-3-319-18461-6_56
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Li, Qin, Hsin, Osher and Liu. 2016 Li, Qin, Hsin, Osher and Liu
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Li, Qin, Hsin, Osher and Liu. 2016 Li, Qin, Hsin, Osher and Liu
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2016.00543
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_ff3f6dc2381942caa1fbe14664246e1c
PMC5125305
27965529
10_3389_fnins_2016_00543
Genre Journal Article
GeographicLocations Los Angeles California
United States--US
California
GeographicLocations_xml – name: Los Angeles California
– name: United States--US
– name: California
GrantInformation_xml – fundername: W. M. Keck Foundation
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-2455be0250ec2afd5decb156909787beb40b12018f309076d75e6f7351a2c4783
IEDL.DBID M2P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388649500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Tue Oct 14 19:07:47 EDT 2025
Tue Nov 04 01:47:29 EST 2025
Thu Oct 02 10:55:03 EDT 2025
Fri Jul 25 11:22:13 EDT 2025
Mon Jul 21 06:05:56 EDT 2025
Sat Nov 29 02:13:54 EST 2025
Tue Nov 18 22:17:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords difference of convex functions algorithm (DCA)
ℓ1−2 regularization
inverse problem
alternating direction method of multipliers (ADMM)
total generalized variation (TGV)
EEG source imaging
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-2455be0250ec2afd5decb156909787beb40b12018f309076d75e6f7351a2c4783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Alexandre Gramfort, CNRS LTCI, Télécom ParisTech, Université Paris-Saclay, France
Reviewed by: Stefan Haufe, Technische Universität Berlin, Germany; Alberto Sorrentino, University of Genoa, Italy
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
OpenAccessLink https://www.proquest.com/docview/2305539979?pq-origsite=%requestingapplication%
PMID 27965529
PQID 2305539979
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_ff3f6dc2381942caa1fbe14664246e1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5125305
proquest_miscellaneous_1852679587
proquest_journals_2305539979
pubmed_primary_27965529
crossref_citationtrail_10_3389_fnins_2016_00543
crossref_primary_10_3389_fnins_2016_00543
PublicationCentury 2000
PublicationDate 2016-11-28
PublicationDateYYYYMMDD 2016-11-28
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-28
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Baillet (B5) 2001; 18
Reyes (B53) 2016
Linden (B31) 2005; 11
Oostenveld (B43) 2011; 2011
Liao (B30) 2012; 57
Huang (B26) 2006; 31
Benning (B7) 2013; 54
Gulrajani (B20) 1998
Lou (B33) 2014; 64
Tao (B59) 1997; 22
Vega-Hernández (B62) 2008; 18
Oostenveld (B44) 2003; 114
Qin (B51) 2013
Yin (B64) 2015; 37
Bae (B3) 2011; 35
Esser (B15) 2013; 6
Poldrack (B50) 2004; 8
Michel (B37) 2004; 115
Baillet (B4) 1997; 44
Zhang (B65) 2005; 21
Adde (B1) 2005; 7
Scherg (B55) 1986; 65
Uutela (B61) 1999; 10
Mosher (B39) 1992; 39
Sarvas (B54) 1987; 32
Sohrabpour (B57) 2016; 142
Hämäläinen (B23) 1984
Linden (B32) 1999; 9
Aurlien (B2) 2004; 115
Gramfort (B19) 2012; 57
Kunisch (B29) 2013; 6
Molins (B38) 2008; 42
Zhu (B66) 2014; 86
Oostendorp (B42) 1991; 38
Sidman (B56) 1978; 2
Nunez (B41) 2006
Qin (B52) 2014
Pascual-Marqui (B48) 1994; 18
Machado (B35) 2014; 45
Hämäläinen (B22) 1993; 65
Guo (B21) 2014; 7
Haufe (B24) 2008; 42
Ding (B14) 2008; 29
Ding (B13) 2009; 54
Sumiyoshi (B58) 2009; 172
Im (B27) 2003; 48
Yin (B63) 2014; 14
Becker (B6) 2014
Pascual-Marqui (B47) 2002; 24
Knoll (B28) 2011; 65
Mulert (B40) 2004; 22
Chang (B11) 2010; 53
Calatroni (B10) 2015
Fuchs (B16) 2002; 113
Ou (B45) 2009; 44
Bredies (B9) 2010; 3
Galka (B17) 2004; 23
Bredies (B8) 2014; 22
Luessi (B34) 2011; 55
Papafitsoros (B46) 2015
Dale (B12) 1993; 5
Peng (B49) 2015
Uutela (B60) 1998; 45
Matsuura (B36) 1995; 42
Haufe (B25) 2011; 54
References_xml – volume: 172
  start-page: 180
  year: 2009
  ident: B58
  article-title: Effect of perospirone on P300 electrophysiological activity and social cognition in schizophrenia: a three-dimensional analysis with sloreta
  publication-title: Psychiatry Res. Neuroimag.
  doi: 10.1016/j.pscychresns.2008.07.005
– volume: 35
  start-page: 1908
  year: 2011
  ident: B3
  article-title: Source imaging of P300 auditory evoked potentials and clinical correlations in patients with posttraumatic stress disorder
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2011.08.002
– volume: 38
  start-page: 409
  year: 1991
  ident: B42
  article-title: The potential distribution generated by surface electrodes in inhomogeneous volume conductors of arbitrary shape
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.81559
– volume: 5
  start-page: 162
  year: 1993
  ident: B12
  article-title: Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 65
  start-page: 480
  year: 2011
  ident: B28
  article-title: Second order total generalized variation (TGV) for MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22595
– volume: 86
  start-page: 280
  year: 2014
  ident: B66
  article-title: Reconstructing spatially extended brain sources via enforcing multiple transform sparseness
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.070
– volume: 2011
  start-page: 156869
  year: 2011
  ident: B43
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 3
  start-page: 492
  year: 2010
  ident: B9
  article-title: Total generalized variation
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/090769521
– volume: 42
  start-page: 1069
  year: 2008
  ident: B38
  article-title: Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.064
– volume: 31
  start-page: 1025
  year: 2006
  ident: B26
  article-title: Vector-based spatial–temporal minimum L1-norm solution for MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.029
– volume: 54
  start-page: 269
  year: 2013
  ident: B7
  article-title: Higher-order tv methods1via bregman iteration
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9650-3
– volume: 64
  start-page: 178
  year: 2014
  ident: B33
  article-title: Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9930-1
– volume: 44
  start-page: 374
  year: 1997
  ident: B4
  article-title: A bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problem
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.568913
– volume: 57
  start-page: 6881
  year: 2012
  ident: B30
  article-title: Sparse imaging of cortical electrical current densities via wavelet transforms
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/21/6881
– volume: 32
  start-page: 11
  year: 1987
  ident: B54
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 42
  start-page: 608
  year: 1995
  ident: B36
  article-title: Selective minimum-norm solution of the biomagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.387200
– volume: 65
  start-page: 413
  year: 1993
  ident: B22
  article-title: Magnetoencephalography–theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.65.413
– volume-title: Electric Fields of the Brain: The Neurophysics of EEG
  year: 2006
  ident: B41
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 45
  start-page: 716
  year: 1998
  ident: B60
  article-title: Global optimization in the localization of neuromagnetic sources
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.678606
– volume: 21
  start-page: 357
  year: 2005
  ident: B65
  article-title: An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/21/1/022
– volume: 14
  start-page: 87
  year: 2014
  ident: B63
  article-title: Ratio and difference of l1 and l2 norms and sparse representation with coherent dictionaries
  publication-title: Commun. Inform. Syst.
  doi: 10.4310/CIS.2014.v14.n2.a2
– volume: 2
  start-page: 116
  year: 1978
  ident: B56
  article-title: A method for localization of sources of human cerebral potentials evoked by sensory stimuli
  publication-title: Sens. Process
– volume: 6
  start-page: 2010
  year: 2013
  ident: B15
  article-title: A method for finding structured sparse solutions to nonnegative least squares problems with applications
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/13090540X
– volume: 54
  start-page: 851
  year: 2011
  ident: B25
  article-title: Large-scale eeg/meg source localization with spatial flexibility
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.003
– volume: 18
  start-page: 1535
  year: 2008
  ident: B62
  article-title: Penalized least squares methods for solving the eeg inverse problem
  publication-title: Statis. Sinica
– volume: 7
  start-page: 1309
  year: 2014
  ident: B21
  article-title: A new detail-preserving regularization scheme
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120904263
– volume-title: Arock: an algorithmic framework for asynchronous parallel coordinate updates
  year: 2015
  ident: B49
– volume-title: Bilevel approaches for learning of variational imaging models
  year: 2015
  ident: B10
– volume: 114
  start-page: 1194
  year: 2003
  ident: B44
  article-title: Brain symmetry and topographic analysis of lateralized event-related potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00059-2
– volume: 8
  start-page: 199
  year: 2004
  ident: B50
  article-title: Introduction to this special issue: the cognitive neuroscience of reading
  publication-title: Sci. Stud. Read.
  doi: 10.1207/s1532799xssr0803_1
– volume: 54
  start-page: 2683
  year: 2009
  ident: B13
  article-title: Reconstructing cortical current density by exploring sparseness in the transform domain
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/9/006
– volume: 42
  start-page: 726
  year: 2008
  ident: B24
  article-title: Combining sparsity and rotational invariance in EEG/MEG source reconstruction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.04.246
– start-page: 1
  year: 2016
  ident: B53
  article-title: Bilevel parameter learning for higher-order total variation regularisation models
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-016-0662-8
– volume: 18
  start-page: 49
  year: 1994
  ident: B48
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(84)90014-X
– volume: 23
  start-page: 435
  year: 2004
  ident: B17
  article-title: A solution to the dynamical inverse problem of EEG generation using spatiotemporal kalman filtering
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.02.022
– volume: 39
  start-page: 541
  year: 1992
  ident: B39
  article-title: Multiple dipole modeling and localization from spatio-temporal MEG data
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/10.141192
– volume: 22
  start-page: 83
  year: 2004
  ident: B40
  article-title: Integration of fmri and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.10.051
– volume: 65
  start-page: 344
  year: 1986
  ident: B55
  article-title: Evoked dipole source potentials of the human auditory cortex
  publication-title: Electroencephalogr. Clin. Neurophysiol. Evoked Poten. Sect.
  doi: 10.1016/0168-5597(86)90014-6
– start-page: 306
  year: 2013
  ident: B51
  article-title: An efficient compressive sensing MR image reconstruction scheme
  publication-title: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
  doi: 10.1109/ISBI.2013.6556473
– volume: 37
  start-page: A536
  year: 2015
  ident: B64
  article-title: Minimization of L1-L2 for Compressed Sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– volume: 113
  start-page: 702
  year: 2002
  ident: B16
  article-title: A standardized boundary element method volume conductor model
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00030-5
– volume: 11
  start-page: 563
  year: 2005
  ident: B31
  article-title: The P300: where in the brain is it produced and what does it tell us?
  publication-title: Neuroscientist
  doi: 10.1177/1073858405280524
– volume: 22
  start-page: 289
  year: 1997
  ident: B59
  article-title: Convex analysis approach to DC programming: theory, algorithms and applications
  publication-title: Acta Math. Vietnam.
– start-page: 41
  volume-title: Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European
  year: 2014
  ident: B6
  article-title: Fast, variation-based methods for the analysis of extended brain sources
– volume: 53
  start-page: 146
  year: 2010
  ident: B11
  article-title: Spatially sparse source cluster modeling by compressive neuromagnetic tomography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.013
– volume: 44
  start-page: 932
  year: 2009
  ident: B45
  article-title: A distributed spatio-temporal EEG/MEG inverse solver
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.063
– volume: 10
  start-page: 173
  year: 1999
  ident: B61
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0454
– volume: 115
  start-page: 2195
  year: 2004
  ident: B37
  article-title: Eeg source imaging
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.06.001
– volume: 24
  start-page: 5
  year: 2002
  ident: B47
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find Exp. Clin. Pharmacol.
– volume: 18
  start-page: 14
  year: 2001
  ident: B5
  article-title: Electromagnetic brain mapping
  publication-title: Signal Process. Magaz. IEEE
  doi: 10.1109/79.962275
– volume: 115
  start-page: 665
  year: 2004
  ident: B2
  article-title: Eeg background activity described by a large computerized database
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.10.019
– volume-title: Bioelectricity and Biomagnetism
  year: 1998
  ident: B20
– volume: 57
  start-page: 1937
  year: 2012
  ident: B19
  article-title: Mixed-norm estimates for the m/eeg inverse problem using accelerated gradient methods
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/7/1937
– volume: 7
  start-page: 111
  year: 2005
  ident: B1
  article-title: Imaging methods for MEG/EEG inverse problem
  publication-title: Int. J. Bioelectromagnet.
– volume: 6
  start-page: 938
  year: 2013
  ident: B29
  article-title: A bilevel optimization approach for parameter learning in variational models
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/120882706
– volume-title: Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions
  year: 1984
  ident: B23
– volume: 22
  start-page: 871
  year: 2014
  ident: B8
  article-title: Regularization of linear inverse problems with total generalized variation
  publication-title: J. Inverse Ill-Posed Prob.
  doi: 10.1515/jip-2013-0068
– volume: 142
  start-page: 27
  year: 2016
  ident: B57
  article-title: Imaging brain source extent from eeg/meg by means of an iteratively reweighted edge sparsity minimization (ires) strategy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.064
– volume: 45
  start-page: 262
  year: 2014
  ident: B35
  article-title: Source imaging of P300 visual evoked potentials and cognitive functions in healthy subjects
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059413514389
– start-page: 14
  volume-title: Shearlet-TGV Based Fluorescence Microscopy Image Deconvolution
  year: 2014
  ident: B52
– volume: 48
  start-page: 2561
  year: 2003
  ident: B27
  article-title: Assessment criteria for MEG/EEG cortical patch tests
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/15/320
– volume: 9
  start-page: 815
  year: 1999
  ident: B32
  article-title: The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/9.8.815
– volume: 29
  start-page: 1053
  year: 2008
  ident: B14
  article-title: Sparse source imaging in electroencephalography with accurate field modeling
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20448
– volume: 55
  start-page: 113
  year: 2011
  ident: B34
  article-title: Bayesian symmetrical eeg/fmri fusion with spatially adaptive priors
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.037
– start-page: 702
  volume-title: International Conference on Scale Space and Variational Methods in Computer Vision
  year: 2015
  ident: B46
  article-title: Asymptotic behaviour of total generalised variation
  doi: 10.1007/978-3-319-18461-6_56
SSID ssj0062842
Score 2.1952548
Snippet EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ). The...
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ms). The...
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 543
SubjectTerms Accuracy
Algorithms
Alternating direction method of multipliers (ADMM)
Alzheimer's disease
Contamination
Cortex (temporal)
difference of convex functions algorithm (DCA)
Dimensional analysis
EEG
EEG source imaging
Electroencephalography
Event-related potentials
Image processing
inverse problem
Inverse problems
l_(1-2) regularization
Localization
Medical imaging
Neuroimaging
Neuroscience
Optimization techniques
Regularization methods
Schizophrenia
Sparsity
Spatial distribution
Tomography
Total Generalized Variation (TGV)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SPHgRa_0YW0sEETwMO8nkY-JF2rK1B22FXaG3MMkkdMHNlu620P_e9zKzS1dEL17mMJOQ5JeX9zHJ-4WQ95XspDewkISI8Kh1VSILecli23rWgcl0mcT1qz4_by4vzfcHV33hmbCeHrgHbhRjHVXnc2QhuG9bFl1gSIrOhQrMo_attFkHU70OVqB0eb8pCSGYGcU0S8jNzXDnQYp6ywhlrv4_OZi_n5N8YHhOn5Gng8dIj_qe7pJHIT0ne0cJouX5Pf1A8xnO_HN8j3xelpNvFxfTs090ct3m8xa0TR2dzBcwI6jV6Dhd5U1_Oh5_ocd4QQSdLuYDcfUL8uN0PD05K4crEkovTLUquZDSBfRjgudt7GQXvIOQzGB6hnbBicoxGHcT6wrCYNVpGVTUtWQt90I39UuykxYpvCYUYBbMuSZy50RQxplGgYmrglKY6cEKMlpjZv3AH47XWPy0EEcgyjajbBFlm1EuyMdNjeueO-MvZY9xGjblkPU6vwBZsIMs2H_JQkEO1pNoh6UIbSCnGbhh2hTk3eYzLCLcGWlTWNwuLWaQK21kowvyqp_zTU-4NkpKDrX1ljRsdXX7S5pdZaJucKYktP7mf4xtnzxBtDANkjcHZGd1cxveksf-bjVb3hxm6f8FcRAInw
  priority: 102
  providerName: Directory of Open Access Journals
Title s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/27965529
https://www.proquest.com/docview/2305539979
https://www.proquest.com/docview/1852679587
https://pubmed.ncbi.nlm.nih.gov/PMC5125305
https://doaj.org/article/ff3f6dc2381942caa1fbe14664246e1c
Volume 10
WOSCitedRecordID wos000388649500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZow4ELr0JJKZGREBKHVdZeP3a5VA1KKRJJIxKkcFqtvTaNRHbTJEXi3zPjbCKCUC9cfNiH1uvxvDwz3xDyJpaltBkwkhAehkTHEaKQR8wXhWUlqEwTQFw_6-EwnU6zUXPgtmrSKrcyMQjqsrZ4Rt7lCE0F2lRnZ4ubCLtGYXS1aaFxQFpg2TBM6Rrw0VYSKxC9IdqpsDIITPNNmBKcsqzrq1mFaN0MYxFSJHtqKaD3_8vk_Dtz8g9VdPHof3_iMXnYGKH0fLNrnpB7rnpKjs4rcMDnv-hbGtJCw3n7ETlbRePB1dXk8j0dL4qQwkGLqqTjeQ1ERkFJ-9V1yCOg_f5H2sOeE3RSzxss7Gfk60V_8uEyarouRFZk8TriQkrj0DRylhe-lKWzBry8DCs-tHFGxIbBwqU-icGzVqWWTnmdSFZwK3SaPCeHVV25F4QmXglmTOq5McKpzGSpAq0ZO6WweIS1SXe76LltIMmxM8aPHFwTJFMeyJQjmfJApjZ5t3tjsYHjuOPZHtJx9xwCaYcL9fJ73vBl7j1MsrTBcRXcFgXzxjHE3OdCOWbb5HRLybzhbvjGjoxt8np3G_gSgy1F5erbVY5F6UpnMtVtcrzZNLuZcJ0pKTm8rfe2095U9-9Us-uA_Q32mYSvn9w9rZfkAa4D1kzy9JQcrpe37hW5b3-uZ6tlhxzoadohrV5_OPrSCacQncA4OGoYW6NPg9G335NcHlo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGQIIXvsZHYICRAImHqInjjwQJTRt0dFrXTWqR9hZix2aVaFLaDrR_ir-ROzepKEJ72wMveYjtxEl-vvPl7n5HyKtIlMJksJA4d3BIVBQiC3kYu6IwcQkqU3sS174aDNLT0-xkg_xqc2EwrLKViV5Ql7XBf-QdhtRUoE1VtjP9HmLVKPSutiU0lrA4tBc_wWSbvz_4CN_3NWP73dGHXthUFQgNz6JFyLgQ2qLqt4YVrhSlNRqsmAwzGpS2mkc6BrWYuiQCy1GWSljpVCLighmu0gSue41c58gshqGC7KSV_BJEvfeuSsxEAlNg6RYFIzDruGpcITt4jL4PwZM1NeirBfxri_t3pOYfqm__zv_20u6S280mm-4uV8U9smGr-2RrtyoW9eSCvqE-7NX7E7bIzjwcHh0fj3rv6HBa-BAVWlQlHU5qADEqAtqtznycBO12P9E9rKlBR_Wk4fp-QD5fyaM8JJtVXdnHhCZO8ljr1DGtuZWZzlIJu4LISonJMXFAOu1Hzk1DuY6VP77lYHohLHIPixxhkXtYBOTtasR0STdySd89xM2qHxKF-xP17GveyJ3cOZhkabxhzpkpithpG2NNAcaljU1Atlvk5I30gnusYBOQl6tmkDvoTCoqW5_Pc0y6lyoTqQrIoyVIVzNhKpNCMBit1uC7NtX1lmp85rnNYf8p4O5PLp_WC3KzNzrq5_2DweFTcgvfCeaHsnSbbC5m5_YZuWF-LMbz2XO_QCn5ctXg_g1gZXMU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvMojUGCRAImDFXu9DxsJVS1NaNQ2jZRUKifjXa9pJGKHJAX1r_HrmFnbEUGotx64-ODnrv3tPDwz3xDy2heZMDEsJM5z2ITK95CF3AvyNDVBBipTOxLXIzUYRGdn8XCD_GpqYTCtspGJTlBnpcF_5B2G1FSgTVXcyeu0iOF-b2f23cMOUhhpbdppVBA5tJc_wX1bfOjvw7d-w1ivO_544NUdBjzDY3_pMS6EtmgGWMPSPBOZNRo8mhirG5S2mvs6ABUZ5aEPXqTMlLAyV6EIUma4ikK47w2yCSY5Zy2yOewfDz83ekCC4HexVol1SeAYVEFScAlhBsWkQK7wACMhgodrStH1DviXwft33uYfirB3939-hffIndr8prvVerlPNmzxgGztFumynF7St9QlxLpIwxbZWXij45OT8cF7OpqlLnmFpkVGR9MS4I0qgnaLc5dBQbvdT3QPu23QcTmtWcAfktNrmcoj0irKwj4hNMwlD7SOcqY1tzLWcSTBXvCtlFg2E7RJp_ngianJ2LEnyLcEnDKESOIgkiBEEgeRNnm3umJWEZFcce4eYmh1HlKIux3l_GtSS6Qkz2GQmXEuO2cmTYNc2wC7DTAubWDaZLtBUVLLNXjGCkJt8mp1GCQShpnSwpYXiwTL8aWKRaTa5HEF2NVImIqlEAyuVmtQXhvq-pFicu5Yz8EyFfD0p1cP6yW5BZhOjvqDw2fkNr4SLBxl0TZpLecX9jm5aX4sJ4v5i3q1UvLlutH9G9nTfV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=s-SMOOTH%3A+Sparsity+and+Smoothness+Enhanced+EEG+Brain+Tomography&rft.jtitle=Frontiers+in+neuroscience&rft.au=Li%2C+Ying&rft.au=Qin%2C+Jing&rft.au=Hsin%2C+Yue-Loong&rft.au=Osher%2C+Stanley&rft.date=2016-11-28&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2016.00543&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon