Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment

Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of medicine & science in sports Jg. 24; H. 3; S. e129 - e139
Hauptverfasser: Wang, F., Annaheim, S., Morrissey, M., Rossi, R. M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Denmark Blackwell Publishing Ltd 01.06.2014
Schlagworte:
ISSN:0905-7188, 1600-0838, 1600-0838
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one‐layer tight‐fitting sportswear. Clothing materials Coolmax® (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross‐section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R2 >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one‐layer tight‐fitting sportswear.
AbstractList Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one‐layer tight‐fitting sportswear. Clothing materials Coolmax® (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross‐section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R2 >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one‐layer tight‐fitting sportswear.
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear.
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one‐layer tight‐fitting sportswear. Clothing materials C oolmax ® ( CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross‐section polyester fiber), merino wool ( MW ; 100%), sports wool ( SW ; 50% wool, 50% polyester), and cotton ( CO ; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R 2 >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one‐layer tight‐fitting sportswear.
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax registered (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R2 >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear.
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear.Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear.
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R2 >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. [PUBLICATION ABSTRACT]
Author Wang, F.
Morrissey, M.
Rossi, R. M.
Annaheim, S.
Author_xml – sequence: 1
  givenname: F.
  surname: Wang
  fullname: Wang, F.
  email: faming.wong@gmail.com
  organization: Laboratory for Protection and Physiology, EMPA-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 2
  givenname: S.
  surname: Annaheim
  fullname: Annaheim, S.
  organization: Laboratory for Protection and Physiology, EMPA-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 3
  givenname: M.
  surname: Morrissey
  fullname: Morrissey, M.
  organization: Laboratory for Protection and Physiology, EMPA-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
– sequence: 4
  givenname: R. M.
  surname: Rossi
  fullname: Rossi, R. M.
  organization: Laboratory for Protection and Physiology, EMPA-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24033668$$D View this record in MEDLINE/PubMed
BookMark eNqN0U9PFDEYBvDGYGRBD34B08SLHgb6Z6btHg2RxQQ0EdTEg02n-xaKM-3Sdhf329t1gQOJxl56-T1v0_fZQzshBkDoJSUHtJ7DPOYDyiiVT9CECkIaorjaQRMyJV0jqVK7aC_na0KonLbdM7TLWsK5EGqCfnwGM2BYmUVMpvgVYBvj4MMlBue89RDsGkeH64PNYNaQcPGXV6VxvpSNyjVX8i2YhH3ABl_FgiGsfIphhFCeo6fODBle3N376Mvx-4ujk-b00-zD0bvTxrZTIhthnJFzakUPklECdEplT4RyjHdtz7izRtjeGMEJtxSmLTOVzkExrqjoHN9Hb7ZzFyneLCEXPfpsYRhMgLjMmna8VZxJQf-Dsk7W3XSi0teP6HVcplA_slGtZILSjXp1p5b9CHO9SH40aa3vl1zB2y2wKeacwD0QSvSmQF0L1H8KrPbwkbW-1GJiKMn44V-JWz_A-u-j9fnZ-X2i2SZ8LvDrIWHSTy0kl53-9nGmz47Z9wv19UTP-G8e5LrG
CitedBy_id crossref_primary_10_1007_s00421_023_05272_7
crossref_primary_10_1007_s00421_023_05276_3
crossref_primary_10_1007_s00484_016_1184_1
crossref_primary_10_2478_ftee_2023_0021
crossref_primary_10_3389_fspor_2021_735923
crossref_primary_10_1039_D0RA03867A
crossref_primary_10_1080_15440478_2022_2072994
crossref_primary_10_1177_00405175241268802
crossref_primary_10_1007_s00484_018_1515_5
crossref_primary_10_3390_ma16124386
crossref_primary_10_1016_j_buildenv_2024_112299
crossref_primary_10_1016_j_jcis_2020_01_063
crossref_primary_10_1016_j_jtherbio_2015_05_004
crossref_primary_10_1515_nanoph_2023_0930
crossref_primary_10_1002_fam_2362
crossref_primary_10_1016_j_heliyon_2023_e23596
crossref_primary_10_1016_j_jcis_2023_08_044
crossref_primary_10_1016_j_jtherbio_2018_11_012
crossref_primary_10_1007_s00484_015_1029_3
crossref_primary_10_1016_j_heliyon_2024_e25395
crossref_primary_10_1007_s00484_015_1095_6
crossref_primary_10_1088_1361_6501_ac84f7
crossref_primary_10_1016_j_nanoen_2020_105715
crossref_primary_10_3390_textiles3030022
crossref_primary_10_1002_adfm_202209029
crossref_primary_10_1002_adfm_202008705
crossref_primary_10_1002_smll_202302512
crossref_primary_10_1016_j_colsurfa_2023_131974
crossref_primary_10_1177_0040517519835767
crossref_primary_10_1016_j_cis_2024_103252
crossref_primary_10_1016_j_jtherbio_2018_09_014
crossref_primary_10_1108_RJTA_01_2021_0015
crossref_primary_10_1177_00405175231201403
crossref_primary_10_1111_srt_12235
crossref_primary_10_1177_00405175211026537
crossref_primary_10_1177_0040517517700192
crossref_primary_10_1016_j_ijthermalsci_2018_12_017
crossref_primary_10_1007_s00484_016_1258_0
crossref_primary_10_1519_JSC_0000000000001754
crossref_primary_10_1016_j_jcis_2022_07_155
crossref_primary_10_1016_j_jcis_2020_05_062
crossref_primary_10_1002_admi_202200438
crossref_primary_10_1016_j_cej_2021_128639
crossref_primary_10_1007_s00421_023_05284_3
crossref_primary_10_1080_00140139_2015_1098733
crossref_primary_10_1016_j_jtherbio_2021_102858
crossref_primary_10_1177_0040517516671127
crossref_primary_10_1177_0040517519834609
crossref_primary_10_1007_s12221_024_00735_w
crossref_primary_10_1002_adfm_201907851
crossref_primary_10_1002_adfm_202513020
Cites_doi 10.1152/jappl.1974.36.3.313
10.2165/00007256-200333130-00001
10.1520/STP19485S
10.1123/ijatt.16.6.9
10.1016/S0166-1116(08)71079-3
10.1152/japplphysiol.00612.2007
10.1152/jappl.1976.41.5.777
10.1177/004051759606601008
10.1017/S1049023X12000210
10.1007/s004840050073
10.1152/ajplegacy.1937.120.2.277
10.1007/BF02376767
10.1152/jappl.1972.32.4.456
10.1007/BF00421168
10.1177/0040517511413317
10.1177/004051757204200210
10.1152/jappl.1972.33.3.331
10.1093/annhyg/mer034
10.1186/1757‐7241‐19‐41
10.1080/00140139.2012.668948
10.1007/BF00422956
10.1152/japplphysiol.00089.2009
10.1152/jappl.1979.46.3.522
10.1265/jjh.17.155
10.1152/jappl.1970.29.1.40
ContentType Journal Article
Copyright 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
K9.
7X8
DOI 10.1111/sms.12117
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Physical Education Index
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Recreation & Sports
EISSN 1600-0838
EndPage e139
ExternalDocumentID 3304522141
24033668
10_1111_sms_12117
SMS12117
ark_67375_WNG_MF2ZT8VH_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union FP7 People Program: the Marie Curie Action
  funderid: EMPA: 209369
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
2QV
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZCM
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UAP
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YNT
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TS
K9.
7X8
ID FETCH-LOGICAL-c4907-6afa7d1c6be7210e1917b068f2354b23fca6cbaa6303c1e942a6bede8238165f3
IEDL.DBID DRFUL
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335984500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0905-7188
1600-0838
IngestDate Thu Oct 02 12:06:14 EDT 2025
Wed Oct 01 13:52:43 EDT 2025
Sun Nov 30 04:04:08 EST 2025
Mon Jul 21 05:56:32 EDT 2025
Sat Nov 29 02:56:07 EST 2025
Tue Nov 18 21:03:37 EST 2025
Wed Aug 20 07:27:51 EDT 2025
Sun Sep 21 06:15:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hot environment
evaporative cooling efficiency
sportswear
heat balance equation
sweat efficiency
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4907-6afa7d1c6be7210e1917b068f2354b23fca6cbaa6303c1e942a6bede8238165f3
Notes istex:D24B332671A49BB9FE4ABACD1185CA3C3D98CB3F
ark:/67375/WNG-MF2ZT8VH-G
European Union FP7 People Program: the Marie Curie Action - No. EMPA: 209369
ArticleID:SMS12117
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24033668
PQID 1524726116
PQPubID 29404
PageCount 11
ParticipantIDs proquest_miscellaneous_1534832761
proquest_miscellaneous_1525766856
proquest_journals_1524726116
pubmed_primary_24033668
crossref_primary_10_1111_sms_12117
crossref_citationtrail_10_1111_sms_12117
wiley_primary_10_1111_sms_12117_SMS12117
istex_primary_ark_67375_WNG_MF2ZT8VH_G
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Oxford
PublicationTitle Scandinavian journal of medicine & science in sports
PublicationTitleAlternate Scand J Med Sci Sports
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Candas V, Libert JP, Vogt JJ. Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol 1979: 46: 522-528.
ISO 5084. Textiles-determination of thickness of textiles and textile products. Geneva, Switzerland: International Organization for Standardization, 1996.
ISO 11092. Textiles-Determination of physiological properties - measurement of thermal and water-vapor resistance under steady-state conditions (sweating guarded-hotplate test). Geneva, Switzerland: International Organization for Standardization, 1993.
Murlin JR, Burton AC. Human calorimetry I. A semi-automatic respiration calorimeter. J Nutr 1935: 9: 233-260.
Shapiro Y, Pandolf KB, Golman RF. Predicting sweat loss response to exercise, environment and clothing. Eur J Appl Physiol Occup Physiol 1982: 48: 83-96.
Henriksson O, Lundgren P, Kuklane K, Holmér I, Naredi P, Bjornstig U. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier - a thermal manikin study. Prehosp Disaster Med 2012: 27: 53-58.
Rossi RM, Stämpfli R, Psikuta A, Rochsteiner I, Brühwiler PA. Transplanar and in-plane wicking effects in sock materials under pressure. Text Res J 2011: 81: 1549-1558.
Wang F. Clothing evaporative resistance: its measurements and application in prediction of heat strain. Dissertation: Lund University, 2011.
Sperlich B, Holmberg HC. Physiological effects of a new racing suit for elite cross country skiers. J Sports Med Phys Fitness 2011: 51: 555-559.
Wang F, Del Ferraro S, Lin LY, Mayor TS, Molinaro V, Ribeiro M, Gao C, Kuklane K, Holmér I. Localised boundary air layer and clothing evaporative resistances for individual body segments. Ergonomics 2012: 55: 799-812.
Thomassen Ø, Færevik H, Østerås Ø, Sunde GA, Zakariassen E, Sandsund M, Heltne JK, VrattebØ G. Comparison of three different prehospital wrapping methods for preventing hypothermia - a crossover study in humans. Scand J Trauma Resusc Emerg Med 2011: 19: 41. doi: 10.1186/1757-7241-19-41.
Vokac Z, Kopke V, Keul P. Evaluation of the properties and clothing comfort of the Scandinavian ski dress. Text Res J 1972: 42: 125-134.
ASTM F2370. Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. West Conshohocken, PA: ASTM International, 2010.
Cain B, McLellan TM. A model of evaporation from the skin while wearing protective clothing. Int J Biometeorol 1998: 41: 183-193.
Burton AC, Edholm OG. Man in a cold environment. London: Edward Arnold Publishers Ltd, 1955.
Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol 1972: 32: 456-459.
Kissa E. Wetting and wicking. Text Res J 1996: 66: 660-668.
Craig FN, Moffitt JT. Efficiency of evaporative cooling from wet clothing. J Appl Physiol 1974: 36: 313-316.
Kicklighter TH, Edsall JR, Martin M. Effect of moisture-wicking garments on temperature regulation during exercise. Int J Athl Ther Trai 2011: 16: 9-13.
Gavin TP. Clothing and thermoregulation during exercise. Sports Med 2003: 33: 941-947.
McLellan TM, Pope JI, Cain JB, Cheung SS. Effects of metabolic rate and ambient vapour pressure on heat strain in protective clothing. Eur J Appl Physiol 1996: 74: 518-527.
Alber-Wallerström B, Holmér I. Efficiency of sweat evaporative in unacclimatized man working in a hot humid environment. Eur J Appl Physiol Occup Physiol 1985: 54: 480-487.
ISO 9237. Textiles-determination of the permeability of fabrics to air. Geneva, Switzerland: International Organization for Standardization, 1995.
Kerslake DM. The stress of hot environments. Cambridge: Cambridge University Press, 1972.
Gagge AP. A new physiological variable associated with sensible and insensible perspiration. Am J Physiol 1937: 120: 277-287.
Wang F, Gao C, Kuklane K, Holmér I. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method. Ann Occup Hyg 2011: 55: 775-783.
Snellan JW, Mitchell D, Wyndham CH. Heat of evaporation of sweat. J Appl Physiol 1970: 29: 40-44.
Havenith G, Richards MG, Wang X, Bröde P, Candas V, den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects. J Appl Physiol 2008: 104: 142-149.
Craig FN. Evaporative cooling of men in wet clothing. J Appl Physiol 1972: 33: 331-336.
ISO 9920. Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva, Switzerland: International Organization for Standardization, 2007.
AATCC 195. Liquid moisture management properties of textile fabrics. Research Triangle Park, NC: American Association of Textile Chemists and Colorists (AATCC), 2011.
Gonzalez RR, Cheuvront SN, Montain SJ, Goodman DA, Blanchard LA, Berglund LG, Sawka MN. Expanded prediction equations of human sweat rate and water needs. J Appl Physiol 2009: 107: 379-388.
Parsons K. Human thermal environments: the effect of hot, moderate and cold environments on human health, comfort and performance. London: Taylor & Francis, 2003.
Nagata H. Evaporation of sweat on clothed subjects. Jpn J Hyg 1962: 17: 155-163.
Tam HS, Darling RC, Downey JA, Chek HY. Relationship between evaporation rate of sweat and mean sweating rate. J Appl Physiol 1976: 41: 777-780.
1974; 36
1976; 41
2011
2010
2011; 81
2009
1962; 17
1996
2007
1996; 74
2011; 55
1995
1972
2008; 104
1993
1972; 42
2003
1998; 41
2011; 16
2011; 19
2012; 55
2003; 33
1955
1996; II
1982; 48
1979; 46
2011; 51
1963
1972; 32
2012; 27
1935; 9
2009; 107
1970; 29
1985; 54
1972; 33
1981; 10
1937; 120
1989
1996; 66
e_1_2_9_31_1
Burton AC (e_1_2_9_5_1) 1955
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Havenith G (e_1_2_9_16_1) 2009
Snellan JW (e_1_2_9_33_1) 1970; 29
Parsons K (e_1_2_9_30_1) 2003
Craig FN (e_1_2_9_9_1) 1974; 36
ISO 9920 (e_1_2_9_21_1) 2007
Tam HS (e_1_2_9_35_1) 1976; 41
Gagge AP (e_1_2_9_11_1) 1996
ASTM F2370 (e_1_2_9_4_1) 2010
ISO 5084 (e_1_2_9_20_1) 1996
Murlin JR (e_1_2_9_27_1) 1935; 9
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
ISO 11092 (e_1_2_9_18_1) 1993
e_1_2_9_36_1
ISO 9237 (e_1_2_9_19_1) 1995
e_1_2_9_37_1
AATCC 195 (e_1_2_9_2_1) 2011
Kerslake DM (e_1_2_9_22_1) 1972
Kicklighter TH (e_1_2_9_23_1) 2011; 16
e_1_2_9_41_1
e_1_2_9_40_1
e_1_2_9_24_1
Sperlich B (e_1_2_9_34_1) 2011; 51
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_3_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
Wang F (e_1_2_9_38_1) 2011
References_xml – reference: Gonzalez RR, Cheuvront SN, Montain SJ, Goodman DA, Blanchard LA, Berglund LG, Sawka MN. Expanded prediction equations of human sweat rate and water needs. J Appl Physiol 2009: 107: 379-388.
– reference: Craig FN, Moffitt JT. Efficiency of evaporative cooling from wet clothing. J Appl Physiol 1974: 36: 313-316.
– reference: Sperlich B, Holmberg HC. Physiological effects of a new racing suit for elite cross country skiers. J Sports Med Phys Fitness 2011: 51: 555-559.
– reference: Wang F, Gao C, Kuklane K, Holmér I. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method. Ann Occup Hyg 2011: 55: 775-783.
– reference: Kicklighter TH, Edsall JR, Martin M. Effect of moisture-wicking garments on temperature regulation during exercise. Int J Athl Ther Trai 2011: 16: 9-13.
– reference: Cain B, McLellan TM. A model of evaporation from the skin while wearing protective clothing. Int J Biometeorol 1998: 41: 183-193.
– reference: ISO 11092. Textiles-Determination of physiological properties - measurement of thermal and water-vapor resistance under steady-state conditions (sweating guarded-hotplate test). Geneva, Switzerland: International Organization for Standardization, 1993.
– reference: Gagge AP. A new physiological variable associated with sensible and insensible perspiration. Am J Physiol 1937: 120: 277-287.
– reference: Thomassen Ø, Færevik H, Østerås Ø, Sunde GA, Zakariassen E, Sandsund M, Heltne JK, VrattebØ G. Comparison of three different prehospital wrapping methods for preventing hypothermia - a crossover study in humans. Scand J Trauma Resusc Emerg Med 2011: 19: 41. doi: 10.1186/1757-7241-19-41.
– reference: Gavin TP. Clothing and thermoregulation during exercise. Sports Med 2003: 33: 941-947.
– reference: ISO 9920. Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva, Switzerland: International Organization for Standardization, 2007.
– reference: Wang F. Clothing evaporative resistance: its measurements and application in prediction of heat strain. Dissertation: Lund University, 2011.
– reference: ISO 5084. Textiles-determination of thickness of textiles and textile products. Geneva, Switzerland: International Organization for Standardization, 1996.
– reference: Shapiro Y, Pandolf KB, Golman RF. Predicting sweat loss response to exercise, environment and clothing. Eur J Appl Physiol Occup Physiol 1982: 48: 83-96.
– reference: Wang F, Del Ferraro S, Lin LY, Mayor TS, Molinaro V, Ribeiro M, Gao C, Kuklane K, Holmér I. Localised boundary air layer and clothing evaporative resistances for individual body segments. Ergonomics 2012: 55: 799-812.
– reference: Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol 1972: 32: 456-459.
– reference: McLellan TM, Pope JI, Cain JB, Cheung SS. Effects of metabolic rate and ambient vapour pressure on heat strain in protective clothing. Eur J Appl Physiol 1996: 74: 518-527.
– reference: Henriksson O, Lundgren P, Kuklane K, Holmér I, Naredi P, Bjornstig U. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier - a thermal manikin study. Prehosp Disaster Med 2012: 27: 53-58.
– reference: Rossi RM, Stämpfli R, Psikuta A, Rochsteiner I, Brühwiler PA. Transplanar and in-plane wicking effects in sock materials under pressure. Text Res J 2011: 81: 1549-1558.
– reference: ASTM F2370. Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. West Conshohocken, PA: ASTM International, 2010.
– reference: Burton AC, Edholm OG. Man in a cold environment. London: Edward Arnold Publishers Ltd, 1955.
– reference: Vokac Z, Kopke V, Keul P. Evaluation of the properties and clothing comfort of the Scandinavian ski dress. Text Res J 1972: 42: 125-134.
– reference: Tam HS, Darling RC, Downey JA, Chek HY. Relationship between evaporation rate of sweat and mean sweating rate. J Appl Physiol 1976: 41: 777-780.
– reference: Kissa E. Wetting and wicking. Text Res J 1996: 66: 660-668.
– reference: Parsons K. Human thermal environments: the effect of hot, moderate and cold environments on human health, comfort and performance. London: Taylor & Francis, 2003.
– reference: Candas V, Libert JP, Vogt JJ. Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol 1979: 46: 522-528.
– reference: Nagata H. Evaporation of sweat on clothed subjects. Jpn J Hyg 1962: 17: 155-163.
– reference: ISO 9237. Textiles-determination of the permeability of fabrics to air. Geneva, Switzerland: International Organization for Standardization, 1995.
– reference: Havenith G, Richards MG, Wang X, Bröde P, Candas V, den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects. J Appl Physiol 2008: 104: 142-149.
– reference: Snellan JW, Mitchell D, Wyndham CH. Heat of evaporation of sweat. J Appl Physiol 1970: 29: 40-44.
– reference: Craig FN. Evaporative cooling of men in wet clothing. J Appl Physiol 1972: 33: 331-336.
– reference: AATCC 195. Liquid moisture management properties of textile fabrics. Research Triangle Park, NC: American Association of Textile Chemists and Colorists (AATCC), 2011.
– reference: Alber-Wallerström B, Holmér I. Efficiency of sweat evaporative in unacclimatized man working in a hot humid environment. Eur J Appl Physiol Occup Physiol 1985: 54: 480-487.
– reference: Kerslake DM. The stress of hot environments. Cambridge: Cambridge University Press, 1972.
– reference: Murlin JR, Burton AC. Human calorimetry I. A semi-automatic respiration calorimeter. J Nutr 1935: 9: 233-260.
– year: 2011
– volume: 51
  start-page: 555
  year: 2011
  end-page: 559
  article-title: Physiological effects of a new racing suit for elite cross country skiers
  publication-title: J Sports Med Phys Fitness
– start-page: 20
  year: 2009
  end-page: 24
– volume: 46
  start-page: 522
  year: 1979
  end-page: 528
  article-title: Human skin wettedness and evaporative efficiency of sweating
  publication-title: J Appl Physiol
– volume: 48
  start-page: 83
  year: 1982
  end-page: 96
  article-title: Predicting sweat loss response to exercise, environment and clothing
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 32
  start-page: 456
  year: 1972
  end-page: 459
  article-title: Heat of evaporation of sweat: thermodynamic considerations
  publication-title: J Appl Physiol
– volume: 36
  start-page: 313
  year: 1974
  end-page: 316
  article-title: Efficiency of evaporative cooling from wet clothing
  publication-title: J Appl Physiol
– year: 2007
– volume: 17
  start-page: 155
  year: 1962
  end-page: 163
  article-title: Evaporation of sweat on clothed subjects
  publication-title: Jpn J Hyg
– year: 2003
– year: 1996
– start-page: 374
  year: 1989
  end-page: 384
– volume: 42
  start-page: 125
  year: 1972
  end-page: 134
  article-title: Evaluation of the properties and clothing comfort of the Scandinavian ski dress
  publication-title: Text Res J
– year: 2010
– volume: 74
  start-page: 518
  year: 1996
  end-page: 527
  article-title: Effects of metabolic rate and ambient vapour pressure on heat strain in protective clothing
  publication-title: Eur J Appl Physiol
– volume: 107
  start-page: 379
  year: 2009
  end-page: 388
  article-title: Expanded prediction equations of human sweat rate and water needs
  publication-title: J Appl Physiol
– volume: 16
  start-page: 9
  year: 2011
  end-page: 13
  article-title: Effect of moisture‐wicking garments on temperature regulation during exercise
  publication-title: Int J Athl Ther Trai
– volume: 54
  start-page: 480
  year: 1985
  end-page: 487
  article-title: Efficiency of sweat evaporative in unacclimatized man working in a hot humid environment
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 120
  start-page: 277
  year: 1937
  end-page: 287
  article-title: A new physiological variable associated with sensible and insensible perspiration
  publication-title: Am J Physiol
– year: 1963
– volume: 19
  start-page: 41
  year: 2011
  article-title: Comparison of three different prehospital wrapping methods for preventing hypothermia – a crossover study in humans
  publication-title: Scand J Trauma Resusc Emerg Med
– volume: 10
  start-page: 29
  year: 1981
  end-page: 39
– volume: 55
  start-page: 799
  year: 2012
  end-page: 812
  article-title: Localised boundary air layer and clothing evaporative resistances for individual body segments
  publication-title: Ergonomics
– volume: 27
  start-page: 53
  year: 2012
  end-page: 58
  article-title: Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier – a thermal manikin study
  publication-title: Prehosp Disaster Med
– volume: 41
  start-page: 777
  year: 1976
  end-page: 780
  article-title: Relationship between evaporation rate of sweat and mean sweating rate
  publication-title: J Appl Physiol
– volume: 55
  start-page: 775
  year: 2011
  end-page: 783
  article-title: Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method
  publication-title: Ann Occup Hyg
– volume: 41
  start-page: 183
  year: 1998
  end-page: 193
  article-title: A model of evaporation from the skin while wearing protective clothing
  publication-title: Int J Biometeorol
– year: 1972
– year: 1995
– volume: 104
  start-page: 142
  year: 2008
  end-page: 149
  article-title: Apparent latent heat of evaporation from clothing: attenuation and “heat pipe” effects
  publication-title: J Appl Physiol
– volume: 33
  start-page: 941
  year: 2003
  end-page: 947
  article-title: Clothing and thermoregulation during exercise
  publication-title: Sports Med
– volume: 29
  start-page: 40
  year: 1970
  end-page: 44
  article-title: Heat of evaporation of sweat
  publication-title: J Appl Physiol
– volume: 33
  start-page: 331
  year: 1972
  end-page: 336
  article-title: Evaporative cooling of men in wet clothing
  publication-title: J Appl Physiol
– year: 1955
– volume: 9
  start-page: 233
  year: 1935
  end-page: 260
  article-title: Human calorimetry I. A semi‐automatic respiration calorimeter
  publication-title: J Nutr
– year: 1993
– volume: II
  start-page: 45
  year: 1996
  end-page: 84
– volume: 66
  start-page: 660
  year: 1996
  end-page: 668
  article-title: Wetting and wicking
  publication-title: Text Res J
– volume: 81
  start-page: 1549
  year: 2011
  end-page: 1558
  article-title: Transplanar and in‐plane wicking effects in sock materials under pressure
  publication-title: Text Res J
– volume: 36
  start-page: 313
  year: 1974
  ident: e_1_2_9_9_1
  article-title: Efficiency of evaporative cooling from wet clothing
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1974.36.3.313
– ident: e_1_2_9_12_1
  doi: 10.2165/00007256-200333130-00001
– ident: e_1_2_9_25_1
  doi: 10.1520/STP19485S
– volume-title: Liquid moisture management properties of textile fabrics
  year: 2011
  ident: e_1_2_9_2_1
– volume-title: The stress of hot environments
  year: 1972
  ident: e_1_2_9_22_1
– volume: 16
  start-page: 9
  year: 2011
  ident: e_1_2_9_23_1
  article-title: Effect of moisture‐wicking garments on temperature regulation during exercise
  publication-title: Int J Athl Ther Trai
  doi: 10.1123/ijatt.16.6.9
– ident: e_1_2_9_29_1
  doi: 10.1016/S0166-1116(08)71079-3
– volume: 51
  start-page: 555
  year: 2011
  ident: e_1_2_9_34_1
  article-title: Physiological effects of a new racing suit for elite cross country skiers
  publication-title: J Sports Med Phys Fitness
– volume-title: Ergonomics of the thermal environment – estimation of thermal insulation and water vapour resistance of a clothing ensemble
  year: 2007
  ident: e_1_2_9_21_1
– ident: e_1_2_9_15_1
  doi: 10.1152/japplphysiol.00612.2007
– volume: 41
  start-page: 777
  year: 1976
  ident: e_1_2_9_35_1
  article-title: Relationship between evaporation rate of sweat and mean sweating rate
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1976.41.5.777
– volume-title: Textiles‐Determination of physiological properties – measurement of thermal and water‐vapor resistance under steady‐state conditions (sweating guarded‐hotplate test)
  year: 1993
  ident: e_1_2_9_18_1
– ident: e_1_2_9_24_1
  doi: 10.1177/004051759606601008
– ident: e_1_2_9_17_1
  doi: 10.1017/S1049023X12000210
– volume-title: Clothing evaporative resistance: its measurements and application in prediction of heat strain
  year: 2011
  ident: e_1_2_9_38_1
– ident: e_1_2_9_6_1
  doi: 10.1007/s004840050073
– ident: e_1_2_9_10_1
  doi: 10.1152/ajplegacy.1937.120.2.277
– ident: e_1_2_9_13_1
– ident: e_1_2_9_26_1
  doi: 10.1007/BF02376767
– ident: e_1_2_9_41_1
  doi: 10.1152/jappl.1972.32.4.456
– volume-title: Human thermal environments: the effect of hot, moderate and cold environments on human health, comfort and performance
  year: 2003
  ident: e_1_2_9_30_1
– start-page: 20
  volume-title: Proceedings of the 13th International Conference on Environmental Ergonomics (ICEE)
  year: 2009
  ident: e_1_2_9_16_1
– ident: e_1_2_9_32_1
  doi: 10.1007/BF00421168
– ident: e_1_2_9_31_1
  doi: 10.1177/0040517511413317
– start-page: 45
  volume-title: Handbook of physiology. Environmental physiology
  year: 1996
  ident: e_1_2_9_11_1
– ident: e_1_2_9_37_1
  doi: 10.1177/004051757204200210
– ident: e_1_2_9_8_1
  doi: 10.1152/jappl.1972.33.3.331
– ident: e_1_2_9_40_1
  doi: 10.1093/annhyg/mer034
– ident: e_1_2_9_36_1
  doi: 10.1186/1757‐7241‐19‐41
– ident: e_1_2_9_39_1
  doi: 10.1080/00140139.2012.668948
– volume-title: Textiles‐determination of the permeability of fabrics to air
  year: 1995
  ident: e_1_2_9_19_1
– ident: e_1_2_9_3_1
  doi: 10.1007/BF00422956
– volume-title: Standard test method for measuring the evaporative resistance of clothing using a sweating manikin
  year: 2010
  ident: e_1_2_9_4_1
– volume: 9
  start-page: 233
  year: 1935
  ident: e_1_2_9_27_1
  article-title: Human calorimetry I. A semi‐automatic respiration calorimeter
  publication-title: J Nutr
– ident: e_1_2_9_14_1
  doi: 10.1152/japplphysiol.00089.2009
– ident: e_1_2_9_7_1
  doi: 10.1152/jappl.1979.46.3.522
– volume-title: Textiles‐determination of thickness of textiles and textile products
  year: 1996
  ident: e_1_2_9_20_1
– ident: e_1_2_9_28_1
  doi: 10.1265/jjh.17.155
– volume: 29
  start-page: 40
  year: 1970
  ident: e_1_2_9_33_1
  article-title: Heat of evaporation of sweat
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1970.29.1.40
– volume-title: Man in a cold environment
  year: 1955
  ident: e_1_2_9_5_1
SSID ssj0017945
Score 2.3413591
Snippet Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e129
SubjectTerms Animals
Body Temperature Regulation
Cooling
Cotton Fiber
Efficiency
Evaporation
evaporative cooling efficiency
heat balance equation
hot environment
Hot Temperature
Humans
Manikins
Materials Testing
Permeability
Polyesters
Skin
sportswear
sweat efficiency
Sweating - physiology
Wool
Title Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment
URI https://api.istex.fr/ark:/67375/WNG-MF2ZT8VH-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsms.12117
https://www.ncbi.nlm.nih.gov/pubmed/24033668
https://www.proquest.com/docview/1524726116
https://www.proquest.com/docview/1525766856
https://www.proquest.com/docview/1534832761
Volume 24
WOSCitedRecordID wos000335984500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1600-0838
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017945
  issn: 0905-7188
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BLqp6gXZbaApFboUQl0ibxLETcaraLhzYVcWjXXGJbMeGVWmCNgvtsT-B39hf0rGTTUGiFRI3RxlHfsyMv4nnAbDFJFdBiAJoC1L6FBGtn-ZS-8J6HGpmUG26QOEDPhol43H6eQF257EwdX6I9oeblQynr62AC1ndEvLqe2VTIwR8Eboh8m3cge7Hw8HJQXuJgKzmPBjTfuyjCk6axELWkaftfOc46tqV_Xkf1rwLXd3ZM1h51KifwXIDOcn7mkeew4IuevBk2Fyq96D3FzqSbeLKnlcvQB4ihCT6WrhEx6gTiSptgZ8zol3WCRuySUpDykL__nVzIRC6k5m19PHJTJw3NXEmc_UDhYlMCiLIeTkjtyLrXsLJ4NPxh32_KcjgK4pGtM-EETwPFJMaDce-trae7LPEhFFMZRgZJZiSQjA8F1WgUxoKJM11YnEBi020Cp0Ch_UKSMQpTQ1XJkcTU0W5TPs6xkaI-DLIlfRgZ74vmWqylduiGRfZ3GrBlczcSnrwriW9rFN03Ee07Ta3pRDTb9anjcfZ19FeNhyEp8fJl_1sz4ON-e5njTjjJ-KQcrQ1A-bB2_Y1CqK9XRGFLq8cDXI6S-L_0kQUVShngQdrNWe1A7KJESPsjzN3DPTvuWRHwyPXeP1w0nV4ilCP1k5uG9CZTa_0G1hS17NJNd2ERT5ONhv5-QMvnx7A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLgIuPJZXoIBBqOISaZM4diJxQcB2Ebsr1G6h4mLZjg2rtkm12bYc-Qn8Rn4JYycbWqkgJG6JMo78mBl_Y88D4DlTXEcxCqArSBlSRLRhXigTSudxaJhFtekDhcd8Os329vIPa_ByFQvT5IfoDtycZHh97QTcHUifkfL6sHa5ESJ-CXoU2Qj5u_dme7g77m4RkNe8C2M-SEPUwVmbWch58nSNz-1HPTe13y4Cm-exq998hjf-r9s34XoLOsmrhktuwZop-3Bl0l6r96H_GzySTeILn9e3QW0jiCTmRPpUx6gVia5ciZ8vxPi8Ey5ok1SWVKX5-f3HgUTwTpbO1sc3O_f-1MQbzfUpihOZl0SSr9WSnImtuwO7w7ez16OwLckQaopmdMiklbyINFMGTceBcdaeGrDMxklKVZxYLZlWUjLcGXVkchpLJC1M5pABS21yF9ZL7NZ9IAmnNLdc2wKNTJ0UKh-YFB9iRJhRoVUAL1YLI3Sbr9yVzTgQK7sFZ1L4mQzgWUd61CTpuIho069uRyEX-86rjafi03RLTIbx51n2cSS2AthYLb9oBRp_kcaUo7UZsQCedp9RFN39iixNdexpkNdZlv6VJqGoRDmLArjXsFbXIZcaMcH2OHLPQX8ei9iZ7PiHB_9O-gSujmaTsRi_m75_CNcQ-NHG5W0D1peLY_MILuuT5bxePG7F6BeGyyHI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXVRxKbC8UgoYhCoukTaJYycSF0RJi9hdVX1A1YvlODZdtSTVZvs48hP4jfwSxk42tFJBSNwcZRz5MTP-Jp4HwGuWcxWEKIC2IKVPEdH6aZFrX1qPQ80Mqk0XKDzik0lycJBuL8HbRSxMkx-i--FmJcPpayvg-rQwV6S8_lbb3AgBvwV9aovI9KC_sZPtj7pbBOQ158KYDmMfdXDSZhaynjxd52vnUd8u7eVNYPM6dnWHT3b3_4Z9D1Za0EneNVxyH5Z0OYDlcXutPoDBb_BI1okrfF4_gHwHQSTR59KlOkatSFRlS_x8JdrlnbBBm6QypCr1z-8_TiSCdzK3tj4-manzpybOaK4vUJzItCSSHFVzciW27iHsZx_23m_5bUkGX1E0o30mjeRFoFiu0XQcamvt5UOWmDCKaR5GRkmmcikZnowq0CkNJZIWOrHIgMUmegS9Eof1BEjEKU0NV6ZAI1NFRZ4OdYyNEBFmUKjcgzeLjRGqzVduy2aciIXdgisp3Ep68KojPW2SdNxEtO52t6OQs2Pr1cZj8WWyKcZZeLiXfN4Smx6sLbZftAKNn4hDytHaDJgHL7vXKIr2fkWWujpzNMjrLIn_ShNRVKKcBR48blirG5BNjRhhf5y546A_z0XsjnddY_XfSV_A8vZGJkYfJ5-ewh3EfbTxeFuD3nx2pp_BbXU-n9az560U_QLhwyFD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+evaporative+cooling+efficiency+of+one-layer+tight-fitting+sportswear+in+a+hot+environment&rft.jtitle=Scandinavian+journal+of+medicine+%26+science+in+sports&rft.au=Wang%2C+F&rft.au=Annaheim%2C+S&rft.au=Morrissey%2C+M&rft.au=Rossi%2C+R+M&rft.date=2014-06-01&rft.issn=0905-7188&rft.eissn=1600-0838&rft.volume=24&rft.issue=3&rft.spage=e129&rft.epage=e139&rft_id=info:doi/10.1111%2Fsms.12117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-7188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-7188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-7188&client=summon