Optimized signal peptides for the development of high expressing CHO cell lines
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore...
Uložené v:
| Vydané v: | Biotechnology and bioengineering Ročník 110; číslo 4; s. 1164 - 1173 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2013
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0006-3592, 1097-0290, 1097-0290 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell−1 day−1 and product concentrations up to 4 g L−1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc.
Highly productive cell lines are required for the production of biopharmaceutical products. To this end a variety of signal peptides was used to express different antibodies and non‐antibody products in transiently and stably transfected Chinese hamster ovary (CHO) cells. Thereby it could be demonstrated that signal peptide B, but also signal peptide E can be used to generate cell lines with cell specific productivities (QP) up to 60 or 90 pg antibody/cell/day (pcd mean values are represented by red bars). |
|---|---|
| AbstractList | Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell... day... and product concentrations up to 4 g L... could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner. (ProQuest: ... denotes formulae/symbols omitted.) Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner. Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell −1 day −1 and product concentrations up to 4 g L −1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc. Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell−1 day−1 and product concentrations up to 4 g L−1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc. Highly productive cell lines are required for the production of biopharmaceutical products. To this end a variety of signal peptides was used to express different antibodies and non‐antibody products in transiently and stably transfected Chinese hamster ovary (CHO) cells. Thereby it could be demonstrated that signal peptide B, but also signal peptide E can be used to generate cell lines with cell specific productivities (QP) up to 60 or 90 pg antibody/cell/day (pcd mean values are represented by red bars). Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner.Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner. |
| Author | Kober, Lars Bode, Juergen Zehe, Christoph |
| Author_xml | – sequence: 1 givenname: Lars surname: Kober fullname: Kober, Lars email: l.kober@cellca.de organization: Cellca GmbH, Uhlmannstrasse 28, 88471 Laupheim, Germany; telephone: +49-7392-9664813; fax: +49-7392-9664829 – sequence: 2 givenname: Christoph surname: Zehe fullname: Zehe, Christoph organization: Cellca GmbH, Uhlmannstrasse 28, 88471 Laupheim, Germany; telephone: +49-7392-9664813; fax: +49-7392-9664829 – sequence: 3 givenname: Juergen surname: Bode fullname: Bode, Juergen organization: Experimental Hematology, Hannover Medical School (MHH, Hans-Borst Center for Heart and Stem Cell Research), Hannover, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23124363$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9v0zAYxi20iXWDA18AWeICh2z-Fzs5QsXaSdPKYQiJi-U4b1qPJM7slG18elza7jAN7WT71e959Pp5jtFB73tA6B0lp5QQdla58ZQJpeQrNKGkVBlhJTlAE0KIzHhesiN0HONNeqpCytfoiHHKBJd8ghaLYXSd-wM1jm7ZmxYPkCY1RNz4gMcV4Bp-Q-uHDvoR-wav3HKF4X4IEKPrl3g6X2ALbYtb10N8gw4b00Z4uztP0Pfzr9fTeXa5mF1MP19mVpRpKVC1NVDk3IrcMlkXZbpWabT5RlUTa5uytE3FjS05kXlZNLTiRU0akxcqF_wEfdz6DsHfriGOunNxs4bpwa-jpoILwoSg7GU0hSEly6lK6Icn6I1fh5TKllJKKL4xfL-j1lUHtR6C60x40PtUE3C2BWzwMQZotHWjGZ3vx2BcqynRm9506k3_6y0pPj1R7E2fY3fud66Fh_-D-svF9V6RbRUujnD_qDDhl5aKq1z_uJrpn2JG5sXVNy34X5M-tFw |
| CODEN | BIBIAU |
| CitedBy_id | crossref_primary_10_1016_j_copbio_2017_11_015 crossref_primary_10_1186_s12934_017_0625_9 crossref_primary_10_1002_cbf_3787 crossref_primary_10_1016_j_pep_2013_10_017 crossref_primary_10_1007_s00253_024_13315_y crossref_primary_10_1016_j_copbio_2018_01_007 crossref_primary_10_3390_pr9050855 crossref_primary_10_1016_j_exppara_2014_08_005 crossref_primary_10_1038_s41598_019_40219_z crossref_primary_10_1002_biot_201700268 crossref_primary_10_1016_j_jbiotec_2023_08_006 crossref_primary_10_1134_S1607672923700576 crossref_primary_10_1016_j_ejcb_2018_06_003 crossref_primary_10_1042_BCJ20210015 crossref_primary_10_1016_j_jbc_2023_105201 crossref_primary_10_1080_15257770_2020_1714653 crossref_primary_10_1111_pbi_13316 crossref_primary_10_3390_ph17010008 crossref_primary_10_1016_j_bios_2023_115169 crossref_primary_10_1016_j_tice_2025_103004 crossref_primary_10_1016_j_pep_2024_106581 crossref_primary_10_1007_s11030_015_9625_z crossref_primary_10_1371_journal_pone_0155340 crossref_primary_10_1016_j_bbrc_2022_06_072 crossref_primary_10_3389_fpls_2020_594758 crossref_primary_10_3390_antib13040082 crossref_primary_10_1007_s12033_024_01060_6 crossref_primary_10_1002_bit_26301 crossref_primary_10_1093_hmg_ddw003 crossref_primary_10_1111_pbi_12994 crossref_primary_10_1038_s41598_020_59169_y crossref_primary_10_1111_jth_15819 crossref_primary_10_1016_j_ymeth_2018_10_001 crossref_primary_10_1016_j_pep_2017_04_013 crossref_primary_10_1016_j_abb_2025_110577 crossref_primary_10_1007_s13205_018_1517_3 crossref_primary_10_1186_s12934_014_0108_1 crossref_primary_10_1007_s10616_016_9955_4 crossref_primary_10_1016_j_jtbi_2014_08_048 crossref_primary_10_3390_md21060346 crossref_primary_10_1016_j_jbiotec_2016_10_005 crossref_primary_10_1371_journal_pone_0137113 crossref_primary_10_3390_ph14050449 crossref_primary_10_1002_biot_201700496 crossref_primary_10_1016_j_biotechadv_2019_107415 crossref_primary_10_1016_j_nbt_2024_09_001 crossref_primary_10_1186_s12951_024_02488_3 crossref_primary_10_1080_07388551_2022_2036691 crossref_primary_10_1016_j_pep_2017_01_003 crossref_primary_10_1186_s43141_020_00046_6 crossref_primary_10_1016_j_nbt_2023_11_003 crossref_primary_10_1186_s12896_023_00798_2 crossref_primary_10_1007_s00253_016_7380_4 crossref_primary_10_1002_pro_2439 crossref_primary_10_1016_j_jchromb_2017_08_046 crossref_primary_10_1016_j_jbiosc_2015_05_016 crossref_primary_10_1002_jctb_6841 crossref_primary_10_1007_s00253_020_10640_w crossref_primary_10_1186_s12575_017_0060_7 crossref_primary_10_1038_s41598_017_12364_w crossref_primary_10_1007_s10930_022_10073_6 crossref_primary_10_1371_journal_pone_0192433 crossref_primary_10_1007_s11883_016_0572_7 crossref_primary_10_1371_journal_pone_0139282 crossref_primary_10_1016_j_csbj_2016_10_004 crossref_primary_10_1016_j_vaccine_2023_01_038 crossref_primary_10_1016_j_intimp_2015_10_008 crossref_primary_10_1038_s41598_017_12188_8 crossref_primary_10_1186_s13568_020_01157_6 crossref_primary_10_1007_s10616_017_0109_0 crossref_primary_10_1016_j_aspen_2023_102112 crossref_primary_10_1016_j_bbamcr_2016_03_022 crossref_primary_10_1016_j_gene_2014_01_057 crossref_primary_10_1080_08977194_2024_2423747 crossref_primary_10_1002_bab_2409 crossref_primary_10_3390_ani13152463 crossref_primary_10_1016_j_jbiotec_2023_02_002 crossref_primary_10_1016_j_ymeth_2020_06_006 crossref_primary_10_3390_antib12030051 crossref_primary_10_1002_bit_26855 crossref_primary_10_1038_s41587_022_01566_x crossref_primary_10_1002_biot_201600347 crossref_primary_10_1007_s10616_013_9631_x crossref_primary_10_3390_ijms26031324 crossref_primary_10_1126_scitranslmed_aag2306 crossref_primary_10_1016_j_vaccine_2018_02_065 crossref_primary_10_1007_s11274_018_2512_x crossref_primary_10_1371_journal_pone_0140812 crossref_primary_10_1038_s41419_022_05352_0 crossref_primary_10_1002_bit_28365 crossref_primary_10_1089_ten_teb_2017_0353 crossref_primary_10_1016_j_pep_2024_106596 crossref_primary_10_1158_1078_0432_CCR_17_0126 crossref_primary_10_1007_s00253_018_8986_5 crossref_primary_10_1080_07388551_2022_2047004 crossref_primary_10_3389_fbioe_2023_1249841 crossref_primary_10_1016_j_actatropica_2021_106176 crossref_primary_10_1038_s41598_017_09017_3 crossref_primary_10_3389_fbioe_2022_880155 crossref_primary_10_1371_journal_pone_0116878 crossref_primary_10_1002_bab_2704 crossref_primary_10_1016_j_omtn_2024_102145 crossref_primary_10_1007_s00253_022_11955_6 crossref_primary_10_1515_biolog_2015_0096 crossref_primary_10_1016_j_pep_2015_10_012 crossref_primary_10_1007_s12033_021_00329_4 crossref_primary_10_1007_s11240_018_1491_9 crossref_primary_10_5187_jast_2022_e15 crossref_primary_10_1073_pnas_2214556120 crossref_primary_10_1186_1756_3305_6_175 crossref_primary_10_1016_j_pep_2018_04_005 |
| Cites_doi | 10.1016/j.jbiotec.2006.12.016 10.1093/protein/15.4.337 10.1007/s00253-006-0810-y 10.1016/j.jbiotec.2006.11.026 10.1038/nbt1026 10.1007/s00253-004-1656-9 10.1016/0022-2836(82)90103-6 10.1021/bp0501524 10.1002/bit.22158 10.1385/MB:34:2:151 10.1007/s10616-009-9187-y 10.1002/bit.10893 10.1016/S0006-291X(02)00566-1 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2 10.1002/jgm.677 10.1016/j.ab.2006.09.003 10.1016/S0168-1656(00)00423-5 10.4161/mabs.1.5.9448 10.1016/j.jim.2007.01.022 10.1016/j.addr.2005.12.006 10.1016/S0021-9258(19)77701-1 10.1021/bi00429a001 10.1038/nbt1252 10.1016/S0021-9258(19)37658-6 10.1016/S0167-7799(99)01420-1 10.1002/bit.24527 10.1016/S0021-9258(18)66936-4 10.1016/0022-2836(85)90046-4 10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Apr 2013 |
| Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Apr 2013 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/bit.24776 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE Engineering Research Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology Anatomy & Physiology |
| EISSN | 1097-0290 |
| EndPage | 1173 |
| ExternalDocumentID | 2902918981 23124363 10_1002_bit_24776 BIT24776 ark_67375_WNG_Z4G0H8NP_4 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: Excellence Initiative REBIRTH (Regenerative Biology to Reconstructive Therapy) – fundername: JB Laboratory (MHH) – fundername: SFB 738 (Optimierung konventioneller and innovativer Transplantate) – fundername: ReGene (Regenerative Medicine and Biology) – fundername: Bundesministerium für Bildung und Forschung |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC WSB AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c4906-e7dcae853c45c26d8953cbcae2477bd0ccf99cfb3ac9306598f1b38d0fa587543 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315360100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-3592 1097-0290 |
| IngestDate | Tue Oct 07 09:25:47 EDT 2025 Fri Jul 11 10:49:40 EDT 2025 Sun Jul 06 02:41:01 EDT 2025 Thu Apr 03 06:55:58 EDT 2025 Sat Nov 29 07:12:26 EST 2025 Tue Nov 18 21:19:31 EST 2025 Wed Jan 22 16:26:35 EST 2025 Sun Sep 21 06:18:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4906-e7dcae853c45c26d8953cbcae2477bd0ccf99cfb3ac9306598f1b38d0fa587543 |
| Notes | SFB 738 (Optimierung konventioneller and innovativer Transplantate) Bundesministerium für Bildung und Forschung ark:/67375/WNG-Z4G0H8NP-4 ArticleID:BIT24776 istex:422482E81582D1ACA60031E786FF9525A8355081 Excellence Initiative REBIRTH (Regenerative Biology to Reconstructive Therapy) JB Laboratory (MHH) ReGene (Regenerative Medicine and Biology) SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23124363 |
| PQID | 1312774732 |
| PQPubID | 48814 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1434024412 proquest_miscellaneous_1312662517 proquest_journals_1312774732 pubmed_primary_23124363 crossref_citationtrail_10_1002_bit_24776 crossref_primary_10_1002_bit_24776 wiley_primary_10_1002_bit_24776_BIT24776 istex_primary_ark_67375_WNG_Z4G0H8NP_4 |
| PublicationCentury | 2000 |
| PublicationDate | April 2013 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
| PublicationTitle | Biotechnology and bioengineering |
| PublicationTitleAlternate | Biotechnol. Bioeng |
| PublicationYear | 2013 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
| References | Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS. 2009. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Intl Suppl 2009:8-15. Jiang Z, Huang Y, Sharfstein ST. 2006. Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22(1):313-318. Zhang L, Leng Q, Mixson AJ. 2005. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. J Gene Med 7(3):354-365. Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705-715. Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241-1252. Kelley B. 2009. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs 1(5):443-452. Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Delivery Rev 58(5/6):671-685. Winder R. 2005. Cell culture grows capacity; capacity expansions address the "crunch" for biopharmaceutical manufacturing. Chem Ind 17:21-22. Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N. 2001. Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29-42. Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J Biol Chem 263(30):15791-15798. Gierasch LM. 1989. Signal sequences. Biochemistry 28(3):923-930. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398. Kaufman RJ, Sharp PA. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene. J Mol Biol 159(4):601-621. Olczak M, Olczak T. 2006. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359(1):45-53. Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF. 2007. An efficient and targeted gene integration system for high-level antibody expression. Immunol Methods 322(1/2):28-39. Barash S, Wang W, Shi Y. 2002. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun 294(4):835-842. Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4):266-273. Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-372. von Heijne G. 1985. Signal sequences: The limits of variation. J Mol Biol 184(1):99-105. Stern B, Olsen LC, Tröße C, Ravneberg H, Pryme IF. 2007. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol 2:1-17. Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. 2000. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69(2):204-212. Lattenmayer C, Trummer E, Schriebl K, Vorauer-Uhl K, Mueller D, Katinger H, Kunert R. 2007. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J Biotechnol 128(4):716-725. Dübel S. 2007. Recombinant therapeutic antibodies. Appl Mircobiol Biotechnol 74(4):723-729. Kober L, Zehe C, Bode J. 2012. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109(10):2599-2611. Lindgren K, Salmén A, Lundgren M, Bylund L, Ebler A, Fäldt E, Sörvik L, Fenge C, Skoging-Nyberg U. 2009. Automation of cell line development. Cytotechnology 59(1):1-10. Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J Biol Chem 263(36):19771-19777. Hesse F, Wagner R. 2000. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 18(4):173-180. Kalwy S, Rance J, Young R. 2006. Toward more efficient protein expression. Keep the message simple. Mol Biotechnol 34(2):151-156. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG. 2009. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 102(4):1182-1196. Folz RJ, Gordon JI. 1986. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. J Biol Chem 261(31):14752-14759. Tan NS, Ho B, Ding JL. 2002. Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng 15(4):337-345. Barnes LM, Bentley CM, Dickson AJ. 2004. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85(2):115-121. 2004; 65 2004; 22 2004; 85 2007; 322 2002; 15 2007; 128 2000; 69 2006; 34 2002; 294 2006; 58 2008 2000; 71 2005 1988; 263 2007; 74 2006; 359 1985; 184 1989; 28 2012; 109 2001; 87 2009; 2009 2000; 18 2006; 24 2006; 22 1986; 261 2005; 7 2009; 102 1982; 159 2007; 2 2009; 1 2005; 17 2009; 59 e_1_2_7_6_1 e_1_2_7_5_1 Trexler‐Schmidt M (e_1_2_7_27_1) 2009; 2009 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Winder R (e_1_2_7_30_1) 2005; 17 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 Wiren KM (e_1_2_7_31_1) 1988; 263 Stern B (e_1_2_7_25_1) 2007; 2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Folz RJ (e_1_2_7_10_1) 1986; 261 Andrews DW (e_1_2_7_2_1) 1988; 263 |
| References_xml | – reference: Kaufman RJ, Sharp PA. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene. J Mol Biol 159(4):601-621. – reference: Jiang Z, Huang Y, Sharfstein ST. 2006. Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22(1):313-318. – reference: Winder R. 2005. Cell culture grows capacity; capacity expansions address the "crunch" for biopharmaceutical manufacturing. Chem Ind 17:21-22. – reference: Olczak M, Olczak T. 2006. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359(1):45-53. – reference: Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398. – reference: Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS. 2009. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Intl Suppl 2009:8-15. – reference: Hesse F, Wagner R. 2000. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 18(4):173-180. – reference: Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705-715. – reference: Lattenmayer C, Trummer E, Schriebl K, Vorauer-Uhl K, Mueller D, Katinger H, Kunert R. 2007. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J Biotechnol 128(4):716-725. – reference: Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Delivery Rev 58(5/6):671-685. – reference: Stern B, Olsen LC, Tröße C, Ravneberg H, Pryme IF. 2007. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol 2:1-17. – reference: Dübel S. 2007. Recombinant therapeutic antibodies. Appl Mircobiol Biotechnol 74(4):723-729. – reference: Kober L, Zehe C, Bode J. 2012. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109(10):2599-2611. – reference: Barnes LM, Bentley CM, Dickson AJ. 2004. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85(2):115-121. – reference: Zhang L, Leng Q, Mixson AJ. 2005. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. J Gene Med 7(3):354-365. – reference: Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241-1252. – reference: Gierasch LM. 1989. Signal sequences. Biochemistry 28(3):923-930. – reference: Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. 2000. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69(2):204-212. – reference: Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J Biol Chem 263(30):15791-15798. – reference: Folz RJ, Gordon JI. 1986. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. J Biol Chem 261(31):14752-14759. – reference: Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J Biol Chem 263(36):19771-19777. – reference: Barash S, Wang W, Shi Y. 2002. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun 294(4):835-842. – reference: Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG. 2009. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 102(4):1182-1196. – reference: Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4):266-273. – reference: Kelley B. 2009. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs 1(5):443-452. – reference: von Heijne G. 1985. Signal sequences: The limits of variation. J Mol Biol 184(1):99-105. – reference: Lindgren K, Salmén A, Lundgren M, Bylund L, Ebler A, Fäldt E, Sörvik L, Fenge C, Skoging-Nyberg U. 2009. Automation of cell line development. Cytotechnology 59(1):1-10. – reference: Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-372. – reference: Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N. 2001. Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29-42. – reference: Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF. 2007. An efficient and targeted gene integration system for high-level antibody expression. Immunol Methods 322(1/2):28-39. – reference: Kalwy S, Rance J, Young R. 2006. Toward more efficient protein expression. Keep the message simple. Mol Biotechnol 34(2):151-156. – reference: Tan NS, Ho B, Ding JL. 2002. Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng 15(4):337-345. – volume: 69 start-page: 204 issue: 2 year: 2000 end-page: 212 article-title: Limitations to the amplification and stability of human tissue‐type plasminogen activator expression by Chinese hamster ovary cells publication-title: Biotechnol Bioeng – volume: 34 start-page: 151 issue: 2 year: 2006 end-page: 156 article-title: Toward more efficient protein expression. Keep the message simple publication-title: Mol Biotechnol – volume: 128 start-page: 716 issue: 4 year: 2007 end-page: 725 article-title: Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters publication-title: J Biotechnol – volume: 263 start-page: 15791 issue: 30 year: 1988 end-page: 15798 article-title: Sequences beyond the cleavage site influence signal peptide function publication-title: J Biol Chem – volume: 22 start-page: 313 issue: 1 year: 2006 end-page: 318 article-title: Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression publication-title: Biotechnol Prog – year: 2005 – volume: 263 start-page: 19771 issue: 36 year: 1988 end-page: 19777 article-title: Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function publication-title: J Biol Chem – volume: 109 start-page: 2599 issue: 10 year: 2012 end-page: 2611 article-title: Development of a novel ER stress based selection system for the isolation of highly productive clones publication-title: Biotechnol Bioeng – volume: 15 start-page: 337 issue: 4 year: 2002 end-page: 345 article-title: Engineering a novel secretion signal for cross‐host recombinant protein expression publication-title: Protein Eng – volume: 294 start-page: 835 issue: 4 year: 2002 end-page: 842 article-title: Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression publication-title: Biochem Biophys Res Commun – volume: 59 start-page: 1 issue: 1 year: 2009 end-page: 10 article-title: Automation of cell line development publication-title: Cytotechnology – volume: 159 start-page: 601 issue: 4 year: 1982 end-page: 621 article-title: Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene publication-title: J Mol Biol – volume: 85 start-page: 115 issue: 2 year: 2004 end-page: 121 article-title: Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells publication-title: Biotechnol Bioeng – volume: 2 start-page: 1 year: 2007 end-page: 17 article-title: Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells publication-title: Trends Cell Mol Biol – volume: 1 start-page: 443 issue: 5 year: 2009 end-page: 452 article-title: Industrialization of mAb production technology: The bioprocessing industry at a crossroads publication-title: MAbs – volume: 2009 start-page: 8 year: 2009 end-page: 15 article-title: Purification strategies to process 5 g/L titers of monoclonal antibodies publication-title: BioPharm Intl Suppl – volume: 87 start-page: 29 issue: 1 year: 2001 end-page: 42 article-title: Development of stable cell lines for production or regulated expression using matrix attachment regions publication-title: J Biotechnol – volume: 322 start-page: 28 issue: 1/2 year: 2007 end-page: 39 article-title: An efficient and targeted gene integration system for high‐level antibody expression publication-title: Immunol Methods – volume: 261 start-page: 14752 issue: 31 year: 1986 end-page: 14759 article-title: Deletion of the propeptide from human preproapolipoprotein A‐II redirects cotranslational processing by signal peptidase publication-title: J Biol Chem – volume: 184 start-page: 99 issue: 1 year: 1985 end-page: 105 article-title: Signal sequences: The limits of variation publication-title: J Mol Biol – volume: 22 start-page: 1393 issue: 11 year: 2004 end-page: 1398 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nat Biotechnol – volume: 28 start-page: 923 issue: 3 year: 1989 end-page: 930 article-title: Signal sequences publication-title: Biochemistry – year: 2008 – volume: 58 start-page: 671 issue: 5/6 year: 2006 end-page: 685 article-title: Antibody production publication-title: Adv Drug Delivery Rev – volume: 359 start-page: 45 issue: 1 year: 2006 end-page: 53 article-title: Comparison of different signal peptides for protein secretion in nonlytic insect cell system publication-title: Anal Biochem – volume: 18 start-page: 173 issue: 4 year: 2000 end-page: 180 article-title: Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures publication-title: Trends Biotechnol – volume: 71 start-page: 266 issue: 4 year: 2000 end-page: 273 article-title: Efficient selection of high‐producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting publication-title: Biotechnol Bioeng – volume: 65 start-page: 363 issue: 4 year: 2004 end-page: 372 article-title: Recombinant expression systems in the pharmaceutical industry publication-title: Appl Microbiol Biotechnol – volume: 24 start-page: 1241 issue: 10 year: 2006 end-page: 1252 article-title: Post‐translational modifications in the context of therapeutic proteins publication-title: Nat Biotechnol – volume: 102 start-page: 1182 issue: 4 year: 2009 end-page: 1196 article-title: A study of monoclonal antibody‐producing CHO cell lines: What makes a stable high producer publication-title: Biotechnol Bioeng – volume: 7 start-page: 354 issue: 3 year: 2005 end-page: 365 article-title: Alteration in the IL‐2 signal peptide affects secretion of proteins in vitro and in vivo publication-title: J Gene Med – volume: 17 start-page: 21 year: 2005 end-page: 22 article-title: Cell culture grows capacity; capacity expansions address the “crunch” for biopharmaceutical manufacturing publication-title: Chem Ind – volume: 128 start-page: 705 issue: 4 year: 2007 end-page: 715 article-title: The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide publication-title: J Biotechnol – volume: 74 start-page: 723 issue: 4 year: 2007 end-page: 729 article-title: Recombinant therapeutic antibodies publication-title: Appl Mircobiol Biotechnol – ident: e_1_2_7_21_1 doi: 10.1016/j.jbiotec.2006.12.016 – ident: e_1_2_7_26_1 doi: 10.1093/protein/15.4.337 – ident: e_1_2_7_8_1 doi: 10.1007/s00253-006-0810-y – ident: e_1_2_7_19_1 doi: 10.1016/j.jbiotec.2006.11.026 – volume: 2009 start-page: 8 year: 2009 ident: e_1_2_7_27_1 article-title: Purification strategies to process 5 g/L titers of monoclonal antibodies publication-title: BioPharm Intl Suppl – ident: e_1_2_7_32_1 doi: 10.1038/nbt1026 – ident: e_1_2_7_24_1 doi: 10.1007/s00253-004-1656-9 – ident: e_1_2_7_17_1 doi: 10.1016/0022-2836(82)90103-6 – ident: e_1_2_7_15_1 doi: 10.1021/bp0501524 – ident: e_1_2_7_7_1 doi: 10.1002/bit.22158 – ident: e_1_2_7_33_1 – ident: e_1_2_7_16_1 doi: 10.1385/MB:34:2:151 – ident: e_1_2_7_22_1 doi: 10.1007/s10616-009-9187-y – ident: e_1_2_7_4_1 doi: 10.1002/bit.10893 – ident: e_1_2_7_3_1 doi: 10.1016/S0006-291X(02)00566-1 – ident: e_1_2_7_6_1 doi: 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2 – ident: e_1_2_7_35_1 doi: 10.1002/jgm.677 – ident: e_1_2_7_23_1 doi: 10.1016/j.ab.2006.09.003 – volume: 2 start-page: 1 year: 2007 ident: e_1_2_7_25_1 article-title: Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells publication-title: Trends Cell Mol Biol – ident: e_1_2_7_34_1 doi: 10.1016/S0168-1656(00)00423-5 – ident: e_1_2_7_18_1 doi: 10.4161/mabs.1.5.9448 – ident: e_1_2_7_14_1 doi: 10.1016/j.jim.2007.01.022 – ident: e_1_2_7_5_1 doi: 10.1016/j.addr.2005.12.006 – volume: 263 start-page: 19771 issue: 36 year: 1988 ident: e_1_2_7_31_1 article-title: Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)77701-1 – ident: e_1_2_7_11_1 doi: 10.1021/bi00429a001 – volume: 17 start-page: 21 year: 2005 ident: e_1_2_7_30_1 article-title: Cell culture grows capacity; capacity expansions address the “crunch” for biopharmaceutical manufacturing publication-title: Chem Ind – ident: e_1_2_7_29_1 doi: 10.1038/nbt1252 – volume: 263 start-page: 15791 issue: 30 year: 1988 ident: e_1_2_7_2_1 article-title: Sequences beyond the cleavage site influence signal peptide function publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)37658-6 – ident: e_1_2_7_13_1 doi: 10.1016/S0167-7799(99)01420-1 – ident: e_1_2_7_20_1 doi: 10.1002/bit.24527 – ident: e_1_2_7_12_1 – volume: 261 start-page: 14752 issue: 31 year: 1986 ident: e_1_2_7_10_1 article-title: Deletion of the propeptide from human preproapolipoprotein A‐II redirects cotranslational processing by signal peptidase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)66936-4 – ident: e_1_2_7_28_1 doi: 10.1016/0022-2836(85)90046-4 – ident: e_1_2_7_9_1 doi: 10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z |
| SSID | ssj0007866 |
| Score | 2.4659011 |
| Snippet | Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1164 |
| SubjectTerms | Amino Acid Sequence Animals cell-specific productivity Cells Chinese hamster ovary (CHO) CHO Cells Chromatography, High Pressure Liquid Cricetinae Cricetulus fed batch Gaussia Genetic Vectors high productive Molecular Sequence Data Molecules Monoclonal antibodies Peptides Pharmaceutical industry Protein Sorting Signals Proteins recombinant antibody Rodents signal peptide Transfection Vargula |
| Title | Optimized signal peptides for the development of high expressing CHO cell lines |
| URI | https://api.istex.fr/ark:/67375/WNG-Z4G0H8NP-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24776 https://www.ncbi.nlm.nih.gov/pubmed/23124363 https://www.proquest.com/docview/1312774732 https://www.proquest.com/docview/1312662517 https://www.proquest.com/docview/1434024412 |
| Volume | 110 |
| WOSCitedRecordID | wos000315360100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0290 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007866 issn: 0006-3592 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tLWjwwEfHR2FMBqGJl7DEdmJbPG2FrkhTO6FNVLxYseNMFSyd2g4N_nrO-RqTBkLizUouHz7f2b-LL78DeG2oczRncSA97yynwgTSpDRQHIOV1MdBrvxR-FCMx3I6VUdr8K75F6bih2g_uHnPKOdr7-CpWe5ekYaa2eot5UIk69ClaLe8A933n4Ynh-1ELGS1VemDZhYr2hALhXS3vfjactT1mr28CWteh67l2jO8_19v_QDu1ZCT7FU28hDWXNGDzb0Cw-2zH2SHlEmg5df1Htzeb1obg6YUXA_u_sZauAmTCU4zZ7OfLiM--wNvfe5TYzK3JIiACSJKkl2lIpF5TjwnMnGXVc5tcUoGownxOwbE92f5CE6GH44Ho6CuyxBYrlCXTmQ2dbjOWx5bmmRSYdPgId8xk4XW5krZ3LDUKl-YXsk8MkxmYZ7GGB5x9hg6xbxwT4FIilfJ0BiWI5QROaJRxf2meEQtcxHvw5tmeLStSct97YxvuqJbphoVqkuF9uFVK3peMXXcJLRTjnErkS6--tQ2EevP4wP9hR-EIzk-0vjgrcYIdO3VSx2xiCJcFoz24WV7GsfCqywt3PyikkkSTwT3FxnO0BMQiOJ9nlQG1r4Q4m3KWcKw56Ud_bkvev_jcdl49u-iz-EOLet5-NSjLeisFhfuBdyy31ez5WIb1sVUbtdu9AtTGxvw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFjR44KPjozDAIDTxEpbYzoclXrZC14mSTqjTJl6s2HFQBUuntkODv56z8zEmDYTEm5Ve0vh8Z__OvvwO4JWixtCChV5ieWc5jZWXqIx6gmOwktk4yLgPhcdxmibHx-JgDd4238JU_BDthpv1DDdfWwe3G9LbF6yharZ6Q3kcR9egy9GMwg50330aHo7bmThOqrNKGzWzUNCGWcin2-3Nl9ajrlXt-VVg8zJ2dYvP8M7_vfZduF2DTrJTWck9WDNlDzZ2Sgy4T36QLeLSQN3-eg9u7Dat9UFTDK4Ht37jLdyAyQQnmpPZT5MTm_-Bjz61yTG5WRLEwAQxJckvkpHIvCCWFZmY8yrrtvxCBqMJsWcGxHZoeR8Oh--ng5FXV2bwNBeoTBPnOjO40mseahrlicCmwku2Yyr3tS6E0IVimRa2NL1IikCxJPeLLMQAibMH0CnnpXkEJKF4V-IrxQoEM3GBeFRweyweUM1MwPvwuhkfqWvacls945usCJepRIVKp9A-vGxFTyuujquEttwgtxLZ4qtNbotDeZTuyc98zx8l6YHEP95srEDWfr2UAQsoAuaY0T68aH_GsbAqy0ozP6tkoshSwf1FhjP0BYSi-JyHlYW1L4SIm3IWMey5M6Q_90Xu7k9d4_G_iz6H9dH041iO99MPT-AmddU9bCLSJnRWizPzFK7r76vZcvGs9qZfn34e-A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlc8HPjo-CgMMmiZewhLbSWyJl62j60SVVmgTEy9W4jiogqVV26HBX8_Z-RiTBkLizUouiX322b-zL78D2MqoMbRgoScs7yynceaJLKWe5OispNYPMu5H4VGcJOLkRE7W4F3zL0zFD9FuuFnLcPO1NXAzz4udC9bQbLp6S3kcR9egw0MZoVl29j8OjkftTByL6qzSes0slLRhFvLpTvvwpfWoY1V7fhXYvIxd3eIzuPd_1b4Pd2vQSXarUfIA1kzZhY3dEh3u0x9km7gwULe_3oUbe03pVr9JBteFO7_xFm7AeIwTzen0p8mJjf_AV89tcExulgQxMEFMSfKLYCQyK4hlRSbmvIq6Lb-Q_nBM7JkBsQ1aPoTjwfuj_tCrMzN4mktUpolznRpc6TUPNY1yIbGY4SXbsCz3tS6k1EXGUi1tanopiiBjIveLNEQHibNHsF7OSvMEiKD4lPCzjBUIZuIC8ajk9lg8oJqZgPfgTdM_Ste05TZ7xjdVES5ThQpVTqE9eN2KziuujquEtl0ntxLp4qsNbotD9Sk5UJ_5gT8UyUThhzebUaBqu16qgAUUAXPMaA9etbexL6zK0tLMziqZKLJUcH-R4QxtAaEovudxNcLaCiHippxFDFvuBtKf26L2Do9c4em_i76Em5P9gRodJh-ewW3qknvYOKRNWF8tzsxzuK6_r6bLxYvamH4B_CQecw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+signal+peptides+for+the+development+of+high+expressing+CHO+cell+lines&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Kober%2C+Lars&rft.au=Zehe%2C+Christoph&rft.au=Bode%2C+Juergen&rft.date=2013-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=110&rft.issue=4&rft.spage=1164&rft_id=info:doi/10.1002%2Fbit.24776&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2902918981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |