Optimized signal peptides for the development of high expressing CHO cell lines

Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biotechnology and bioengineering Ročník 110; číslo 4; s. 1164 - 1173
Hlavní autori: Kober, Lars, Zehe, Christoph, Bode, Juergen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2013
Wiley Subscription Services, Inc
Predmet:
ISSN:0006-3592, 1097-0290, 1097-0290
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell−1 day−1 and product concentrations up to 4 g L−1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc. Highly productive cell lines are required for the production of biopharmaceutical products. To this end a variety of signal peptides was used to express different antibodies and non‐antibody products in transiently and stably transfected Chinese hamster ovary (CHO) cells. Thereby it could be demonstrated that signal peptide B, but also signal peptide E can be used to generate cell lines with cell specific productivities (QP) up to 60 or 90 pg antibody/cell/day (pcd mean values are represented by red bars).
AbstractList Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell... day... and product concentrations up to 4 g L... could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner. (ProQuest: ... denotes formulae/symbols omitted.)
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner.
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell −1 day −1 and product concentrations up to 4 g L −1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc.
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell−1 day−1 and product concentrations up to 4 g L−1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc. Highly productive cell lines are required for the production of biopharmaceutical products. To this end a variety of signal peptides was used to express different antibodies and non‐antibody products in transiently and stably transfected Chinese hamster ovary (CHO) cells. Thereby it could be demonstrated that signal peptide B, but also signal peptide E can be used to generate cell lines with cell specific productivities (QP) up to 60 or 90 pg antibody/cell/day (pcd mean values are represented by red bars).
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner.Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large-scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed-batch experiments with stably transfected cell pools, in which cell-specific productivities up to 90 pg cell(-1) day(-1) and product concentrations up to 4 g L(-1) could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non-antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product-independent manner.
Author Kober, Lars
Bode, Juergen
Zehe, Christoph
Author_xml – sequence: 1
  givenname: Lars
  surname: Kober
  fullname: Kober, Lars
  email: l.kober@cellca.de
  organization: Cellca GmbH, Uhlmannstrasse 28, 88471 Laupheim, Germany; telephone: +49-7392-9664813; fax: +49-7392-9664829
– sequence: 2
  givenname: Christoph
  surname: Zehe
  fullname: Zehe, Christoph
  organization: Cellca GmbH, Uhlmannstrasse 28, 88471 Laupheim, Germany; telephone: +49-7392-9664813; fax: +49-7392-9664829
– sequence: 3
  givenname: Juergen
  surname: Bode
  fullname: Bode, Juergen
  organization: Experimental Hematology, Hannover Medical School (MHH, Hans-Borst Center for Heart and Stem Cell Research), Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23124363$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAYxi20iXWDA18AWeICh2z-Fzs5QsXaSdPKYQiJi-U4b1qPJM7slG18elza7jAN7WT71e959Pp5jtFB73tA6B0lp5QQdla58ZQJpeQrNKGkVBlhJTlAE0KIzHhesiN0HONNeqpCytfoiHHKBJd8ghaLYXSd-wM1jm7ZmxYPkCY1RNz4gMcV4Bp-Q-uHDvoR-wav3HKF4X4IEKPrl3g6X2ALbYtb10N8gw4b00Z4uztP0Pfzr9fTeXa5mF1MP19mVpRpKVC1NVDk3IrcMlkXZbpWabT5RlUTa5uytE3FjS05kXlZNLTiRU0akxcqF_wEfdz6DsHfriGOunNxs4bpwa-jpoILwoSg7GU0hSEly6lK6Icn6I1fh5TKllJKKL4xfL-j1lUHtR6C60x40PtUE3C2BWzwMQZotHWjGZ3vx2BcqynRm9506k3_6y0pPj1R7E2fY3fud66Fh_-D-svF9V6RbRUujnD_qDDhl5aKq1z_uJrpn2JG5sXVNy34X5M-tFw
CODEN BIBIAU
CitedBy_id crossref_primary_10_1016_j_copbio_2017_11_015
crossref_primary_10_1186_s12934_017_0625_9
crossref_primary_10_1002_cbf_3787
crossref_primary_10_1016_j_pep_2013_10_017
crossref_primary_10_1007_s00253_024_13315_y
crossref_primary_10_1016_j_copbio_2018_01_007
crossref_primary_10_3390_pr9050855
crossref_primary_10_1016_j_exppara_2014_08_005
crossref_primary_10_1038_s41598_019_40219_z
crossref_primary_10_1002_biot_201700268
crossref_primary_10_1016_j_jbiotec_2023_08_006
crossref_primary_10_1134_S1607672923700576
crossref_primary_10_1016_j_ejcb_2018_06_003
crossref_primary_10_1042_BCJ20210015
crossref_primary_10_1016_j_jbc_2023_105201
crossref_primary_10_1080_15257770_2020_1714653
crossref_primary_10_1111_pbi_13316
crossref_primary_10_3390_ph17010008
crossref_primary_10_1016_j_bios_2023_115169
crossref_primary_10_1016_j_tice_2025_103004
crossref_primary_10_1016_j_pep_2024_106581
crossref_primary_10_1007_s11030_015_9625_z
crossref_primary_10_1371_journal_pone_0155340
crossref_primary_10_1016_j_bbrc_2022_06_072
crossref_primary_10_3389_fpls_2020_594758
crossref_primary_10_3390_antib13040082
crossref_primary_10_1007_s12033_024_01060_6
crossref_primary_10_1002_bit_26301
crossref_primary_10_1093_hmg_ddw003
crossref_primary_10_1111_pbi_12994
crossref_primary_10_1038_s41598_020_59169_y
crossref_primary_10_1111_jth_15819
crossref_primary_10_1016_j_ymeth_2018_10_001
crossref_primary_10_1016_j_pep_2017_04_013
crossref_primary_10_1016_j_abb_2025_110577
crossref_primary_10_1007_s13205_018_1517_3
crossref_primary_10_1186_s12934_014_0108_1
crossref_primary_10_1007_s10616_016_9955_4
crossref_primary_10_1016_j_jtbi_2014_08_048
crossref_primary_10_3390_md21060346
crossref_primary_10_1016_j_jbiotec_2016_10_005
crossref_primary_10_1371_journal_pone_0137113
crossref_primary_10_3390_ph14050449
crossref_primary_10_1002_biot_201700496
crossref_primary_10_1016_j_biotechadv_2019_107415
crossref_primary_10_1016_j_nbt_2024_09_001
crossref_primary_10_1186_s12951_024_02488_3
crossref_primary_10_1080_07388551_2022_2036691
crossref_primary_10_1016_j_pep_2017_01_003
crossref_primary_10_1186_s43141_020_00046_6
crossref_primary_10_1016_j_nbt_2023_11_003
crossref_primary_10_1186_s12896_023_00798_2
crossref_primary_10_1007_s00253_016_7380_4
crossref_primary_10_1002_pro_2439
crossref_primary_10_1016_j_jchromb_2017_08_046
crossref_primary_10_1016_j_jbiosc_2015_05_016
crossref_primary_10_1002_jctb_6841
crossref_primary_10_1007_s00253_020_10640_w
crossref_primary_10_1186_s12575_017_0060_7
crossref_primary_10_1038_s41598_017_12364_w
crossref_primary_10_1007_s10930_022_10073_6
crossref_primary_10_1371_journal_pone_0192433
crossref_primary_10_1007_s11883_016_0572_7
crossref_primary_10_1371_journal_pone_0139282
crossref_primary_10_1016_j_csbj_2016_10_004
crossref_primary_10_1016_j_vaccine_2023_01_038
crossref_primary_10_1016_j_intimp_2015_10_008
crossref_primary_10_1038_s41598_017_12188_8
crossref_primary_10_1186_s13568_020_01157_6
crossref_primary_10_1007_s10616_017_0109_0
crossref_primary_10_1016_j_aspen_2023_102112
crossref_primary_10_1016_j_bbamcr_2016_03_022
crossref_primary_10_1016_j_gene_2014_01_057
crossref_primary_10_1080_08977194_2024_2423747
crossref_primary_10_1002_bab_2409
crossref_primary_10_3390_ani13152463
crossref_primary_10_1016_j_jbiotec_2023_02_002
crossref_primary_10_1016_j_ymeth_2020_06_006
crossref_primary_10_3390_antib12030051
crossref_primary_10_1002_bit_26855
crossref_primary_10_1038_s41587_022_01566_x
crossref_primary_10_1002_biot_201600347
crossref_primary_10_1007_s10616_013_9631_x
crossref_primary_10_3390_ijms26031324
crossref_primary_10_1126_scitranslmed_aag2306
crossref_primary_10_1016_j_vaccine_2018_02_065
crossref_primary_10_1007_s11274_018_2512_x
crossref_primary_10_1371_journal_pone_0140812
crossref_primary_10_1038_s41419_022_05352_0
crossref_primary_10_1002_bit_28365
crossref_primary_10_1089_ten_teb_2017_0353
crossref_primary_10_1016_j_pep_2024_106596
crossref_primary_10_1158_1078_0432_CCR_17_0126
crossref_primary_10_1007_s00253_018_8986_5
crossref_primary_10_1080_07388551_2022_2047004
crossref_primary_10_3389_fbioe_2023_1249841
crossref_primary_10_1016_j_actatropica_2021_106176
crossref_primary_10_1038_s41598_017_09017_3
crossref_primary_10_3389_fbioe_2022_880155
crossref_primary_10_1371_journal_pone_0116878
crossref_primary_10_1002_bab_2704
crossref_primary_10_1016_j_omtn_2024_102145
crossref_primary_10_1007_s00253_022_11955_6
crossref_primary_10_1515_biolog_2015_0096
crossref_primary_10_1016_j_pep_2015_10_012
crossref_primary_10_1007_s12033_021_00329_4
crossref_primary_10_1007_s11240_018_1491_9
crossref_primary_10_5187_jast_2022_e15
crossref_primary_10_1073_pnas_2214556120
crossref_primary_10_1186_1756_3305_6_175
crossref_primary_10_1016_j_pep_2018_04_005
Cites_doi 10.1016/j.jbiotec.2006.12.016
10.1093/protein/15.4.337
10.1007/s00253-006-0810-y
10.1016/j.jbiotec.2006.11.026
10.1038/nbt1026
10.1007/s00253-004-1656-9
10.1016/0022-2836(82)90103-6
10.1021/bp0501524
10.1002/bit.22158
10.1385/MB:34:2:151
10.1007/s10616-009-9187-y
10.1002/bit.10893
10.1016/S0006-291X(02)00566-1
10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2
10.1002/jgm.677
10.1016/j.ab.2006.09.003
10.1016/S0168-1656(00)00423-5
10.4161/mabs.1.5.9448
10.1016/j.jim.2007.01.022
10.1016/j.addr.2005.12.006
10.1016/S0021-9258(19)77701-1
10.1021/bi00429a001
10.1038/nbt1252
10.1016/S0021-9258(19)37658-6
10.1016/S0167-7799(99)01420-1
10.1002/bit.24527
10.1016/S0021-9258(18)66936-4
10.1016/0022-2836(85)90046-4
10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Apr 2013
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Apr 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.24776
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
Engineering Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1173
ExternalDocumentID 2902918981
23124363
10_1002_bit_24776
BIT24776
ark_67375_WNG_Z4G0H8NP_4
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Excellence Initiative REBIRTH (Regenerative Biology to Reconstructive Therapy)
– fundername: JB Laboratory (MHH)
– fundername: SFB 738 (Optimierung konventioneller and innovativer Transplantate)
– fundername: ReGene (Regenerative Medicine and Biology)
– fundername: Bundesministerium für Bildung und Forschung
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
WRC
WSB
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4906-e7dcae853c45c26d8953cbcae2477bd0ccf99cfb3ac9306598f1b38d0fa587543
IEDL.DBID DRFUL
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315360100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3592
1097-0290
IngestDate Tue Oct 07 09:25:47 EDT 2025
Fri Jul 11 10:49:40 EDT 2025
Sun Jul 06 02:41:01 EDT 2025
Thu Apr 03 06:55:58 EDT 2025
Sat Nov 29 07:12:26 EST 2025
Tue Nov 18 21:19:31 EST 2025
Wed Jan 22 16:26:35 EST 2025
Sun Sep 21 06:18:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4906-e7dcae853c45c26d8953cbcae2477bd0ccf99cfb3ac9306598f1b38d0fa587543
Notes SFB 738 (Optimierung konventioneller and innovativer Transplantate)
Bundesministerium für Bildung und Forschung
ark:/67375/WNG-Z4G0H8NP-4
ArticleID:BIT24776
istex:422482E81582D1ACA60031E786FF9525A8355081
Excellence Initiative REBIRTH (Regenerative Biology to Reconstructive Therapy)
JB Laboratory (MHH)
ReGene (Regenerative Medicine and Biology)
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23124363
PQID 1312774732
PQPubID 48814
PageCount 10
ParticipantIDs proquest_miscellaneous_1434024412
proquest_miscellaneous_1312662517
proquest_journals_1312774732
pubmed_primary_23124363
crossref_citationtrail_10_1002_bit_24776
crossref_primary_10_1002_bit_24776
wiley_primary_10_1002_bit_24776_BIT24776
istex_primary_ark_67375_WNG_Z4G0H8NP_4
PublicationCentury 2000
PublicationDate April 2013
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS. 2009. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Intl Suppl 2009:8-15.
Jiang Z, Huang Y, Sharfstein ST. 2006. Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22(1):313-318.
Zhang L, Leng Q, Mixson AJ. 2005. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. J Gene Med 7(3):354-365.
Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705-715.
Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241-1252.
Kelley B. 2009. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs 1(5):443-452.
Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Delivery Rev 58(5/6):671-685.
Winder R. 2005. Cell culture grows capacity; capacity expansions address the "crunch" for biopharmaceutical manufacturing. Chem Ind 17:21-22.
Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N. 2001. Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29-42.
Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J Biol Chem 263(30):15791-15798.
Gierasch LM. 1989. Signal sequences. Biochemistry 28(3):923-930.
Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398.
Kaufman RJ, Sharp PA. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene. J Mol Biol 159(4):601-621.
Olczak M, Olczak T. 2006. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359(1):45-53.
Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF. 2007. An efficient and targeted gene integration system for high-level antibody expression. Immunol Methods 322(1/2):28-39.
Barash S, Wang W, Shi Y. 2002. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun 294(4):835-842.
Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4):266-273.
Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-372.
von Heijne G. 1985. Signal sequences: The limits of variation. J Mol Biol 184(1):99-105.
Stern B, Olsen LC, Tröße C, Ravneberg H, Pryme IF. 2007. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol 2:1-17.
Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. 2000. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69(2):204-212.
Lattenmayer C, Trummer E, Schriebl K, Vorauer-Uhl K, Mueller D, Katinger H, Kunert R. 2007. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J Biotechnol 128(4):716-725.
Dübel S. 2007. Recombinant therapeutic antibodies. Appl Mircobiol Biotechnol 74(4):723-729.
Kober L, Zehe C, Bode J. 2012. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109(10):2599-2611.
Lindgren K, Salmén A, Lundgren M, Bylund L, Ebler A, Fäldt E, Sörvik L, Fenge C, Skoging-Nyberg U. 2009. Automation of cell line development. Cytotechnology 59(1):1-10.
Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J Biol Chem 263(36):19771-19777.
Hesse F, Wagner R. 2000. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 18(4):173-180.
Kalwy S, Rance J, Young R. 2006. Toward more efficient protein expression. Keep the message simple. Mol Biotechnol 34(2):151-156.
Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG. 2009. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 102(4):1182-1196.
Folz RJ, Gordon JI. 1986. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. J Biol Chem 261(31):14752-14759.
Tan NS, Ho B, Ding JL. 2002. Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng 15(4):337-345.
Barnes LM, Bentley CM, Dickson AJ. 2004. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85(2):115-121.
2004; 65
2004; 22
2004; 85
2007; 322
2002; 15
2007; 128
2000; 69
2006; 34
2002; 294
2006; 58
2008
2000; 71
2005
1988; 263
2007; 74
2006; 359
1985; 184
1989; 28
2012; 109
2001; 87
2009; 2009
2000; 18
2006; 24
2006; 22
1986; 261
2005; 7
2009; 102
1982; 159
2007; 2
2009; 1
2005; 17
2009; 59
e_1_2_7_6_1
e_1_2_7_5_1
Trexler‐Schmidt M (e_1_2_7_27_1) 2009; 2009
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Winder R (e_1_2_7_30_1) 2005; 17
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Wiren KM (e_1_2_7_31_1) 1988; 263
Stern B (e_1_2_7_25_1) 2007; 2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Folz RJ (e_1_2_7_10_1) 1986; 261
Andrews DW (e_1_2_7_2_1) 1988; 263
References_xml – reference: Kaufman RJ, Sharp PA. 1982. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene. J Mol Biol 159(4):601-621.
– reference: Jiang Z, Huang Y, Sharfstein ST. 2006. Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22(1):313-318.
– reference: Winder R. 2005. Cell culture grows capacity; capacity expansions address the "crunch" for biopharmaceutical manufacturing. Chem Ind 17:21-22.
– reference: Olczak M, Olczak T. 2006. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359(1):45-53.
– reference: Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398.
– reference: Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS. 2009. Purification strategies to process 5 g/L titers of monoclonal antibodies. BioPharm Intl Suppl 2009:8-15.
– reference: Hesse F, Wagner R. 2000. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol 18(4):173-180.
– reference: Knappskog S, Ravneberg H, Gjerdrum C, Trösse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705-715.
– reference: Lattenmayer C, Trummer E, Schriebl K, Vorauer-Uhl K, Mueller D, Katinger H, Kunert R. 2007. Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters. J Biotechnol 128(4):716-725.
– reference: Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Delivery Rev 58(5/6):671-685.
– reference: Stern B, Olsen LC, Tröße C, Ravneberg H, Pryme IF. 2007. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. Trends Cell Mol Biol 2:1-17.
– reference: Dübel S. 2007. Recombinant therapeutic antibodies. Appl Mircobiol Biotechnol 74(4):723-729.
– reference: Kober L, Zehe C, Bode J. 2012. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng 109(10):2599-2611.
– reference: Barnes LM, Bentley CM, Dickson AJ. 2004. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85(2):115-121.
– reference: Zhang L, Leng Q, Mixson AJ. 2005. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. J Gene Med 7(3):354-365.
– reference: Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241-1252.
– reference: Gierasch LM. 1989. Signal sequences. Biochemistry 28(3):923-930.
– reference: Fann CH, Guirgis F, Chen G, Lao MS, Piret JM. 2000. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69(2):204-212.
– reference: Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J Biol Chem 263(30):15791-15798.
– reference: Folz RJ, Gordon JI. 1986. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. J Biol Chem 261(31):14752-14759.
– reference: Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J Biol Chem 263(36):19771-19777.
– reference: Barash S, Wang W, Shi Y. 2002. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem Biophys Res Commun 294(4):835-842.
– reference: Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG. 2009. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 102(4):1182-1196.
– reference: Borth N, Zeyda M, Kunert R, Katinger H. 2000. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71(4):266-273.
– reference: Kelley B. 2009. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs 1(5):443-452.
– reference: von Heijne G. 1985. Signal sequences: The limits of variation. J Mol Biol 184(1):99-105.
– reference: Lindgren K, Salmén A, Lundgren M, Bylund L, Ebler A, Fäldt E, Sörvik L, Fenge C, Skoging-Nyberg U. 2009. Automation of cell line development. Cytotechnology 59(1):1-10.
– reference: Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-372.
– reference: Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N. 2001. Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29-42.
– reference: Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF. 2007. An efficient and targeted gene integration system for high-level antibody expression. Immunol Methods 322(1/2):28-39.
– reference: Kalwy S, Rance J, Young R. 2006. Toward more efficient protein expression. Keep the message simple. Mol Biotechnol 34(2):151-156.
– reference: Tan NS, Ho B, Ding JL. 2002. Engineering a novel secretion signal for cross-host recombinant protein expression. Protein Eng 15(4):337-345.
– volume: 69
  start-page: 204
  issue: 2
  year: 2000
  end-page: 212
  article-title: Limitations to the amplification and stability of human tissue‐type plasminogen activator expression by Chinese hamster ovary cells
  publication-title: Biotechnol Bioeng
– volume: 34
  start-page: 151
  issue: 2
  year: 2006
  end-page: 156
  article-title: Toward more efficient protein expression. Keep the message simple
  publication-title: Mol Biotechnol
– volume: 128
  start-page: 716
  issue: 4
  year: 2007
  end-page: 725
  article-title: Characterisation of recombinant CHO cell lines by investigation of protein productivities and genetic parameters
  publication-title: J Biotechnol
– volume: 263
  start-page: 15791
  issue: 30
  year: 1988
  end-page: 15798
  article-title: Sequences beyond the cleavage site influence signal peptide function
  publication-title: J Biol Chem
– volume: 22
  start-page: 313
  issue: 1
  year: 2006
  end-page: 318
  article-title: Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: A comparative study of gene copy number, mRNA level, and protein expression
  publication-title: Biotechnol Prog
– year: 2005
– volume: 263
  start-page: 19771
  issue: 36
  year: 1988
  end-page: 19777
  article-title: Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function
  publication-title: J Biol Chem
– volume: 109
  start-page: 2599
  issue: 10
  year: 2012
  end-page: 2611
  article-title: Development of a novel ER stress based selection system for the isolation of highly productive clones
  publication-title: Biotechnol Bioeng
– volume: 15
  start-page: 337
  issue: 4
  year: 2002
  end-page: 345
  article-title: Engineering a novel secretion signal for cross‐host recombinant protein expression
  publication-title: Protein Eng
– volume: 294
  start-page: 835
  issue: 4
  year: 2002
  end-page: 842
  article-title: Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression
  publication-title: Biochem Biophys Res Commun
– volume: 59
  start-page: 1
  issue: 1
  year: 2009
  end-page: 10
  article-title: Automation of cell line development
  publication-title: Cytotechnology
– volume: 159
  start-page: 601
  issue: 4
  year: 1982
  end-page: 621
  article-title: Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase cDNA gene
  publication-title: J Mol Biol
– volume: 85
  start-page: 115
  issue: 2
  year: 2004
  end-page: 121
  article-title: Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells
  publication-title: Biotechnol Bioeng
– volume: 2
  start-page: 1
  year: 2007
  end-page: 17
  article-title: Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells
  publication-title: Trends Cell Mol Biol
– volume: 1
  start-page: 443
  issue: 5
  year: 2009
  end-page: 452
  article-title: Industrialization of mAb production technology: The bioprocessing industry at a crossroads
  publication-title: MAbs
– volume: 2009
  start-page: 8
  year: 2009
  end-page: 15
  article-title: Purification strategies to process 5 g/L titers of monoclonal antibodies
  publication-title: BioPharm Intl Suppl
– volume: 87
  start-page: 29
  issue: 1
  year: 2001
  end-page: 42
  article-title: Development of stable cell lines for production or regulated expression using matrix attachment regions
  publication-title: J Biotechnol
– volume: 322
  start-page: 28
  issue: 1/2
  year: 2007
  end-page: 39
  article-title: An efficient and targeted gene integration system for high‐level antibody expression
  publication-title: Immunol Methods
– volume: 261
  start-page: 14752
  issue: 31
  year: 1986
  end-page: 14759
  article-title: Deletion of the propeptide from human preproapolipoprotein A‐II redirects cotranslational processing by signal peptidase
  publication-title: J Biol Chem
– volume: 184
  start-page: 99
  issue: 1
  year: 1985
  end-page: 105
  article-title: Signal sequences: The limits of variation
  publication-title: J Mol Biol
– volume: 22
  start-page: 1393
  issue: 11
  year: 2004
  end-page: 1398
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nat Biotechnol
– volume: 28
  start-page: 923
  issue: 3
  year: 1989
  end-page: 930
  article-title: Signal sequences
  publication-title: Biochemistry
– year: 2008
– volume: 58
  start-page: 671
  issue: 5/6
  year: 2006
  end-page: 685
  article-title: Antibody production
  publication-title: Adv Drug Delivery Rev
– volume: 359
  start-page: 45
  issue: 1
  year: 2006
  end-page: 53
  article-title: Comparison of different signal peptides for protein secretion in nonlytic insect cell system
  publication-title: Anal Biochem
– volume: 18
  start-page: 173
  issue: 4
  year: 2000
  end-page: 180
  article-title: Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures
  publication-title: Trends Biotechnol
– volume: 71
  start-page: 266
  issue: 4
  year: 2000
  end-page: 273
  article-title: Efficient selection of high‐producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting
  publication-title: Biotechnol Bioeng
– volume: 65
  start-page: 363
  issue: 4
  year: 2004
  end-page: 372
  article-title: Recombinant expression systems in the pharmaceutical industry
  publication-title: Appl Microbiol Biotechnol
– volume: 24
  start-page: 1241
  issue: 10
  year: 2006
  end-page: 1252
  article-title: Post‐translational modifications in the context of therapeutic proteins
  publication-title: Nat Biotechnol
– volume: 102
  start-page: 1182
  issue: 4
  year: 2009
  end-page: 1196
  article-title: A study of monoclonal antibody‐producing CHO cell lines: What makes a stable high producer
  publication-title: Biotechnol Bioeng
– volume: 7
  start-page: 354
  issue: 3
  year: 2005
  end-page: 365
  article-title: Alteration in the IL‐2 signal peptide affects secretion of proteins in vitro and in vivo
  publication-title: J Gene Med
– volume: 17
  start-page: 21
  year: 2005
  end-page: 22
  article-title: Cell culture grows capacity; capacity expansions address the “crunch” for biopharmaceutical manufacturing
  publication-title: Chem Ind
– volume: 128
  start-page: 705
  issue: 4
  year: 2007
  end-page: 715
  article-title: The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide
  publication-title: J Biotechnol
– volume: 74
  start-page: 723
  issue: 4
  year: 2007
  end-page: 729
  article-title: Recombinant therapeutic antibodies
  publication-title: Appl Mircobiol Biotechnol
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jbiotec.2006.12.016
– ident: e_1_2_7_26_1
  doi: 10.1093/protein/15.4.337
– ident: e_1_2_7_8_1
  doi: 10.1007/s00253-006-0810-y
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jbiotec.2006.11.026
– volume: 2009
  start-page: 8
  year: 2009
  ident: e_1_2_7_27_1
  article-title: Purification strategies to process 5 g/L titers of monoclonal antibodies
  publication-title: BioPharm Intl Suppl
– ident: e_1_2_7_32_1
  doi: 10.1038/nbt1026
– ident: e_1_2_7_24_1
  doi: 10.1007/s00253-004-1656-9
– ident: e_1_2_7_17_1
  doi: 10.1016/0022-2836(82)90103-6
– ident: e_1_2_7_15_1
  doi: 10.1021/bp0501524
– ident: e_1_2_7_7_1
  doi: 10.1002/bit.22158
– ident: e_1_2_7_33_1
– ident: e_1_2_7_16_1
  doi: 10.1385/MB:34:2:151
– ident: e_1_2_7_22_1
  doi: 10.1007/s10616-009-9187-y
– ident: e_1_2_7_4_1
  doi: 10.1002/bit.10893
– ident: e_1_2_7_3_1
  doi: 10.1016/S0006-291X(02)00566-1
– ident: e_1_2_7_6_1
  doi: 10.1002/1097-0290(2000)71:4<266::AID-BIT1016>3.0.CO;2-2
– ident: e_1_2_7_35_1
  doi: 10.1002/jgm.677
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ab.2006.09.003
– volume: 2
  start-page: 1
  year: 2007
  ident: e_1_2_7_25_1
  article-title: Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells
  publication-title: Trends Cell Mol Biol
– ident: e_1_2_7_34_1
  doi: 10.1016/S0168-1656(00)00423-5
– ident: e_1_2_7_18_1
  doi: 10.4161/mabs.1.5.9448
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jim.2007.01.022
– ident: e_1_2_7_5_1
  doi: 10.1016/j.addr.2005.12.006
– volume: 263
  start-page: 19771
  issue: 36
  year: 1988
  ident: e_1_2_7_31_1
  article-title: Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)77701-1
– ident: e_1_2_7_11_1
  doi: 10.1021/bi00429a001
– volume: 17
  start-page: 21
  year: 2005
  ident: e_1_2_7_30_1
  article-title: Cell culture grows capacity; capacity expansions address the “crunch” for biopharmaceutical manufacturing
  publication-title: Chem Ind
– ident: e_1_2_7_29_1
  doi: 10.1038/nbt1252
– volume: 263
  start-page: 15791
  issue: 30
  year: 1988
  ident: e_1_2_7_2_1
  article-title: Sequences beyond the cleavage site influence signal peptide function
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)37658-6
– ident: e_1_2_7_13_1
  doi: 10.1016/S0167-7799(99)01420-1
– ident: e_1_2_7_20_1
  doi: 10.1002/bit.24527
– ident: e_1_2_7_12_1
– volume: 261
  start-page: 14752
  issue: 31
  year: 1986
  ident: e_1_2_7_10_1
  article-title: Deletion of the propeptide from human preproapolipoprotein A‐II redirects cotranslational processing by signal peptidase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)66936-4
– ident: e_1_2_7_28_1
  doi: 10.1016/0022-2836(85)90046-4
– ident: e_1_2_7_9_1
  doi: 10.1002/(SICI)1097-0290(20000720)69:2<204::AID-BIT9>3.0.CO;2-Z
SSID ssj0007866
Score 2.4659011
Snippet Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1164
SubjectTerms Amino Acid Sequence
Animals
cell-specific productivity
Cells
Chinese hamster ovary (CHO)
CHO Cells
Chromatography, High Pressure Liquid
Cricetinae
Cricetulus
fed batch
Gaussia
Genetic Vectors
high productive
Molecular Sequence Data
Molecules
Monoclonal antibodies
Peptides
Pharmaceutical industry
Protein Sorting Signals
Proteins
recombinant antibody
Rodents
signal peptide
Transfection
Vargula
Title Optimized signal peptides for the development of high expressing CHO cell lines
URI https://api.istex.fr/ark:/67375/WNG-Z4G0H8NP-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24776
https://www.ncbi.nlm.nih.gov/pubmed/23124363
https://www.proquest.com/docview/1312774732
https://www.proquest.com/docview/1312662517
https://www.proquest.com/docview/1434024412
Volume 110
WOSCitedRecordID wos000315360100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0290
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007866
  issn: 0006-3592
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tLWjwwEfHR2FMBqGJl7DEdmJbPG2FrkhTO6FNVLxYseNMFSyd2g4N_nrO-RqTBkLizUouHz7f2b-LL78DeG2oczRncSA97yynwgTSpDRQHIOV1MdBrvxR-FCMx3I6VUdr8K75F6bih2g_uHnPKOdr7-CpWe5ekYaa2eot5UIk69ClaLe8A933n4Ynh-1ELGS1VemDZhYr2hALhXS3vfjactT1mr28CWteh67l2jO8_19v_QDu1ZCT7FU28hDWXNGDzb0Cw-2zH2SHlEmg5df1Htzeb1obg6YUXA_u_sZauAmTCU4zZ7OfLiM--wNvfe5TYzK3JIiACSJKkl2lIpF5TjwnMnGXVc5tcUoGownxOwbE92f5CE6GH44Ho6CuyxBYrlCXTmQ2dbjOWx5bmmRSYdPgId8xk4XW5krZ3LDUKl-YXsk8MkxmYZ7GGB5x9hg6xbxwT4FIilfJ0BiWI5QROaJRxf2meEQtcxHvw5tmeLStSct97YxvuqJbphoVqkuF9uFVK3peMXXcJLRTjnErkS6--tQ2EevP4wP9hR-EIzk-0vjgrcYIdO3VSx2xiCJcFoz24WV7GsfCqywt3PyikkkSTwT3FxnO0BMQiOJ9nlQG1r4Q4m3KWcKw56Ud_bkvev_jcdl49u-iz-EOLet5-NSjLeisFhfuBdyy31ez5WIb1sVUbtdu9AtTGxvw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFjR44KPjozDAIDTxEpbYzoclXrZC14mSTqjTJl6s2HFQBUuntkODv56z8zEmDYTEm5Ve0vh8Z__OvvwO4JWixtCChV5ieWc5jZWXqIx6gmOwktk4yLgPhcdxmibHx-JgDd4238JU_BDthpv1DDdfWwe3G9LbF6yharZ6Q3kcR9egy9GMwg50330aHo7bmThOqrNKGzWzUNCGWcin2-3Nl9ajrlXt-VVg8zJ2dYvP8M7_vfZduF2DTrJTWck9WDNlDzZ2Sgy4T36QLeLSQN3-eg9u7Dat9UFTDK4Ht37jLdyAyQQnmpPZT5MTm_-Bjz61yTG5WRLEwAQxJckvkpHIvCCWFZmY8yrrtvxCBqMJsWcGxHZoeR8Oh--ng5FXV2bwNBeoTBPnOjO40mseahrlicCmwku2Yyr3tS6E0IVimRa2NL1IikCxJPeLLMQAibMH0CnnpXkEJKF4V-IrxQoEM3GBeFRweyweUM1MwPvwuhkfqWvacls945usCJepRIVKp9A-vGxFTyuujquEttwgtxLZ4qtNbotDeZTuyc98zx8l6YHEP95srEDWfr2UAQsoAuaY0T68aH_GsbAqy0ozP6tkoshSwf1FhjP0BYSi-JyHlYW1L4SIm3IWMey5M6Q_90Xu7k9d4_G_iz6H9dH041iO99MPT-AmddU9bCLSJnRWizPzFK7r76vZcvGs9qZfn34e-A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlc8HPjo-CgMMmiZewhLbSWyJl62j60SVVmgTEy9W4jiogqVV26HBX8_Z-RiTBkLizUouiX322b-zL78D2MqoMbRgoScs7yynceaJLKWe5OispNYPMu5H4VGcJOLkRE7W4F3zL0zFD9FuuFnLcPO1NXAzz4udC9bQbLp6S3kcR9egw0MZoVl29j8OjkftTByL6qzSes0slLRhFvLpTvvwpfWoY1V7fhXYvIxd3eIzuPd_1b4Pd2vQSXarUfIA1kzZhY3dEh3u0x9km7gwULe_3oUbe03pVr9JBteFO7_xFm7AeIwTzen0p8mJjf_AV89tcExulgQxMEFMSfKLYCQyK4hlRSbmvIq6Lb-Q_nBM7JkBsQ1aPoTjwfuj_tCrMzN4mktUpolznRpc6TUPNY1yIbGY4SXbsCz3tS6k1EXGUi1tanopiiBjIveLNEQHibNHsF7OSvMEiKD4lPCzjBUIZuIC8ajk9lg8oJqZgPfgTdM_Ste05TZ7xjdVES5ThQpVTqE9eN2KziuujquEtl0ntxLp4qsNbotD9Sk5UJ_5gT8UyUThhzebUaBqu16qgAUUAXPMaA9etbexL6zK0tLMziqZKLJUcH-R4QxtAaEovudxNcLaCiHippxFDFvuBtKf26L2Do9c4em_i76Em5P9gRodJh-ewW3qknvYOKRNWF8tzsxzuK6_r6bLxYvamH4B_CQecw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+signal+peptides+for+the+development+of+high+expressing+CHO+cell+lines&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Kober%2C+Lars&rft.au=Zehe%2C+Christoph&rft.au=Bode%2C+Juergen&rft.date=2013-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=110&rft.issue=4&rft.spage=1164&rft_id=info:doi/10.1002%2Fbit.24776&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2902918981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon