Convolutional sparse coding‐based deep random vector functional link network for distress classification of road structures

This paper presents a convolutional sparse coding (CSC)‐based deep random vector functional link network (CSDRN) for distress classification of road structures. The main contribution of this paper is the introduction of CSC into a feature extraction scheme in the distress classification. CSC can ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering Jg. 34; H. 8; S. 654 - 676
Hauptverfasser: Maeda, Keisuke, Takahashi, Sho, Ogawa, Takahiro, Haseyama, Miki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.08.2019
Schlagworte:
ISSN:1093-9687, 1467-8667
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a convolutional sparse coding (CSC)‐based deep random vector functional link network (CSDRN) for distress classification of road structures. The main contribution of this paper is the introduction of CSC into a feature extraction scheme in the distress classification. CSC can extract visual features representing characteristics of target images because it can successfully estimate optimal convolutional dictionary filters and sparse features as visual features by training from a small number of distress images. The optimal dictionaries trained from distress images have basic components of visual characteristics such as edge and line information of distress images. Furthermore, sparse feature maps estimated on the basis of the dictionaries represent both strength of the basic components and location information of regions having their components, and these maps can represent distress images. That is, sparse feature maps can extract key components from distress images that have diverse visual characteristics. Therefore, CSC‐based feature extraction is effective for training from a limited number of distress images that have diverse visual characteristics. The construction of a novel neural network, CSDRN, by the use of a combination of CSC‐based feature extraction and the DRN classifier, which can also be trained from a small dataset, is shown in this paper. Accurate distress classification is realized via the CSDRN.
AbstractList This paper presents a convolutional sparse coding (CSC)‐based deep random vector functional link network (CSDRN) for distress classification of road structures. The main contribution of this paper is the introduction of CSC into a feature extraction scheme in the distress classification. CSC can extract visual features representing characteristics of target images because it can successfully estimate optimal convolutional dictionary filters and sparse features as visual features by training from a small number of distress images. The optimal dictionaries trained from distress images have basic components of visual characteristics such as edge and line information of distress images. Furthermore, sparse feature maps estimated on the basis of the dictionaries represent both strength of the basic components and location information of regions having their components, and these maps can represent distress images. That is, sparse feature maps can extract key components from distress images that have diverse visual characteristics. Therefore, CSC‐based feature extraction is effective for training from a limited number of distress images that have diverse visual characteristics. The construction of a novel neural network, CSDRN, by the use of a combination of CSC‐based feature extraction and the DRN classifier, which can also be trained from a small dataset, is shown in this paper. Accurate distress classification is realized via the CSDRN.
Author Takahashi, Sho
Ogawa, Takahiro
Haseyama, Miki
Maeda, Keisuke
Author_xml – sequence: 1
  givenname: Keisuke
  surname: Maeda
  fullname: Maeda, Keisuke
  organization: Hokkaido University
– sequence: 2
  givenname: Sho
  surname: Takahashi
  fullname: Takahashi, Sho
  organization: Hokkaido University
– sequence: 3
  givenname: Takahiro
  surname: Ogawa
  fullname: Ogawa, Takahiro
  email: ogawa@lmd.ist.hokudai.ac.jp
  organization: Hokkaido University
– sequence: 4
  givenname: Miki
  surname: Haseyama
  fullname: Haseyama, Miki
  organization: Hokkaido University
BookMark eNp9kMFKAzEQhoNUsFYvPkHAm7B1k91sdo9SqhYqXvS8ZJOJRLdJTXZbehB8BJ_RJzF1PYk4lxn4v3-Y-Y_RyDoLCJ2RdEpiXa6MhCmhOSMHaEzygidlUfBRnNMqS6qi5EfoOITnNFaeZ2P0NnN249q-M86KFoe18AGwdMrYp8_3j0YEUFgBrLEXVrkV3oDsnMe6t_LH0xr7gi10W-dfsI6aMqHzEAKWrQjBaCPFHsVOY--EwlHtZddH5AQdatEGOP3pE_R4PX-Y3SbL-5vF7GqZyLxKSdLQUvGG0pJXXIgyU1wxncsqA15BQ3VOS6qLEholmQRN0iZlFcsFK1VBC0myCTof9q69e-0hdPWz6308PtSUMloxzlgWqYuBkt6F4EHXa29Wwu9qktb7eOt9vPV3vBFOf8HSdN9_dl6Y9m8LGSxb08Lun-X13WI2Hzxf6t-Tfw
CitedBy_id crossref_primary_10_3233_ICA_210664
crossref_primary_10_3390_ijgi9070456
crossref_primary_10_1111_exsy_12647
crossref_primary_10_1515_revneuro_2020_0043
crossref_primary_10_1111_mice_12711
crossref_primary_10_1111_mice_13366
crossref_primary_10_1016_j_compbiomed_2023_106977
crossref_primary_10_1109_ACCESS_2021_3074019
crossref_primary_10_3390_jimaging7120273
crossref_primary_10_1016_j_asoc_2023_110377
crossref_primary_10_1007_s12559_020_09749_x
crossref_primary_10_3233_ICA_200632
crossref_primary_10_3233_ICA_200635
crossref_primary_10_3390_s22228932
crossref_primary_10_3233_ICA_200638
crossref_primary_10_3233_ICA_200619
crossref_primary_10_1016_j_robot_2020_103441
crossref_primary_10_1111_mice_13133
crossref_primary_10_1159_000512985
crossref_primary_10_1111_mice_12702
crossref_primary_10_1111_mice_12501
crossref_primary_10_1111_mice_12546
crossref_primary_10_1016_j_engfailanal_2025_109532
crossref_primary_10_3390_asi7010011
crossref_primary_10_1016_j_autcon_2020_103133
crossref_primary_10_3390_s23031657
crossref_primary_10_3390_s22010382
crossref_primary_10_1007_s11042_020_10040_2
Cites_doi 10.1111/mice.12387
10.1111/mice.12359
10.1109/CVPR.2015.7298965
10.1109/TIE.2017.2764844
10.1111/mice.12319
10.1109/CVPR.2016.308
10.1109/CVPR.2013.57
10.1111/mice.12042
10.1007/BF00994018
10.1016/0898-1221(76)90003-1
10.1111/mice.12367
10.2514/3.13012
10.2307/2332010
10.1109/IJCNN.2016.7727666
10.1016/j.dsp.2016.04.012
10.1111/mice.12308
10.1061/(ASCE)CP.1943-5487.0000686
10.7708/ijtte.2018.8(1).01
10.1111/mice.12351
10.1016/0169-7439(87)80084-9
10.1111/j.1467-8667.2012.00790.x
10.1109/ICIP.2018.8451758
10.1016/j.conbuildmat.2017.09.110
10.2307/2333955
10.1109/MCI.2015.2405316
10.1016/j.engstruct.2017.10.070
10.1016/j.aei.2011.08.006
10.1109/ICALIP.2018.8455601
10.1109/MIS.2013.140
10.3233/ICA-170551
10.1109/ICCV.2015.169
10.1016/j.aei.2015.01.008
10.1109/TITS.2016.2568758
10.1111/mice.12425
10.1088/0964-1726/24/6/065034
10.1109/ACCESS.2018.2852663
10.1109/CVPR.2015.7299149
10.1109/ICIP.2017.8296857
10.1111/mice.12067
10.1109/ACCESS.2015.2430359
10.1111/mice.12363
10.1111/mice.12263
10.1111/mice.12313
10.1109/ICIP.2016.7532692
10.1109/ICIP.2016.7533052
10.1111/mice.12297
10.1088/0964-1726/24/12/125040
10.18770/KEPCO.2016.02.02.293
10.1109/ICIP.2017.8296708
10.3233/ICA-170538
10.1016/0925-2312(94)90053-1
10.1111/mice.12334
10.1016/j.neucom.2016.06.078
10.1109/SSIAI.2016.7459174
10.1002/tal.1400
10.1109/CVPR.2016.90
10.1002/qre.1634
10.1109/CVPR.2010.5540018
10.14359/51689560
10.1109/CVPR.2017.195
10.1111/mice.12317
10.1109/TIP.2015.2495260
10.1016/j.patcog.2016.10.032
10.1016/j.aei.2018.04.014
10.1080/03052159608941400
ContentType Journal Article
Copyright 2019
2019 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2019
– notice: 2019 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12451
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 676
ExternalDocumentID 10_1111_mice_12451
MICE12451
Genre article
GrantInformation_xml – fundername: Global Institution for Collaborative Research and Education at Hokkaido University and JSPS KAKENHI
  funderid: JP17H01744; JP18J10373; #181503004
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4901-b28d7b228797aa83d7d5f4c93e79eb2f4282f68ebdc5cef10b05954a58d626c13
IEDL.DBID DRFUL
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474594800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sun Nov 09 06:59:25 EST 2025
Sat Nov 29 05:42:06 EST 2025
Tue Nov 18 21:44:05 EST 2025
Wed Jan 22 16:39:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4901-b28d7b228797aa83d7d5f4c93e79eb2f4282f68ebdc5cef10b05954a58d626c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2115/79011
PQID 2252957553
PQPubID 2045171
PageCount 23
ParticipantIDs proquest_journals_2252957553
crossref_primary_10_1111_mice_12451
crossref_citationtrail_10_1111_mice_12451
wiley_primary_10_1111_mice_12451_MICE12451
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 2
2013; 28
2017; 4
2016a
2015; 31
2015; 30
2015a; 22
1995; 33
2014; 29
2017; 157
2017; 114
2015b; 24
1995; 20
2018; 6
2018; 8
2017a
2017; 32
1936; 28
1975; 2
2011; 25
2018; 34
2018; 33
1996; 27
2018; 37
2017; 64
2015; 3
2012
2017; 26
2010
1938; 29
2017; 24
2015; 10
2009
2017; 29
1992
2018; 65
2016; 55
2015; 24
2017b; 31
2016; 2
2015; 29
2016b; 25
2018; 156
2018
2017
2016
2017; 261
2017; 18
2015
2014
2013
1994; 6
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
Papyan V. (e_1_2_7_46_1) 2017; 18
e_1_2_7_56_1
e_1_2_7_39_1
Luo W. (e_1_2_7_37_1) 2017; 29
e_1_2_7_6_1
e_1_2_7_4_1
Huang G. (e_1_2_7_26_1) 2017
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Amezquita‐Sanchez J. (e_1_2_7_2_1) 2015; 22
Szegedy C. (e_1_2_7_58_1) 2017; 4
Feng C. (e_1_2_7_16_1) 2017
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 27
  start-page: 65
  issue: 1
  year: 1996
  end-page: 85
  article-title: Sparse matrix algorithm for minimum weight design of large structures
  publication-title: Engineering Optimization
– volume: 37
  start-page: 79
  year: 2018
  end-page: 87
  article-title: Distress classification of class‐imbalanced inspection data via correlation‐maximizing weighted extreme learning machine
  publication-title: Advanced Engineering Informatics
– volume: 33
  start-page: 110
  issue: 2
  year: 2018
  end-page: 123
  article-title: Pavement crack width measurement based on Laplace's equation for continuity and unambiguity
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 65
  start-page: 4392
  issue: 5
  year: 2018
  end-page: 4400
  article-title: NB‐CNN: Deep learning‐based crack detection using convolutional neural network and naive Bayes data fusion
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  end-page: 654
  article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 25
  start-page: 301
  issue: 1
  year: 2016b
  end-page: 315
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Transactions on Image Processing
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 770
  year: 2016
  end-page: 778
– volume: 6
  start-page: 37965
  year: 2018
  end-page: 37976
  article-title: Automatic visual defect detection using texture prior and low‐rank representation
  publication-title: IEEE Access
– start-page: 5135
  year: 2015
  end-page: 5143
– start-page: 487
  year: 2014
  end-page: 495
– volume: 30
  start-page: 19
  issue: 1
  year: 2015
  end-page: 35
  article-title: Optimizing the alignment of inspection data from track geometry cars
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 156
  start-page: 598
  year: 2018
  end-page: 607
  article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures
  publication-title: Engineering Structures
– volume: 64
  start-page: 130
  year: 2017
  end-page: 140
  article-title: Constructing deep sparse coding network for image classification
  publication-title: Pattern Recognition
– volume: 34
  start-page: 415
  year: 2018
  end-page: 430
  article-title: Image‐based post‐disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 3120
  year: 2017
  end-page: 3124
– volume: 2
  start-page: 37
  issue: 1‐3
  year: 1987
  end-page: 52
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 33
  start-page: 748
  issue: 9
  year: 2018
  end-page: 768
  article-title: Deep transfer learning for image‐based structural damage recognition
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2014
– volume: 10
  start-page: 18
  issue: 2
  year: 2015
  end-page: 29
  article-title: Local receptive field‐based extreme learning machine
  publication-title: IEEE Computational Intelligence Magazine
– year: 2016a
– volume: 32
  start-page: 1047
  issue: 12
  year: 2017
  end-page: 1063
  article-title: On‐line vehicle routing problems for carbon emissions reduction
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 527
  year: 2018
  end-page: 544
  article-title: Unified vision‐based methodology for simultaneous concrete defect detection and geolocalization
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 18
  start-page: 2887
  year: 2017
  end-page: 2938
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: The Journal of the Machine Learning Research
– start-page: 1794
  year: 2009
  end-page: 1801
– start-page: 1440
  year: 2015
  end-page: 1448
– volume: 114
  issue: 2
  year: 2017
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– start-page: 2379
  year: 2017a
  end-page: 2383
– volume: 29
  start-page: 350
  issue: 3/4
  year: 1938
  end-page: 362
  article-title: The significance of the difference between two means when the population variances are unequal
  publication-title: Biometrika
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre‐trained deep learning model
  publication-title: International Journal for Traffic and Transport Engineering
– start-page: 418
  year: 2018
  end-page: 422
– start-page: 4153
  year: 2018
  end-page: 4157
– volume: 6
  start-page: 163
  issue: 2
  year: 1994
  end-page: 180
  article-title: Learning and generalization characteristics of the random vector functional‐link net
  publication-title: Neurocomputing
– volume: 22
  start-page: 1931
  issue: 6
  year: 2015a
  article-title: Feature extraction and classification techniques for health monitoring of structures
  publication-title: Scientia Iranica: Transaction A, Civil Engineering
– volume: 2
  start-page: 17
  issue: 1
  year: 1975
  end-page: 40
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Computer & Mathematics with Applications
– volume: 157
  start-page: 322
  year: 2017
  end-page: 330
  article-title: Deep convolutional neural networks with transfer learning for computer vision‐based data‐driven pavement distress detection
  publication-title: Construction and Building Materials
– start-page: 3628
  year: 2016
  end-page: 3633
– volume: 18
  start-page: 153
  issue: 1
  year: 2017
  end-page: 164
  article-title: Deep multitask learning for railway track inspection
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 24
  start-page: 337
  issue: 4
  year: 2017
  end-page: 349
  article-title: Image recognition with deep neural networks in presence of noise–dealing with and taking advantage of distortions
  publication-title: Integrated Computer‐Aided Engineering
– volume: 25
  start-page: 569
  issue: 4
  year: 2011
  end-page: 572
  article-title: Advances and challenges in computing in civil and building engineering
  publication-title: Advanced Engineering Informatics
– start-page: 3360
  year: 2010
  end-page: 3367
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 819
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 29
  start-page: 342
  issue: 5
  year: 2014
  end-page: 358
  article-title: Road crack detection using visual features extracted by Gabor filters
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 321
  issue: 3/4
  year: 1936
  end-page: 377
  article-title: Relations between two sets of variates
  publication-title: Biometrika
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  end-page: 1046
  article-title: Structural damage detection with automatic feature‐extraction through deep learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 4
  start-page: 4278
  year: 2017
  end-page: 4284
  article-title: Inception‐v4, Inception‐ResNet and the impact of residual connections on learning
  publication-title: AAAI
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  article-title: A survey of sparse representation: Algorithms and applications
  publication-title: IEEE Access
– start-page: 3708
  year: 2016
  end-page: 3712
– start-page: 2818
  year: 2016
  end-page: 2826
– volume: 26
  start-page: e1400
  issue: 18
  year: 2017
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– start-page: 391
  year: 2013
  end-page: 398
– start-page: 4700
  year: 2017
  end-page: 4708
  article-title: Densely connected convolutional networks
  publication-title: Proceedings IEEE International Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 30
  issue: 6
  year: 2013
  end-page: 59
  article-title: Extreme learning machines [trends & controversies]
  publication-title: IEEE Intelligent Systems
– volume: 33
  start-page: 2442
  issue: 12
  year: 1995
  end-page: 2444
  article-title: Effect of general sparse matrix algorithm on optimization of space structures
  publication-title: AIAA Journal
– start-page: 1
  year: 1992
  end-page: 4
– start-page: 647
  year: 2014
  end-page: 655
– volume: 2
  start-page: 293
  issue: 2
  year: 2016
  end-page: 298
  article-title: Development of the corrosion deterioration inspection tool for transmission tower members
  publication-title: KEPCO Journal on Electric Power and Energy
– start-page: 1097
  year: 2012
  end-page: 1105
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 1918
  year: 2016
  end-page: 1922
– volume: 55
  start-page: 44
  year: 2016
  end-page: 51
  article-title: Fast convolutional sparse coding using matrix inversion lemma
  publication-title: Digital Signal Processing
– volume: 261
  start-page: 50
  year: 2017
  end-page: 56
  article-title: Sparse coding extreme learning machine for classification
  publication-title: Neurocomputing
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  end-page: 210
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Advanced Engineering Informatics
– volume: 33
  start-page: 97
  issue: 2
  year: 2018
  end-page: 109
  article-title: Damage identification for hysteretic structures using a mode decomposition method
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 24
  start-page: 125040
  issue: 12
  year: 2015
  article-title: A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures
  publication-title: Smart Materials and Structures
– volume: 24
  start-page: 171
  issue: 2
  year: 2017
  end-page: 185
  article-title: Layer multiplexing FPGA implementation for deep back‐propagation learning
  publication-title: Integrated Computer‐Aided Engineering
– volume: 31
  start-page: 773
  issue: 5
  year: 2015
  end-page: 781
  article-title: Data analysis for condition‐based railway infrastructure maintenance
  publication-title: Quality and Reliability Engineering International
– volume: 31
  start-page: 04017044
  issue: 5
  year: 2017b
  article-title: Distress classification of road structures via adaptive Bayesian network model selection
  publication-title: Journal of Computing in Civil Engineering
– volume: 24
  start-page: 065034
  issue: 6
  year: 2015b
  article-title: Synchrosqueezed wavelet transform‐fractality model for locating, detecting, and quantifying damage in smart highrise building structures
  publication-title: Smart Materials and Structures
– volume: 33
  start-page: 443
  issue: 6
  year: 2018
  end-page: 458
  article-title: Deep learning for accelerated seismic reliability analysis of transportation networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  start-page: 162
  issue: 3
  year: 2013
  end-page: 177
  article-title: Texture analysis based damage detection of ageing infrastructural elements
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2017
– volume: 29
  start-page: 3289
  issue: 7
  year: 2017
  end-page: 3294
  article-title: Convolutional sparse autoencoders for image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  end-page: 1141
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2017
  article-title: Deep active learning for civil infrastructure defect detection and classification
  publication-title: Mitsubishi Electric Research Laboratories
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Machine Learning
– ident: e_1_2_7_38_1
  doi: 10.1111/mice.12387
– ident: e_1_2_7_42_1
  doi: 10.1111/mice.12359
– ident: e_1_2_7_56_1
– ident: e_1_2_7_36_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_7_11_1
  doi: 10.1109/TIE.2017.2764844
– ident: e_1_2_7_78_1
– ident: e_1_2_7_62_1
  doi: 10.1111/mice.12319
– ident: e_1_2_7_59_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_7_5_1
  doi: 10.1109/CVPR.2013.57
– ident: e_1_2_7_73_1
  doi: 10.1111/mice.12042
– ident: e_1_2_7_13_1
  doi: 10.1007/BF00994018
– ident: e_1_2_7_17_1
  doi: 10.1016/0898-1221(76)90003-1
– ident: e_1_2_7_70_1
  doi: 10.1111/mice.12367
– ident: e_1_2_7_52_1
  doi: 10.2514/3.13012
– ident: e_1_2_7_63_1
  doi: 10.2307/2332010
– ident: e_1_2_7_7_1
  doi: 10.1109/IJCNN.2016.7727666
– ident: e_1_2_7_57_1
  doi: 10.1016/j.dsp.2016.04.012
– ident: e_1_2_7_34_1
  doi: 10.1111/mice.12308
– volume: 29
  start-page: 3289
  issue: 7
  year: 2017
  ident: e_1_2_7_37_1
  article-title: Convolutional sparse autoencoders for image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: e_1_2_7_40_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000686
– ident: e_1_2_7_21_1
  doi: 10.7708/ijtte.2018.8(1).01
– ident: e_1_2_7_32_1
  doi: 10.1111/mice.12351
– ident: e_1_2_7_66_1
  doi: 10.1016/0169-7439(87)80084-9
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1467-8667.2012.00790.x
– ident: e_1_2_7_15_1
  doi: 10.1109/ICIP.2018.8451758
– ident: e_1_2_7_22_1
  doi: 10.1016/j.conbuildmat.2017.09.110
– ident: e_1_2_7_25_1
  doi: 10.2307/2333955
– ident: e_1_2_7_27_1
  doi: 10.1109/MCI.2015.2405316
– ident: e_1_2_7_50_1
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_7_60_1
  doi: 10.1016/j.aei.2011.08.006
– start-page: 4700
  year: 2017
  ident: e_1_2_7_26_1
  article-title: Densely connected convolutional networks
  publication-title: Proceedings IEEE International Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_54_1
– ident: e_1_2_7_68_1
  doi: 10.1109/ICALIP.2018.8455601
– ident: e_1_2_7_6_1
  doi: 10.1109/MIS.2013.140
– ident: e_1_2_7_30_1
  doi: 10.3233/ICA-170551
– ident: e_1_2_7_20_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_7_29_1
  doi: 10.1016/j.aei.2015.01.008
– ident: e_1_2_7_19_1
  doi: 10.1109/TITS.2016.2568758
– ident: e_1_2_7_33_1
  doi: 10.1111/mice.12425
– ident: e_1_2_7_3_1
  doi: 10.1088/0964-1726/24/6/065034
– ident: e_1_2_7_28_1
  doi: 10.1109/ACCESS.2018.2852663
– ident: e_1_2_7_14_1
– ident: e_1_2_7_24_1
  doi: 10.1109/CVPR.2015.7299149
– ident: e_1_2_7_55_1
  doi: 10.1109/ICIP.2017.8296857
– ident: e_1_2_7_69_1
  doi: 10.1111/mice.12067
– ident: e_1_2_7_77_1
  doi: 10.1109/ACCESS.2015.2430359
– ident: e_1_2_7_18_1
  doi: 10.1111/mice.12363
– ident: e_1_2_7_8_1
  doi: 10.1111/mice.12263
– ident: e_1_2_7_71_1
– volume: 22
  start-page: 1931
  issue: 6
  year: 2015
  ident: e_1_2_7_2_1
  article-title: Feature extraction and classification techniques for health monitoring of structures
  publication-title: Scientia Iranica: Transaction A, Civil Engineering
– ident: e_1_2_7_35_1
  doi: 10.1111/mice.12313
– ident: e_1_2_7_10_1
  doi: 10.1109/ICIP.2016.7532692
– ident: e_1_2_7_75_1
  doi: 10.1109/ICIP.2016.7533052
– ident: e_1_2_7_74_1
  doi: 10.1111/mice.12297
– ident: e_1_2_7_48_1
  doi: 10.1088/0964-1726/24/12/125040
– ident: e_1_2_7_67_1
  doi: 10.18770/KEPCO.2016.02.02.293
– ident: e_1_2_7_39_1
  doi: 10.1109/ICIP.2017.8296708
– volume: 4
  start-page: 4278
  year: 2017
  ident: e_1_2_7_58_1
  article-title: Inception‐v4, Inception‐ResNet and the impact of residual connections on learning
  publication-title: AAAI
– ident: e_1_2_7_44_1
  doi: 10.3233/ICA-170538
– ident: e_1_2_7_45_1
  doi: 10.1016/0925-2312(94)90053-1
– ident: e_1_2_7_9_1
  doi: 10.1111/mice.12334
– ident: e_1_2_7_72_1
  doi: 10.1016/j.neucom.2016.06.078
– ident: e_1_2_7_64_1
  doi: 10.1109/SSIAI.2016.7459174
– ident: e_1_2_7_49_1
  doi: 10.1002/tal.1400
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 2887
  year: 2017
  ident: e_1_2_7_46_1
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: The Journal of the Machine Learning Research
– ident: e_1_2_7_4_1
  doi: 10.1002/qre.1634
– ident: e_1_2_7_61_1
  doi: 10.1109/CVPR.2010.5540018
– ident: e_1_2_7_51_1
  doi: 10.14359/51689560
– ident: e_1_2_7_12_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_7_47_1
  doi: 10.1111/mice.12317
– ident: e_1_2_7_65_1
  doi: 10.1109/TIP.2015.2495260
– year: 2017
  ident: e_1_2_7_16_1
  article-title: Deep active learning for civil infrastructure defect detection and classification
  publication-title: Mitsubishi Electric Research Laboratories
– ident: e_1_2_7_76_1
  doi: 10.1016/j.patcog.2016.10.032
– ident: e_1_2_7_41_1
  doi: 10.1016/j.aei.2018.04.014
– ident: e_1_2_7_31_1
– ident: e_1_2_7_53_1
  doi: 10.1080/03052159608941400
SSID ssj0000443
Score 2.4173734
Snippet This paper presents a convolutional sparse coding (CSC)‐based deep random vector functional link network (CSDRN) for distress classification of road...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 654
SubjectTerms BASIC (programming language)
Classification
Coding
Dictionaries
Feature extraction
Feature maps
Image classification
Neural networks
Target recognition
Training
Title Convolutional sparse coding‐based deep random vector functional link network for distress classification of road structures
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12451
https://www.proquest.com/docview/2252957553
Volume 34
WOSCitedRecordID wos000474594800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6ketCDj6pYrbKgF4VIm2yaLHiRavEgRUTFW9hXQNCkNNqb4E_wN_pLnEk2toIIYk4hzC7L7jy-yc4D4CD0O5FKI-5JLgKPcym92HYCT8mu1FKEhpcZ3neX0XAY39-Lqzk4qXNhqvoQXz_cSDJKfU0CLlUxI-TUrf0YrRPlT8_7yLi8AfNn14Pby6km5i7AHpchenHkypNSJM909HeDNEWZs1i1NDaDlf8tcxWWHchkpxVXrMGczZqw4gAnc-Jc4Ke6p0P9rQlLMwUK1-G1n2cTx5w4IWqfcWGZzsngfby9kwk0zFg7YmjyTP7EJuUlACNr6cbQDTHLqmBzhgiZmYcqP4VpAu4UqVQyB8tTNs6lYVVF2xck2YDbwflN_8JzDRs8zRFXeMqPTaR8dMJEJGUcmMiEKdcisJFADz5FV8dPe7FVRofapt2OQnAXchnGBv0q3Q02oZHlmd0CRv1ArOqFRmq6GO0IyrG1RuMjae4WHNanlmhXzZyaajwmtVdDG5-UG9-C_S_aUVXD40eqdn34iZPjIkFt5wtEtGHQgqPymH-ZIUHBOS_ftv9CvAOLiMJEFVXYhgbust2FBT15fijGe46nPwHdHv6s
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kCuqD3-L8DOiLQmVrk7V5FHUoziGi4ltJkxQG2sqmexP8E_wb_Uu8a1M3QQSxTyVcQkjucr9L7gNgT_iNMElD7ikuA49zpbzINgIvUU2llRSGFxHed52w243u7-WV882hWJgyP8TXhRtJRnFek4DThfSYlFO59kNUTxRAPcmRj0QNJk-u27ed0VHMnYc9zkO2otDlJyVXnlHv7xppBDPHwWqhbdrz_5znAsw5mMmOSr5YhAmbLcG8g5zMCfQAm6qqDlXbEsyOpShchtfjPBs69sQB8fzpDyzTOam8j7d3UoKGGWufGCo9kz-yYfEMwEhfuj70Rsyy0t2cIUZmpldGqDBN0J18lQr2YHnK-rkyrMxp-4IkK3DbPr05PvNcyQZPc0QWXuJHJkx8NMNkqFQUmNCIlGsZ2FCiDZ-iseOnrcgmRgtt02YjQXgnuBKRQctKN4NVqGV5ZteAUUUQm7SEUZqeRhuSomyt0fgpGrsO-9W2xdrlM6eyGg9xZdfQwsfFwtdh94v2qczi8SPVZrX7sZPkQYznnS8R04qgDgfFPv8yQoyic1r8rf-FeAemz24uO3HnvHuxATOIyWTpY7gJNVxxuwVTevjcG_S3HYN_Agy_Aqs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IiuiDd3E6NaAvCpWtTdbmUaZDcQwRFd9KmqQgaDs23ZvgT_A3-ks8p03dBBHEPpVyEkJyLt9pzgXgQPiNMElD7ikuA49zpbzINgIvUU2llRSGFxned92w14vu7-WVi82hXJiyPsTXDzeSjEJfk4DbvkknpJzatR-jeaIE6hkuZAvlcub0unPbHati7iLscR2yFYWuPimF8oxHf7dIY5g5CVYLa9NZ-uc6l2HRwUx2UvLFCkzZbBWWHORkTqCH-Knq6lB9W4WFiRKFa_DazrORY0-cEPXPYGiZzsnkfby9kxE0zFjbZ2j0TP7ERsU1ACN76cbQHTHLynBzhhiZmYcyQ4Vpgu4Uq1SwB8tTNsiVYWVN2xckWYfbztlN-9xzLRs8zRFZeIkfmTDx0Q2ToVJRYEIjUq5lYEOJPnyKzo6ftiKbGC20TZuNBOGd4EpEBj0r3Qw2YDrLM7sJjDqC2KQljNJ0NdqQlGVrjcZH0dw1OKyOLdaunjm11XiMK7-GNj4uNr4G-1-0_bKKx49U9er0YyfJwxj1nS8R04qgBkfFOf8yQ4yic1a8bf2FeA_mrk47cfeid7kN8wjJZBliWIdp3HC7A7N69PwwHOw6_v4Eld0CJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+sparse+coding%E2%80%90based+deep+random+vector+functional+link+network+for+distress+classification+of+road+structures&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Maeda%2C+Keisuke&rft.au=Takahashi%2C+Sho&rft.au=Ogawa%2C+Takahiro&rft.au=Haseyama%2C+Miki&rft.date=2019-08-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=34&rft.issue=8&rft.spage=654&rft.epage=676&rft_id=info:doi/10.1111%2Fmice.12451&rft.externalDBID=10.1111%252Fmice.12451&rft.externalDocID=MICE12451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon