A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time

We describe a deterministic algorithm that computes an approximate root of  n complex polynomial equations in  n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 17; H. 5; S. 1265 - 1292
1. Verfasser: Lairez, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2017
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a deterministic algorithm that computes an approximate root of  n complex polynomial equations in  n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale’s 17th problem. The main idea is to make use of the randomness contained in the input itself.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-016-9319-7