A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time
We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pa...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 17; číslo 5; s. 1265 - 1292 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2017
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We describe a deterministic algorithm that computes an approximate root of
n
complex polynomial equations in
n
unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale’s 17th problem. The main idea is to make use of the randomness contained in the input itself. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-016-9319-7 |