A Deterministic Algorithm to Compute Approximate Roots of Polynomial Systems in Polynomial Average Time

We describe a deterministic algorithm that computes an approximate root of  n complex polynomial equations in  n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of computational mathematics Ročník 17; číslo 5; s. 1265 - 1292
Hlavní autor: Lairez, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2017
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1615-3375, 1615-3383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We describe a deterministic algorithm that computes an approximate root of  n complex polynomial equations in  n unknowns in average polynomial time with respect to the size of the input, in the Blum–Shub–Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale’s 17th problem. The main idea is to make use of the randomness contained in the input itself.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-016-9319-7