Frost prediction using machine learning and deep neural network models

This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in artificial intelligence Ročník 5; s. 963781
Hlavní autori: Talsma, Carl J., Solander, Kurt C., Mudunuru, Maruti K., Crawford, Brandon, Powell, Michelle R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media S.A 12.01.2023
Predmet:
ISSN:2624-8212, 2624-8212
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain. In this paper, we developed machine learning (ML) algorithms for the prediction of such frost events near Alcalde, NM at the point-scale. ML algorithms investigated include deep neural network, convolution neural networks, and random forest models at lead-times of 6–48 h. Our results show promising accuracy (6-h prediction RMSE = 1.53–1.72°C) for use in frost and minimum temperature prediction applications. Seasonal differences in model predictions resulted in a slight negative bias during Spring and Summer months and a positive bias in Fall and Winter months. Additionally, we tested the model transferability by continuing training and testing using data from sensors at a nearby farm. We calculated the feature importance of the random forest models and were able to determine which parameters provided the models with the most useful information for predictions. We determined that soil temperature is a key parameter in longer term predictions (>24 h), while other temperature related parameters provide the majority of information for shorter term predictions. The model error compared favorable to previous ML based frost studies and outperformed the physically based High Resolution Rapid Refresh forecasting system making our ML-models attractive for deployment toward real-time monitoring of frost events and damage at commercial farming operations.
AbstractList This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain. In this paper, we developed machine learning (ML) algorithms for the prediction of such frost events near Alcalde, NM at the point-scale. ML algorithms investigated include deep neural network, convolution neural networks, and random forest models at lead-times of 6–48 h. Our results show promising accuracy (6-h prediction RMSE = 1.53–1.72°C) for use in frost and minimum temperature prediction applications. Seasonal differences in model predictions resulted in a slight negative bias during Spring and Summer months and a positive bias in Fall and Winter months. Additionally, we tested the model transferability by continuing training and testing using data from sensors at a nearby farm. We calculated the feature importance of the random forest models and were able to determine which parameters provided the models with the most useful information for predictions. We determined that soil temperature is a key parameter in longer term predictions (>24 h), while other temperature related parameters provide the majority of information for shorter term predictions. The model error compared favorable to previous ML based frost studies and outperformed the physically based High Resolution Rapid Refresh forecasting system making our ML-models attractive for deployment toward real-time monitoring of frost events and damage at commercial farming operations.
This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain. In this paper, we developed machine learning (ML) algorithms for the prediction of such frost events near Alcalde, NM at the point-scale. ML algorithms investigated include deep neural network, convolution neural networks, and random forest models at lead-times of 6-48 h. Our results show promising accuracy (6-h prediction RMSE = 1.53-1.72°C) for use in frost and minimum temperature prediction applications. Seasonal differences in model predictions resulted in a slight negative bias during Spring and Summer months and a positive bias in Fall and Winter months. Additionally, we tested the model transferability by continuing training and testing using data from sensors at a nearby farm. We calculated the feature importance of the random forest models and were able to determine which parameters provided the models with the most useful information for predictions. We determined that soil temperature is a key parameter in longer term predictions (>24 h), while other temperature related parameters provide the majority of information for shorter term predictions. The model error compared favorable to previous ML based frost studies and outperformed the physically based High Resolution Rapid Refresh forecasting system making our ML-models attractive for deployment toward real-time monitoring of frost events and damage at commercial farming operations.This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale agricultural applications. Frost damage in agriculture is a costly burden to farmers and global food security alike. Timely prediction of frost events is important to reduce the cost of agricultural frost damage and traditional numerical weather forecasts are often inaccurate at the field-scale in complex terrain. In this paper, we developed machine learning (ML) algorithms for the prediction of such frost events near Alcalde, NM at the point-scale. ML algorithms investigated include deep neural network, convolution neural networks, and random forest models at lead-times of 6-48 h. Our results show promising accuracy (6-h prediction RMSE = 1.53-1.72°C) for use in frost and minimum temperature prediction applications. Seasonal differences in model predictions resulted in a slight negative bias during Spring and Summer months and a positive bias in Fall and Winter months. Additionally, we tested the model transferability by continuing training and testing using data from sensors at a nearby farm. We calculated the feature importance of the random forest models and were able to determine which parameters provided the models with the most useful information for predictions. We determined that soil temperature is a key parameter in longer term predictions (>24 h), while other temperature related parameters provide the majority of information for shorter term predictions. The model error compared favorable to previous ML based frost studies and outperformed the physically based High Resolution Rapid Refresh forecasting system making our ML-models attractive for deployment toward real-time monitoring of frost events and damage at commercial farming operations.
Author Talsma, Carl J.
Mudunuru, Maruti K.
Powell, Michelle R.
Solander, Kurt C.
Crawford, Brandon
AuthorAffiliation 4 Los Alamos National Laboratory, Facility System Engineering Utilities and Infrastructure Division , Los Alamos, NM , United States
1 Los Alamos National Laboratory, Earth and Environmental Sciences Division , Los Alamos, NM , United States
2 Carbon Solutions LLC , Bloomington, IN , United States
3 Pacific Northwest National Laboratory, Watershed and Ecosystem Science , Richland, WA , United States
AuthorAffiliation_xml – name: 4 Los Alamos National Laboratory, Facility System Engineering Utilities and Infrastructure Division , Los Alamos, NM , United States
– name: 2 Carbon Solutions LLC , Bloomington, IN , United States
– name: 1 Los Alamos National Laboratory, Earth and Environmental Sciences Division , Los Alamos, NM , United States
– name: 3 Pacific Northwest National Laboratory, Watershed and Ecosystem Science , Richland, WA , United States
Author_xml – sequence: 1
  givenname: Carl J.
  surname: Talsma
  fullname: Talsma, Carl J.
– sequence: 2
  givenname: Kurt C.
  surname: Solander
  fullname: Solander, Kurt C.
– sequence: 3
  givenname: Maruti K.
  surname: Mudunuru
  fullname: Mudunuru, Maruti K.
– sequence: 4
  givenname: Brandon
  surname: Crawford
  fullname: Crawford, Brandon
– sequence: 5
  givenname: Michelle R.
  surname: Powell
  fullname: Powell, Michelle R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36714205$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1922705$$D View this record in Osti.gov
BookMark eNp1kk1v1DAQhi1UREvpnROKOPWyiz_irwsSqlioVIlL75ZjT3ZdEnuxExD_HqdpUYvEaazxO8-89sxrdBJTBITeErxlTOkPfbZhSzGlWy2YVOQFOqOCthtFCT15cj5FF6XcYYwpx5wQ-gqdMiFJSzE_Q7tdTmVqjhl8cFNIsZlLiPtmtO4QIjQD2ByXhI2-8QDHJsKc7VDD9Cvl782YPAzlDXrZ26HAxUM8R7e7z7dXXzc3375cX3262bhW6WnjsFTaKUecBdwJ4px3tNfMe-uwBsupaiUXknnaS1lFkhENtPO9alvB2Tm6XrE-2TtzzGG0-bdJNpj7RMp7Y_MU3ABGadxVcstbySqT2b7XVBHPrPdCdLKyPq6s49yN4B3Eqb7rGfT5TQwHs08_jVZStRxXwPsVUD8wmOLCBO7gUozgJkM0pRIvji8fuuT0Y4YymTEUB8NgI6S5GColwUpTLqr03VNDf508DqsKxCpwdWYlQ29qT7sMrfoLgyHYLIthlsUwy2KYdTFqIf6n8JH935I_DbS7rw
CitedBy_id crossref_primary_10_3390_info15110661
crossref_primary_10_3390_atmos16010038
crossref_primary_10_1038_s41598_024_60549_x
crossref_primary_10_3390_agriengineering5040128
crossref_primary_10_1002_qj_4613
crossref_primary_10_1016_j_tjog_2024_10_014
crossref_primary_10_1007_s12145_025_01710_6
crossref_primary_10_1109_JSTARS_2023_3345473
crossref_primary_10_1016_j_agrformet_2024_109898
crossref_primary_10_1016_j_compag_2025_110027
Cites_doi 10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
10.1109/SCISISIS50064.2020.9322770
10.1016/0020-7373(89)90027-8
10.1007/978-3-319-67585-5_69
10.1029/2008JD009879
10.3390/atmos12070846
10.5194/npg-14-211-2007
10.1002/joc.3370120602
10.1175/1520-0450(1982)021<0518:ATVOFF>2.0.CO;2
10.1175/WAF-D-10-05014.1
10.1890/12-0200.1
10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
10.1186/1471-2105-10-213
10.1109/JIOT.2018.2867333
10.1002/2016JD025920
10.1155/2016/2075186
10.1023/A:1005202814071
10.1175/WAF-D-20-0098.1
10.1121/2.0000749
10.21236/ADA561957
10.1109/HPCSim.2016.7568428
10.1007/s10546-013-9885-z
10.1016/j.compag.2006.09.001
10.1007/s11749-016-0481-7
10.1023/A:1010933404324
10.1007/978-3-319-99462-8_4
10.1175/WAF-D-21-0151.1
10.1016/j.scienta.2015.12.003
10.1088/1755-1315/191/1/012015
10.1016/j.compag.2008.05.019
10.1175/WAF-D-21-0130.1
10.1785/0220180306
10.1007/978-3-540-44999-7_4
10.21273/HORTSCI.43.6.1643
10.1175/WAF896.1
ContentType Journal Article
Copyright Copyright © 2023 Talsma, Solander, Mudunuru, Crawford and Powell.
Copyright © 2023 Talsma, Solander, Mudunuru, Crawford and Powell. 2023 Talsma, Solander, Mudunuru, Crawford and Powell
Copyright_xml – notice: Copyright © 2023 Talsma, Solander, Mudunuru, Crawford and Powell.
– notice: Copyright © 2023 Talsma, Solander, Mudunuru, Crawford and Powell. 2023 Talsma, Solander, Mudunuru, Crawford and Powell
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – sequence: 0
  name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.3389/frai.2022.963781
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-8212
ExternalDocumentID oai_doaj_org_article_890bf93454734753aff9281d3add66b7
PMC9878450
1922705
36714205
10_3389_frai_2022_963781
Genre Journal Article
GroupedDBID 53G
9T4
AAFWJ
AAYXX
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
OK1
PGMZT
RPM
ACXDI
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c489t-c0789c8c1cae0b61ccdc2f93ddac09ea528475673d2f77cae7319e2bdf844653
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915943700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-8212
IngestDate Fri Oct 03 12:51:53 EDT 2025
Thu Aug 21 18:38:35 EDT 2025
Thu Dec 05 06:20:36 EST 2024
Thu Oct 02 11:31:17 EDT 2025
Wed Feb 19 02:23:49 EST 2025
Tue Nov 18 22:31:01 EST 2025
Sat Nov 29 02:47:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords frost damage
random forests
temperature prediction
machine learning
neural networks
Language English
License Copyright © 2023 Talsma, Solander, Mudunuru, Crawford and Powell.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-c0789c8c1cae0b61ccdc2f93ddac09ea528475673d2f77cae7319e2bdf844653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC05-76RL01830; 89233218CNA000001
New Mexico Small Business Assistance (NMSBA)
PNNL-SA-180159; LA-UR-20-26558
USDOE National Nuclear Security Administration (NNSA)
Reviewed by: Miltos Alamaniotis, University of Texas at San Antonio, United States; Thushara Gunda, Sandia National Laboratories (DOE), United States
Edited by: Hannah Kerner, University of Maryland, United States
This article was submitted to AI in Food, Agriculture and Water, a section of the journal Frontiers in Artificial Intelligence
OpenAccessLink https://doaj.org/article/890bf93454734753aff9281d3add66b7
PMID 36714205
PQID 2771089256
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_890bf93454734753aff9281d3add66b7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9878450
osti_scitechconnect_1922705
proquest_miscellaneous_2771089256
pubmed_primary_36714205
crossref_citationtrail_10_3389_frai_2022_963781
crossref_primary_10_3389_frai_2022_963781
PublicationCentury 2000
PublicationDate 2023-01-12
PublicationDateYYYYMMDD 2023-01-12
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in artificial intelligence
PublicationTitleAlternate Front Artif Intell
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – sequence: 0
  name: Frontiers Media S.A
– name: Frontiers Media S.A
References Burns (B8) 2014; 150
Dozat (B13) 2016
Ghielmi (B15) 2006; 54
Kalina (B19) 2021; 36
Warmund (B41) 2008; 43
Cerdá (B9) 2018
Mudunuru (B28) 2018
Crawford (B10) 1989; 31
Lee (B22) 2016; 2016
Möller-Acuña (B26) 2017
Katz (B20) 1982; 21
Kuligowski (B21) 1998; 13
Noh (B29) 2021; 12
Hu (B17) 2018; 191
Eccel (B14) 2007; 14
Goger (B16) 2016
Attaway (B3) 1997
Prabha (B31) 2008; 64
Mudunuru (B27) 2017
Breiman (B7) 2001; 45
Biau (B6) 2016; 25
Raby (B32) 2012
Menze (B25) 2009; 10
Diedrichs (B11) 2018; 5
Lundquist (B23) 2008; 113
Reeves (B33) 2011; 26
Yuan (B42) 2019; 90
Salazar-Gutiérrez (B35) 2016; 198
Baars (B5) 2005; 20
Dowell (B12) 2022; 37
B2
Strachan (B37) 2017; 122
Pedregosa (B30) 2011; 12
James (B18) 2022; 37
Maqsood (B24) 2003
Snyder (B36) 2005
(B39) 2019
Verdes (B40) 2000; 13
Augspurger (B4) 2013; 94
Rowson (B34) 1992; 12
Tamura (B38) 2020
Adams (B1) 1997; 78
References_xml – volume: 13
  start-page: 1194
  year: 1998
  ident: B21
  article-title: Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
  publication-title: Weather Forcast
  doi: 10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
– year: 2020
  ident: B38
  article-title: “Frost prediction for vineyard using machine learning,”
  publication-title: 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems, SCIS-ISIS 2020
  doi: 10.1109/SCISISIS50064.2020.9322770
– volume: 31
  start-page: 8
  year: 1989
  ident: B10
  article-title: Extensions to the CART algorithm
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/0020-7373(89)90027-8
– year: 2017
  ident: B26
  article-title: “Machine learning for prediction of frost episodes in the Maule Region of Chile,”
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  doi: 10.1007/978-3-319-67585-5_69
– volume: 113
  start-page: 9879
  year: 2008
  ident: B23
  article-title: Automated algorithm for mapping regions of cold-air pooling in complex terrain
  publication-title: J. Geophys. Res. Atmosph.
  doi: 10.1029/2008JD009879
– volume: 12
  start-page: 846
  year: 2021
  ident: B29
  article-title: Machine learning-based hourly frost-prediction system optimized for orchards using automatic weather station and digital camera image data
  publication-title: Atmosphere
  doi: 10.3390/atmos12070846
– volume: 14
  start-page: 211
  year: 2007
  ident: B14
  article-title: Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models
  publication-title: Nonlinear Process. Geophys
  doi: 10.5194/npg-14-211-2007
– year: 1997
  ident: B3
  publication-title: A History of Florida Citrus Freezes
– year: 2017
  ident: B27
  publication-title: IoGET: Internet of Geophysical and Environmental Things
– volume: 12
  start-page: 529
  year: 1992
  ident: B34
  article-title: Synoptic climatology of thermal low-pressure systems over south-western North America
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3370120602
– volume: 21
  start-page: 518
  year: 1982
  ident: B20
  article-title: Assessing the value of frost forecasts to orchardists: a dynamic decision-making approach
  publication-title: J. Appl. Meterol. Climatol
  doi: 10.1175/1520-0450(1982)021<0518:ATVOFF>2.0.CO;2
– volume: 26
  start-page: 447
  year: 2011
  ident: B33
  article-title: Assessment of forecasts during persistent valley cold pools in the Bonneville Basin by the North American Mesoscale Model
  publication-title: Weather Forecast.
  doi: 10.1175/WAF-D-10-05014.1
– volume: 94
  start-page: 41
  year: 2013
  ident: B4
  article-title: Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing
  publication-title: Ecology
  doi: 10.1890/12-0200.1
– volume: 78
  start-page: 2197
  year: 1997
  ident: B1
  article-title: The North American monsoon
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2
– volume: 10
  start-page: 213
  year: 2009
  ident: B25
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-10-213
– volume: 5
  start-page: 4589
  year: 2018
  ident: B11
  article-title: Prediction of frost events using machine learning and IoT sensing devices
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2867333
– volume: 122
  start-page: 5697
  year: 2017
  ident: B37
  article-title: Testing the daily PRISM air temperature model on semiarid mountain slopes
  publication-title: J. Geophys. Res.
  doi: 10.1002/2016JD025920
– volume: 2016
  start-page: 186
  year: 2016
  ident: B22
  article-title: Prediction of frost occurrences using statistical modeling approaches
  publication-title: Adv. Meteorol.
  doi: 10.1155/2016/2075186
– volume: 13
  start-page: 191
  year: 2000
  ident: B40
  article-title: Frose prediction with machine learning techniques
  publication-title: Int. J. Reason. Intell. Syst
  doi: 10.1023/A:1005202814071
– volume: 36
  start-page: 791
  year: 2021
  ident: B19
  article-title: A progress report on the development of the high-resolution rapid refresh ensemble
  publication-title: Weather Forecast.
  doi: 10.1175/WAF-D-20-0098.1
– start-page: 055003
  year: 2018
  ident: B28
  article-title: “Scalable time-series feature engineering framework to understand multiphase flow using acoustic signals,”
  publication-title: Citation: Proceedings of Meetings on Acoustics
  doi: 10.1121/2.0000749
– year: 2012
  ident: B32
  article-title: “Performance comparison of high resolution weather research and forecasting model output with north american mesoscale model initialization grid forecasts,”
  publication-title: Army Research Lab, White Sands Missile Range, NM, Computation and Information Science Directorate
  doi: 10.21236/ADA561957
– start-page: 890
  year: 2016
  ident: B16
  article-title: “Current challenges for numerical weather prediction in complex terrain: topography representation and parameterizations,”
  publication-title: Proceedings of the 2016 International Conference on High Performance Computing and Simulation, HPCS 2016
  doi: 10.1109/HPCSim.2016.7568428
– volume: 12
  start-page: 2825
  year: 2011
  ident: B30
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 150
  start-page: 9885
  year: 2014
  ident: B8
  article-title: Evolution of cold-air-pooling processes in complex terrain
  publication-title: Bound. Layer Meteorol.
  doi: 10.1007/s10546-013-9885-z
– volume: 54
  start-page: 101
  year: 2006
  ident: B15
  article-title: Descriptive models and artificial neural networks for spring frost prediction in an agricultural mountain area
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/j.compag.2006.09.001
– volume: 25
  start-page: 7
  year: 2016
  ident: B6
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– ident: B2
– year: 2005
  ident: B36
  publication-title: Frost Protection: Fundamentals, Practice and Economics
– volume: 45
  start-page: 5
  year: 2001
  ident: B7
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 2
  year: 2016
  ident: B13
  publication-title: 4th International Conference on Learning Representations, ICLR 2016
– start-page: 43
  year: 2018
  ident: B9
  article-title: “The value of meteorological information in agrarian producers' decision making: introducing analytic decision models,”
  publication-title: Economic Tools and Methods for the Analysis of Global Change Impacts on Agriculture and Food Security
  doi: 10.1007/978-3-319-99462-8_4
– volume: 37
  start-page: 1371
  year: 2022
  ident: B12
  article-title: The high-resolution rapid refresh (HRRR): an hourly updating convection-allowing forecast model. Part 1: motivation and system description
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-21-0151.1
– volume: 198
  start-page: 3
  year: 2016
  ident: B35
  article-title: Freezing tolerance of apple flower buds
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.12.003
– volume: 191
  start-page: 012015
  year: 2018
  ident: B17
  article-title: The application of mobile edge computing in agricultural water monitoring system
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/191/1/012015
– volume: 64
  start-page: 234
  year: 2008
  ident: B31
  article-title: Evaluation of the weather research and forecasting model for two frost events
  publication-title: Comput. Elect. Agric.
  doi: 10.1016/j.compag.2008.05.019
– volume: 37
  start-page: 1397
  year: 2022
  ident: B18
  article-title: The high-resolution rapid refresh (HRRR): an hourly updating convection-allowing forecast model. Part 2: forecast performance
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-21-0130.1
– volume: 90
  start-page: 591
  year: 2019
  ident: B42
  article-title: Using machine learning to discern eruption in noisy environments: a case study using CO2-driven cold-water geyser in Chimayó, New Mexico
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220180306
– start-page: 33
  year: 2003
  ident: B24
  article-title: “Weather forecasting models using ensembles of neural networks,”
  publication-title: Intelligent Systems Design and Applications
  doi: 10.1007/978-3-540-44999-7_4
– year: 2019
  ident: B39
  publication-title: 2017 Census of Agriculture: New Mexico
– volume: 43
  start-page: 1643
  year: 2008
  ident: B41
  article-title: Temperatures and cold damage to small fruit crops across the eastern United States associated with the April 2007 freeze
  publication-title: HortScience
  doi: 10.21273/HORTSCI.43.6.1643
– volume: 20
  start-page: 1034
  year: 2005
  ident: B5
  article-title: Performance of national weather service forecasts compared to operational, consensus, and weighted model output statistics
  publication-title: Weather Forecast
  doi: 10.1175/WAF896.1
SSID ssj0002505112
Score 2.348503
Snippet This study describes accurate, computationally efficient models that can be implemented for practical use in predicting frost events for point-scale...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 963781
SubjectTerms Artificial Intelligence
earth sciences
frost damage
frost damage, machine learning, neural network, random forests, temperature prediction, weather models
machine learning
MATHEMATICS AND COMPUTING
neural networks
random forests
temperature prediction
Title Frost prediction using machine learning and deep neural network models
URI https://www.ncbi.nlm.nih.gov/pubmed/36714205
https://www.proquest.com/docview/2771089256
https://www.osti.gov/servlets/purl/1922705
https://pubmed.ncbi.nlm.nih.gov/PMC9878450
https://doaj.org/article/890bf93454734753aff9281d3add66b7
Volume 5
WOSCitedRecordID wos000915943700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-8212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002505112
  issn: 2624-8212
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xbtswED20QYcsSdo0jZI2YIEsHRRLFCWSY1rU6BR0yOCNoEgqMZDIhu30-3tHyoYdBM3SyYBMCvTjne6deXoHcImkV0vvm7zB5CMXlS2j5G3eeW8dxqdWVz42m5A3N2oy0b-3Wn1RTViSB07AjZQu2k5XpDtVCeTWtus0R5JVoWM2TRvfIy-k3kqm6BlMgR2ZRDqXxCxMj7qFnWI6yPkVmpxU5U4cinL9-DFDt3qJaj6vmNwKQeMjOBi4I7tOa34Pb0L_AQ7XfRnY4KbHMI6vcrD5gg5hCHhG1e137DEWTgY2dIq4Y7b3zIcwZ6RqiXfuU004i-1xlh_hdvzz9sevfOiXkDuh9Cp3JB3vlCudDUXblM55xxG7BHuwNYWiupGV552UOEii_wXe-k5FmbUT2OtnfTgFJjmdxtZWaGUFplA6OCHaQjt8AuAkl8FoDZ5xg5Y4tbR4MJhTENyG4DYEt0lwZ_BtM2OedDT-MfY77cdmHClgxwtoF2awC_OaXWRwTrtpkEiQGq6jsiG3MkhouSzqDL6uN9mgP9Ehie3D7GlpuETOpTQywQw-pU3fLKRqZCk4zZY75rCz0t1v-ul91OzWSipRF2f_46edwz41vac_gkr-GfZWi6fwBd65P6vpcnEBb-VEXUR3-As18Q2G
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frost+prediction+using+machine+learning+and+deep+neural+network+models&rft.jtitle=Frontiers+in+artificial+intelligence&rft.au=Talsma%2C+Carl+J.&rft.au=Solander%2C+Kurt+C.&rft.au=Mudunuru%2C+Maruti+K.&rft.au=Crawford%2C+Brandon&rft.date=2023-01-12&rft.pub=Frontiers+Media+S.A&rft.issn=2624-8212&rft.eissn=2624-8212&rft.volume=5&rft_id=info:doi/10.3389%2Ffrai.2022.963781&rft.externalDocID=1922705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8212&client=summon