Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization

Nonlinear spectral mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel optimization method of nonlinear unmixing based on a generalized bilinear model (GBM), which considers the second-order scattering of photons in a spectr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 52; no. 2; pp. 1430 - 1437
Main Authors: Yokoya, Naoto, Chanussot, Jocelyn, Iwasaki, Akira
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nonlinear spectral mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel optimization method of nonlinear unmixing based on a generalized bilinear model (GBM), which considers the second-order scattering of photons in a spectral mixture model. Semi-nonnegative matrix factorization (semi-NMF) is used for the optimization to process a whole image in matrix form. When endmember spectra are given, the optimization of abundance and interaction abundance fractions converge to a local optimum by alternating update rules with simple implementation. The proposed method is evaluated using synthetic datasets considering its robustness for the accuracy of endmember extraction and spectral complexity, and shows smaller errors in abundance fractions rather than conventional methods. GBM-based unmixing using semi-NMF is applied to the analysis of an airborne hyperspectral image taken over an agricultural field with many endmembers, and it visualizes the impact of a nonlinear interaction on abundance maps at reasonable computational cost.
AbstractList Nonlinear spectral mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel optimization method of nonlinear unmixing based on a generalized bilinear model (GBM), which considers the second-order scattering of photons in a spectral mixture model. Semi-nonnegative matrix factorization (semi-NMF) is used for the optimization to process a whole image in matrix form. When endmember spectra are given, the optimization of abundance and interaction abundance fractions converge to a local optimum by alternating update rules with simple implementation. The proposed method is evaluated using synthetic datasets considering its robustness for the accuracy of endmember extraction and spectral complexity, and shows smaller errors in abundance fractions rather than conventional methods. GBM-based unmixing using semi-NMF is applied to the analysis of an airborne hyperspectral image taken over an agricultural field with many endmembers, and it visualizes the impact of a nonlinear interaction on abundance maps at reasonable computational cost.
Author Iwasaki, Akira
Chanussot, Jocelyn
Yokoya, Naoto
Author_xml – sequence: 1
  givenname: Naoto
  surname: Yokoya
  fullname: Yokoya, Naoto
  email: yokoya@sal.rcast.u-tokyo.ac.jp
  organization: Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr
  organization: Grenoble Institute of Technology, Saint Martin d'Hères cedex, France
– sequence: 3
  givenname: Akira
  surname: Iwasaki
  fullname: Iwasaki, Akira
  email: aiwasaki@sal.rcast.u-tokyo.ac.jp
  organization: Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203285$$DView record in Pascal Francis
https://hal.univ-grenoble-alpes.fr/hal-01128460$$DView record in HAL
BookMark eNqFkctuEzEUQC1UJNLCByA2IyEkWEy416-xl1WhDVIAiSZry-N6iquJHexJ1fL1zJAoiy5gZen6HD90TslJTNET8hphjgj64-rqx_WcArI5pQIZ18_IDIVQNUjOT8gMUMuaKk1fkNNS7gCQC2xmZPUtxT5Eb3O1jpvwEOJtlbpq8bj1uWy9G7Ltq092sNW6THvXfhPq0Yn-1g7h3ldf7ZDDQ3Vp3ZBy-D0OU3xJnne2L_7VYT0j68vPq4tFvfx-9eXifFk7rvRQt4rRhrfOM2upYuLG0Y5a2QBrhWtBi1ZoaAUXyiMyptGJBh2_Ae9AK-vZGfmwP_en7c02h43NjybZYBbnSzPNAJEqLuEeR_b9nt3m9Gvny2A2oTjf9zb6tCsGZYMCOUX4PyqEbkDrRozo2yfoXdrlOH7aIJdKMSnpRL07ULY423fZRhfK8cVUUWBUTRzuOZdTKdl3RwTBTJnNlNlMmc0h8-g0TxwXhr8VxnSh_6f5Zm8G7_3xJimACxDsD8vQtGY
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3082289
crossref_primary_10_3390_rs17172968
crossref_primary_10_1109_TGRS_2018_2815044
crossref_primary_10_1109_TGRS_2020_2988519
crossref_primary_10_1007_s12594_018_0902_1
crossref_primary_10_1109_TGRS_2015_2421993
crossref_primary_10_3390_rs11192188
crossref_primary_10_1007_s11036_017_0883_0
crossref_primary_10_1016_j_neunet_2023_02_002
crossref_primary_10_1109_LGRS_2018_2862895
crossref_primary_10_1109_TGRS_2017_2761912
crossref_primary_10_3390_rs10101600
crossref_primary_10_1109_TGRS_2018_2842707
crossref_primary_10_1109_TGRS_2017_2753847
crossref_primary_10_1109_TSP_2014_2367474
crossref_primary_10_1007_s11801_014_4088_5
crossref_primary_10_1109_TGRS_2014_2336858
crossref_primary_10_1016_j_neucom_2021_07_041
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_3390_rs9121224
crossref_primary_10_1109_TGRS_2024_3363427
crossref_primary_10_1080_01431161_2024_2408038
crossref_primary_10_1109_TGRS_2025_3551119
crossref_primary_10_1109_TIP_2014_2314022
crossref_primary_10_1109_JSTARS_2022_3175257
crossref_primary_10_1145_3670408
crossref_primary_10_1109_TNNLS_2016_2517096
crossref_primary_10_1109_TGRS_2025_3590079
crossref_primary_10_1016_j_sigpro_2016_08_011
crossref_primary_10_3390_rs15123205
crossref_primary_10_1109_JSTARS_2022_3200733
crossref_primary_10_1109_TFUZZ_2021_3058020
crossref_primary_10_1109_LGRS_2016_2560222
crossref_primary_10_1117_1_JRS_16_024524
crossref_primary_10_3390_rs10050801
crossref_primary_10_1109_TGRS_2018_2834567
crossref_primary_10_1109_TGRS_2017_2693366
crossref_primary_10_1109_TIP_2020_2963961
crossref_primary_10_1109_TCYB_2019_2936042
crossref_primary_10_1080_01431161_2021_1910369
crossref_primary_10_1109_JSTARS_2020_2991170
crossref_primary_10_3390_rs11060681
crossref_primary_10_1109_TGRS_2020_3041157
crossref_primary_10_3390_rs15041053
crossref_primary_10_1109_JSTARS_2016_2602882
crossref_primary_10_1109_TIP_2016_2627815
crossref_primary_10_1109_TGRS_2016_2535298
crossref_primary_10_1109_JSTARS_2019_2962550
crossref_primary_10_1016_j_neucom_2015_10_132
crossref_primary_10_1109_TGRS_2021_3065990
crossref_primary_10_3390_rs14205167
crossref_primary_10_1016_j_ins_2019_10_036
crossref_primary_10_1109_TSP_2024_3406714
crossref_primary_10_1016_j_patrec_2021_06_013
crossref_primary_10_1109_TGRS_2017_2696262
crossref_primary_10_1109_JSEN_2022_3143852
crossref_primary_10_1109_TCI_2024_3402322
crossref_primary_10_1109_TGRS_2023_3304484
crossref_primary_10_1109_LSP_2017_2747478
crossref_primary_10_1109_LGRS_2016_2555341
crossref_primary_10_3390_rs12244117
crossref_primary_10_1109_TGRS_2021_3135571
crossref_primary_10_1016_j_neucom_2021_08_152
crossref_primary_10_1016_j_neucom_2015_04_103
crossref_primary_10_1109_TGRS_2018_2790262
crossref_primary_10_1109_JSTARS_2020_3010332
crossref_primary_10_1016_j_neucom_2017_11_052
crossref_primary_10_1080_01431161_2024_2320181
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1109_TGRS_2024_3505292
crossref_primary_10_3390_rs11020148
Cites_doi 10.1109/IGARSS.2011.6049492
10.1117/12.930288
10.1080/01431160802558659
10.1016/j.rse.2009.02.003
10.1109/JSTARS.2012.2194696
10.1109/TGRS.2005.844293
10.1109/TGRS.2010.2098414
10.1038/44565
10.1017/CBO9780511524998
10.1109/TPAMI.2008.277
10.1016/0034-4257(93)90020-X
10.1109/36.911111
10.1117/12.830492
10.1109/TGRS.2011.2121073
10.1109/TGRS.2009.2038483
10.1016/0034-4257(95)00171-9
10.1016/0034-4257(94)90107-4
10.1109/TGRS.2010.2068053
10.1080/014311698214875
10.1109/TGRS.2006.888466
10.1109/TGRS.2008.2002882
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
DOI 10.1109/TGRS.2013.2251349
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database


Aerospace Database
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1437
ExternalDocumentID oai:HAL:hal-01128460v1
3159041611
28203285
10_1109_TGRS_2013_2251349
6504505
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
AAYOK
IQODW
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
1XC
ID FETCH-LOGICAL-c489t-b83274bce3aa2835dc2f2a6703b5cb095b590b5458e113391c571c4d0ec098ae3
IEDL.DBID RIE
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328941300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Oct 14 20:49:52 EDT 2025
Wed Oct 01 14:34:25 EDT 2025
Thu Oct 02 07:15:38 EDT 2025
Mon Jun 30 08:37:52 EDT 2025
Wed Apr 02 07:25:09 EDT 2025
Tue Nov 18 21:32:53 EST 2025
Sat Nov 29 07:45:45 EST 2025
Wed Aug 27 02:13:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords image processing
models
spectra
cost
maps
optimization
Generalized bilinear model (GBM)
accuracy
extraction
nonlinear unmixing
errors
semi-nonnegative matrix factorization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-b83274bce3aa2835dc2f2a6703b5cb095b590b5458e113391c571c4d0ec098ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-4817-2875
0000-0002-7321-4590
PQID 1468836625
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671514210
proquest_miscellaneous_1559709975
crossref_primary_10_1109_TGRS_2013_2251349
ieee_primary_6504505
crossref_citationtrail_10_1109_TGRS_2013_2251349
hal_primary_oai_HAL_hal_01128460v1
pascalfrancis_primary_28203285
proquest_journals_1468836625
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
close (ref8) 2011
ref14
ref11
ref2
weisberg (ref15) 1985
ref1
ref16
ref19
lee (ref18) 2001; 13
ref24
ref23
ref25
ref20
ref22
mustard (ref6) 1998; 103
ref21
lee (ref17) 1999; 401
nascimento (ref10) 2009; 7477
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref12
  doi: 10.1109/IGARSS.2011.6049492
– ident: ref7
  doi: 10.1117/12.930288
– ident: ref9
  doi: 10.1080/01431160802558659
– ident: ref5
  doi: 10.1016/j.rse.2009.02.003
– ident: ref13
  doi: 10.1109/JSTARS.2012.2194696
– volume: 13
  start-page: 556
  year: 2001
  ident: ref18
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc Conf Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/TGRS.2005.844293
– volume: 103
  start-page: 419
  year: 1998
  ident: ref6
  article-title: Compositional gradients across mare-highland contacts: The importance and geological implications of lateral mixing
  publication-title: J Geophys Res ?Planets
– ident: ref11
  doi: 10.1109/TGRS.2010.2098414
– volume: 401
  start-page: 788
  year: 1999
  ident: ref17
  article-title: Learning the parts of objects by nonnegative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: ref14
  doi: 10.1017/CBO9780511524998
– ident: ref23
  doi: 10.1109/TPAMI.2008.277
– ident: ref1
  doi: 10.1016/0034-4257(93)90020-X
– ident: ref24
  doi: 10.1109/36.911111
– volume: 7477
  start-page: 74770i
  year: 2009
  ident: ref10
  article-title: Nonlinear mixture model for hyperspectral unmixing
  publication-title: Proc SPIE
  doi: 10.1117/12.830492
– ident: ref16
  doi: 10.1109/TGRS.2011.2121073
– ident: ref21
  doi: 10.1109/TGRS.2009.2038483
– ident: ref3
  doi: 10.1016/0034-4257(95)00171-9
– ident: ref2
  doi: 10.1016/0034-4257(94)90107-4
– year: 2011
  ident: ref8
  publication-title: Endmember and Proportion Estimation Using Physics-Based Macroscopic and Microscopic Mixture Models
– ident: ref22
  doi: 10.1109/TGRS.2010.2068053
– ident: ref4
  doi: 10.1080/014311698214875
– ident: ref19
  doi: 10.1109/TGRS.2006.888466
– ident: ref20
  doi: 10.1109/TGRS.2008.2002882
– year: 1985
  ident: ref15
  publication-title: Applied Linear Regression
SSID ssj0014517
Score 2.4384782
Snippet Nonlinear spectral mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel optimization...
SourceID hal
proquest
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1430
SubjectTerms Abundance
Accuracy
Agricultural land
Applied geophysics
Complexity theory
Computational efficiency
Earth sciences
Earth, ocean, space
Engineering Sciences
Exact sciences and technology
Extraction
Factorization
Generalized bilinear model (GBM)
Hyperspectral imaging
Image processing
Internal geophysics
Mixture models
nonlinear unmixing
Nonlinearity
Optimization
Optimization methods
Robustness
semi-nonnegative matrix factorization
Signal and Image processing
Soil
Spectra
Synthetic data
Vegetation mapping
Title Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization
URI https://ieeexplore.ieee.org/document/6504505
https://www.proquest.com/docview/1468836625
https://www.proquest.com/docview/1559709975
https://www.proquest.com/docview/1671514210
https://hal.univ-grenoble-alpes.fr/hal-01128460
Volume 52
WOSCitedRecordID wos000328941300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB0BolI5UAqtMAW0rXqqarDj9do-IiDk0EZVCRI3a3cz20YqDsoH4uczs16solZI3CLvOHI8-zEv8-YNwGdtnVLMajSqZ2KJuYtN6QilUPScOcLNymnfbKIYDsvr6-rHCnztamEQ0ZPP8Ig_-lz-eGqX_FfZMUUTMmfB0tWiKNparS5jIPM0lEarmEBEL2Qw06Q6Hl38vGQSV3ZEk5fl-J6cQau_mQHpW6swMVLP6d24tqnFP_uzP3T6b172uFuwGYJLcdLOhrewgs02bPwlObgNrzzl0853YDRsVTL0TFw1N5N7GhZTJwYETNv6yxl91ZleaOFpBeISbybxkHkxv7xYuPjO6v73ou879oRyzndw1T8fnQ7i0GMhtrKsFuSYjHCpsZhpzdJrY9tzPa1oHzC5NRR_mbxKDGfXMCU4W6U2L1IrxwnapCo1Zu9hrZk2uAuiyGwydkYS4CulprAtzwuJDlGntpI6iyB5fOu1DQLk3AfjT-2BSFLV7KiaHVUHR0XwpbvltlXfeM74E7mys2Pd7MHJt5qv0SZGx7BK7tIIdthRnVXwUQSHTzzfjRMiZcVBMth_nAp1WOVzhk1lmSmCkBF87IZpfXLSRTc4XZINQzYuT37ORhUUeElC33v_f7wP8Jp-qWzZ4vuwtpgt8QDW7d1iMp8d-oXwAN9_A-4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAioceLRFBEoxiBMirZPYTnKsgGUR2wjRrdRb5HhtulKbRfuo-vOZcdyoVVElbqt4sspm_Jhv55tvAD5o45QiVmOj0iYWVrq4KRyiFIyeM4e4WTntm03kVVWcnJQ_1-BTXwtjrfXkM7tHH30ufzIzK_qrbB-jCSFJsPS-FCJNumqtPmcgZBKKo1WMMCINOcyEl_vjb7-OiMaV7eH0JUG-G6fQvVPiQPrmKkSN1At8O65ra3Frh_bHzuDp_z3wM3gSwkt20M2H57Bm2014fE10cBMeetKnWWzBuOp0MvScHbfn00scZjPHhghNuwrMOX7VF73UzBML2JE9n8YVMWN-e7lwdkj6_pds4Hv2hILObTgefB1_Hsahy0JsRFEu0TUZItPG2ExrEl-bmNSlWuFO0EjTYATWyJI3lF-zCQLaMjEyT4yYcGt4WWibvYD1dtbal8DyzPCJawRCvkJoDNykzIV11urElEJnEfCrt16bIEFOnTDOag9FeFmTo2pyVB0cFcHH_pY_nf7GXcbv0ZW9HSlnDw9GNV3DbQwPYsUvkgi2yFG9VfBRBLs3PN-PIyYlzUE02LmaCnVY5wsCTkWRKQSREbzrh3GFUtpFt3a2QhsCbVSgfJeNyjH0wjnNX_378d7CxnB8OKpH36sfr-ER_mrRccd3YH05X9k38MBcLKeL-a5fFH8Bg4YHNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Unmixing+of+Hyperspectral+Data+Using+Semi-Nonnegative+Matrix+Factorization&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yokoya%2C+Naoto&rft.au=Chanussot%2C+Jocelyn&rft.au=Iwasaki%2C+Akira&rft.date=2014-02-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=52&rft.issue=2&rft.spage=1430&rft.epage=1437&rft_id=info:doi/10.1109%2FTGRS.2013.2251349&rft.externalDocID=6504505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon