Vector quantization of images using modified adaptive resonance algorithm for hierarchical clustering

A modified adaptive resonance theory (ART2) learning algorithm, which we employ in this paper, belongs to the family of NN algorithms whose main goal is the discovery of input data clusters, without considering their actual size. This feature makes the modified ART2 algorithm very convenient for ima...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 12; číslo 5; s. 1147 - 1162
Hlavní autoři: Vlajic, N., Card, H.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2001
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A modified adaptive resonance theory (ART2) learning algorithm, which we employ in this paper, belongs to the family of NN algorithms whose main goal is the discovery of input data clusters, without considering their actual size. This feature makes the modified ART2 algorithm very convenient for image compression tasks, particularly when dealing with images with large background areas containing few details. Moreover, due to the ability to produce hierarchical quantization (clustering), the modified ART2 algorithm is proved to significantly reduce the computation time required for coding, and therefore enhance the overall compression process. Examples of the results obtained are presented, suggesting the benefits of using this algorithm for the purpose of VQ, i.e., image compression, over the other NN learning algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
DOI:10.1109/72.950143