Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm

•A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 111; s. 65 - 82
Hlavní autori: Liu, Chunbao, Bu, Weiyang, Xu, Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.08.2017
Elsevier BV
Predmet:
ISSN:0017-9310, 1879-2189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers were employed to evaluate the optimized result. A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks.
AbstractList A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks.
•A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers were employed to evaluate the optimized result. A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks.
Author Xu, Dong
Bu, Weiyang
Liu, Chunbao
Author_xml – sequence: 1
  givenname: Chunbao
  surname: Liu
  fullname: Liu, Chunbao
  email: liuchunbao@jlu.edu.cn
– sequence: 2
  givenname: Weiyang
  surname: Bu
  fullname: Bu, Weiyang
  email: bwy1991@126.com
– sequence: 3
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
  email: buwy15@mails.jlu.edu.cn
BookMark eNqVkMGO0zAQhi20SHQX3sESFy4Jdt0m8Q1UKOxqERc4WxNn3E6U2MF2V8DT41JOywVOo9H8-n7Nd82ufPDI2Cspailk83qsaTwi5BlSyhF8chjrtZBtLVQtmuYJW8mu1dVadvqKrUS5VFpJ8YxdpzSeV7FpVmz5dJoyVaEf0WZ6QJ6OsCAPS6aZfkKm4HlwHPgyQcbKkefnVo7f7RH8ASM_JfIHvtu_4-AHPj_CHdBjJsthOoRI-Tg_Z08dTAlf_Jk37Ov-_Zfdx-r-84fb3dv7ym46nau17uwWLWxdD9Bp18h-2PZ620IHVqpBa3SoW6F71yAoWMNGYef6Rg4WsG3VDXt54S4xfDthymYMp-hLpZFaaSHadqNKan9J2RhSiuiMpfz76-KUJiOFOds2o_nbtjnbNkKZYruA3jwCLZFmiD_-B3F3QWDR8kDlmiyhtzhQLDbNEOjfYb8AQMuxHQ
CitedBy_id crossref_primary_10_1155_2020_6053129
crossref_primary_10_1016_j_cep_2017_07_014
crossref_primary_10_1007_s13369_022_07119_3
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120097
crossref_primary_10_1016_j_jobe_2024_111388
crossref_primary_10_1016_j_ceramint_2019_09_021
crossref_primary_10_1080_19942060_2022_2103589
crossref_primary_10_1016_j_renene_2017_09_011
crossref_primary_10_1016_j_ijhydene_2024_12_191
crossref_primary_10_1016_j_compstruct_2020_113047
crossref_primary_10_3390_en15176101
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126230
crossref_primary_10_1007_s13198_021_01306_5
crossref_primary_10_1007_s42452_021_04645_x
crossref_primary_10_1016_j_ijrefrig_2020_07_023
crossref_primary_10_1016_j_oceaneng_2024_120219
crossref_primary_10_1016_j_tsep_2025_103899
crossref_primary_10_1016_j_applthermaleng_2019_114020
crossref_primary_10_1016_j_ijthermalsci_2022_108124
crossref_primary_10_1177_09544089221134449
crossref_primary_10_1016_j_ijthermalsci_2023_108843
crossref_primary_10_1016_j_tws_2024_112203
crossref_primary_10_3390_machines10060482
crossref_primary_10_1007_s00158_022_03415_6
crossref_primary_10_1016_j_csite_2025_106619
crossref_primary_10_1016_j_ijthermalsci_2023_108168
crossref_primary_10_1016_j_cep_2021_108369
crossref_primary_10_1016_j_icheatmasstransfer_2024_107396
crossref_primary_10_1007_s11081_020_09497_9
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_115
crossref_primary_10_1016_j_applthermaleng_2020_116088
crossref_primary_10_1016_j_energy_2017_09_098
crossref_primary_10_1007_s00231_018_2430_3
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121099
crossref_primary_10_1002_adts_202100463
crossref_primary_10_1177_0954408918779232
crossref_primary_10_1177_09576509231169545
crossref_primary_10_1016_j_ceramint_2019_04_096
crossref_primary_10_1016_j_compfluid_2021_104899
crossref_primary_10_1007_s00158_023_03661_2
crossref_primary_10_3390_pr7040204
crossref_primary_10_1007_s10973_019_08971_6
crossref_primary_10_1016_j_energy_2019_116567
crossref_primary_10_3390_en15218205
crossref_primary_10_1016_j_desal_2020_114463
crossref_primary_10_1016_j_ijthermalsci_2021_106872
crossref_primary_10_1016_j_ijrefrig_2023_05_014
crossref_primary_10_1016_j_ijhydene_2024_03_085
crossref_primary_10_1016_j_csite_2025_106708
crossref_primary_10_1016_j_energy_2021_120037
crossref_primary_10_1016_j_matdes_2025_114339
crossref_primary_10_1016_j_tsep_2023_101888
crossref_primary_10_1016_j_icheatmasstransfer_2024_108253
crossref_primary_10_3390_chemengineering5040082
crossref_primary_10_1016_j_ijthermalsci_2023_108492
crossref_primary_10_1016_j_applthermaleng_2024_123570
crossref_primary_10_2514_1_T7193
crossref_primary_10_1177_0954407020980551
crossref_primary_10_1007_s11831_019_09318_y
crossref_primary_10_1016_j_tsep_2020_100568
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121002
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122256
crossref_primary_10_1016_j_applthermaleng_2023_120533
crossref_primary_10_1016_j_simpat_2021_102429
crossref_primary_10_1088_1742_6596_2509_1_012014
crossref_primary_10_1088_1742_6596_2766_1_012019
crossref_primary_10_1109_ACCESS_2021_3057494
crossref_primary_10_1061__ASCE_IS_1943_555X_0000625
crossref_primary_10_1080_01457632_2022_2148342
crossref_primary_10_1016_j_energy_2024_132615
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122818
crossref_primary_10_1080_10407790_2024_2368673
crossref_primary_10_1016_j_ijthermalsci_2023_108429
crossref_primary_10_1088_1402_4896_ad9e3a
crossref_primary_10_1016_j_csite_2024_105307
crossref_primary_10_1108_JEDT_07_2020_0262
crossref_primary_10_1016_j_apm_2021_12_008
crossref_primary_10_1016_j_enconman_2025_120187
crossref_primary_10_1016_j_ijthermalsci_2019_106150
crossref_primary_10_1016_j_anucene_2022_109517
crossref_primary_10_1016_j_applthermaleng_2022_118448
crossref_primary_10_1016_j_applthermaleng_2022_118965
crossref_primary_10_1016_j_applthermaleng_2021_117414
crossref_primary_10_1515_mt_2022_0049
crossref_primary_10_1080_10618562_2021_1979524
crossref_primary_10_3390_w17172609
crossref_primary_10_1007_s40032_019_00527_9
crossref_primary_10_1111_jfpe_12889
crossref_primary_10_1016_j_est_2020_101815
crossref_primary_10_1177_09544062211014537
crossref_primary_10_1016_j_energy_2025_136035
crossref_primary_10_3390_app12031301
crossref_primary_10_3390_ma15030968
crossref_primary_10_1016_j_icheatmasstransfer_2025_109665
crossref_primary_10_1007_s00521_021_05963_2
crossref_primary_10_1007_s10973_018_7587_y
Cites_doi 10.1007/s00231-013-1140-0
10.1016/j.ijheatmasstransfer.2010.07.017
10.1108/09615531111177732
10.1016/j.applthermaleng.2011.02.031
10.1016/j.ijheatmasstransfer.2016.04.039
10.1016/j.apm.2012.03.043
10.1016/j.applthermaleng.2014.11.071
10.2514/6.2004-2011
10.1109/STHERM.1996.545106
10.1016/j.ijheatmasstransfer.2009.03.026
10.1080/01457632.2015.1044395
10.1016/j.ijthermalsci.2013.07.021
10.1016/j.cep.2014.06.011
10.1016/j.compchemeng.2013.10.010
10.1016/j.ijheatmasstransfer.2004.11.007
10.1016/j.ijheatmasstransfer.2014.03.015
10.1080/10407782.2011.588574
10.1016/j.applthermaleng.2015.06.036
10.1080/10407780903507957
10.1007/s00231-015-1507-5
10.1016/j.applthermaleng.2011.04.027
10.1007/s10494-011-9378-4
10.1016/j.rser.2015.09.003
10.1016/j.applthermaleng.2010.03.018
10.1016/j.enconman.2016.03.047
10.1016/j.apenergy.2015.07.065
10.1162/106365601750190406
10.1080/10407782.2015.1052298
10.1016/j.ijheatmasstransfer.2014.07.060
10.1016/j.applthermaleng.2015.01.068
10.1016/j.enconman.2010.10.026
10.1016/j.ijheatmasstransfer.2014.09.005
10.1016/j.apm.2015.05.003
10.1016/j.enconman.2015.05.009
10.1631/jzus.A1400270
10.1016/j.applthermaleng.2013.11.042
10.1016/j.apenergy.2015.04.024
10.1016/j.cherd.2014.02.005
10.1016/j.apenergy.2013.07.037
10.1016/j.applthermaleng.2011.09.001
10.1016/j.applthermaleng.2014.12.077
10.1016/j.ijthermalsci.2014.10.001
10.1016/j.ijheatmasstransfer.2014.03.034
10.2514/1.8650
10.1162/evco.1994.2.3.221
10.1007/s11434-010-3009-7
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Aug 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2017
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2017.03.066
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 82
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2017_03_066
S0017931016337863
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c489t-298c5eca5fbaa89f61bd5b957a8ac13d99efe9709bf6ea3a2a43e8fb61dcae773
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404092900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Nov 09 08:01:22 EST 2025
Sat Nov 29 03:38:12 EST 2025
Tue Nov 18 21:25:51 EST 2025
Fri Feb 23 02:30:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Offset plate-fin heat exchanger
CFD
Multi-objective optimization
Field synergy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c489t-298c5eca5fbaa89f61bd5b957a8ac13d99efe9709bf6ea3a2a43e8fb61dcae773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1939007743
PQPubID 2045464
PageCount 18
ParticipantIDs proquest_journals_1939007743
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2017_03_066
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_066
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2017_03_066
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ranganayakulu, Mathur, Nithiarasu, Chennu, Paturu (b0035) 2011; 21
Qi (b0230) 2012; 38
Sun, Zhang (b0060) 2014; 75
Patel, Savsani (b0170) 2014; 92
Yaïci, Ghorab, Entchev (b0020) 2014; 74
Borrajo-Peláez, Ortega-Casanova, Cejudo-López (b0055) 2010; 30
Al-Damook, Kapur, Summers, Thompson (b0065) 2015; 89
Lu, Huang, Nien, Wang (b0050) 2011; 52
Lotfi, Sundén, Wang (b0075) 2016; 162
Wang, Guo, Zhang, Yang, Ding, Zhan (b0100) 2014; 61
Rao, Patel (b0175) 2013; 37
Khoshvaght-Aliabadi, Zangouei, Hormozi (b0090) 2015; 88
Wen, Yang, Tong, Li, Wang, Li (b0135) 2016; 117
Taler, Ocłoń (b0045) 2014; 83
Ismail, Ranganayakulu, Shah (b0015) 2009; 52
Zhou, Catton (b0070) 2011; 60
Srinivas, Deb (b0205) 1994; 2
Chen, Lin, Chen, Chang (b0040) 2016; 100
Yin, Ooka (b0150) 2015; 80
He, Qi, Qian (b0225) 2014
Nagarajan, Chen, Wang, Ma (b0085) 2014; 113
Rao, Ranganath, Ranganayakulu (b0030) 2013; 49
Bala Sundar Rao, Ranganath, Ranganayakulu (b0025) 2016; 37
T. Yuan, Computational modelling of flow bypass effects on straight fin heat sink in rectangular duct, in: Semiconductor Thermal Measurement and Management Symposium, 1996 SEMI-THERM XII Proceedings, Twelfth Annual IEEE, IEEE, 1996, pp. 164–168.
Zhang, Qian, Deng, Yin (b0105) 2015; 51
Hajabdollahi (b0140) 2015; 82
Saha, Biswas, Sarkar (b0185) 2014; 74
Gritskevich, Garbaruk, Schütze, Menter (b0195) 2012; 88
Wang, Li (b0130) 2016; 53
Liu, Liu, Huang (b0245) 2010; 55
Hadidi (b0160) 2015; 150
Lemouedda, Breuer, Franz, Botsch, Delgado (b0115) 2010; 53
Bhutta, Hayat, Bashir, Khan, Ahmad, Khan (b0005) 2012; 32
Hajabdollahi, Tahani, Fard (b0180) 2011; 31
Guo, Tao, Shah (b0240) 2005; 48
Najafi, Najafi, Hoseinpoori (b0125) 2011; 31
Deb, Beyer (b0235) 2001; 9
Wang, Li (b0165) 2015; 101
Martin, Simpson (b0220) 2005; 43
Ismail, Velraj (b0010) 2009; 56
Yang, Li (b0110) 2014; 78
Zarea, Kashkooli, Mehryan, Saffarian, Beherghani (b0120) 2014; 69
Turgut (b0155) 2016; 40
W.M. Kays, A.L. London, Compact heat exchangers, 1984.
S.J. Bates, J. Sienz, V.V. Toropov, Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, AIAA Paper (2004) 1–7.
Liu, Zhang, Zhao, Yi, Zhou (b0095) 2015; 16
Guo, Zhang, Smith (b0145) 2015; 78
Liu, Xu, Ma, Yuan, Li (b0190) 2015; 68
Nagarajan, Chen, Wang, Ma (b0080) 2015; 80
Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0100) 2014; 61
Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0175) 2013; 37
10.1016/j.ijheatmasstransfer.2017.03.066_b0210
10.1016/j.ijheatmasstransfer.2017.03.066_b0215
Najafi (10.1016/j.ijheatmasstransfer.2017.03.066_b0125) 2011; 31
Yaïci (10.1016/j.ijheatmasstransfer.2017.03.066_b0020) 2014; 74
Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0165) 2015; 101
Yin (10.1016/j.ijheatmasstransfer.2017.03.066_b0150) 2015; 80
Sun (10.1016/j.ijheatmasstransfer.2017.03.066_b0060) 2014; 75
Hajabdollahi (10.1016/j.ijheatmasstransfer.2017.03.066_b0180) 2011; 31
Ranganayakulu (10.1016/j.ijheatmasstransfer.2017.03.066_b0035) 2011; 21
Deb (10.1016/j.ijheatmasstransfer.2017.03.066_b0235) 2001; 9
Yang (10.1016/j.ijheatmasstransfer.2017.03.066_b0110) 2014; 78
Zhang (10.1016/j.ijheatmasstransfer.2017.03.066_b0105) 2015; 51
10.1016/j.ijheatmasstransfer.2017.03.066_b0200
Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0030) 2013; 49
Guo (10.1016/j.ijheatmasstransfer.2017.03.066_b0240) 2005; 48
Zarea (10.1016/j.ijheatmasstransfer.2017.03.066_b0120) 2014; 69
Martin (10.1016/j.ijheatmasstransfer.2017.03.066_b0220) 2005; 43
Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0190) 2015; 68
Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0095) 2015; 16
Bhutta (10.1016/j.ijheatmasstransfer.2017.03.066_b0005) 2012; 32
Al-Damook (10.1016/j.ijheatmasstransfer.2017.03.066_b0065) 2015; 89
Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0245) 2010; 55
Ismail (10.1016/j.ijheatmasstransfer.2017.03.066_b0010) 2009; 56
Saha (10.1016/j.ijheatmasstransfer.2017.03.066_b0185) 2014; 74
Patel (10.1016/j.ijheatmasstransfer.2017.03.066_b0170) 2014; 92
Qi (10.1016/j.ijheatmasstransfer.2017.03.066_b0230) 2012; 38
Khoshvaght-Aliabadi (10.1016/j.ijheatmasstransfer.2017.03.066_b0090) 2015; 88
Guo (10.1016/j.ijheatmasstransfer.2017.03.066_b0145) 2015; 78
Lotfi (10.1016/j.ijheatmasstransfer.2017.03.066_b0075) 2016; 162
Hajabdollahi (10.1016/j.ijheatmasstransfer.2017.03.066_b0140) 2015; 82
Hadidi (10.1016/j.ijheatmasstransfer.2017.03.066_b0160) 2015; 150
Srinivas (10.1016/j.ijheatmasstransfer.2017.03.066_b0205) 1994; 2
He (10.1016/j.ijheatmasstransfer.2017.03.066_b0225) 2014
Bala Sundar Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0025) 2016; 37
Zhou (10.1016/j.ijheatmasstransfer.2017.03.066_b0070) 2011; 60
Nagarajan (10.1016/j.ijheatmasstransfer.2017.03.066_b0080) 2015; 80
Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0130) 2016; 53
Chen (10.1016/j.ijheatmasstransfer.2017.03.066_b0040) 2016; 100
Lu (10.1016/j.ijheatmasstransfer.2017.03.066_b0050) 2011; 52
Lemouedda (10.1016/j.ijheatmasstransfer.2017.03.066_b0115) 2010; 53
Ismail (10.1016/j.ijheatmasstransfer.2017.03.066_b0015) 2009; 52
Gritskevich (10.1016/j.ijheatmasstransfer.2017.03.066_b0195) 2012; 88
Borrajo-Peláez (10.1016/j.ijheatmasstransfer.2017.03.066_b0055) 2010; 30
Wen (10.1016/j.ijheatmasstransfer.2017.03.066_b0135) 2016; 117
Turgut (10.1016/j.ijheatmasstransfer.2017.03.066_b0155) 2016; 40
Taler (10.1016/j.ijheatmasstransfer.2017.03.066_b0045) 2014; 83
Nagarajan (10.1016/j.ijheatmasstransfer.2017.03.066_b0085) 2014; 113
References_xml – volume: 80
  start-page: 310
  year: 2015
  end-page: 318
  ident: b0150
  article-title: Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 49
  start-page: 991
  year: 2013
  end-page: 1000
  ident: b0030
  article-title: Development of colburn ‘j’ factor and fanning friction factor ‘f’ correlations for compact heat exchanger plain fins by using CFD
  publication-title: Heat Mass Transfer
– volume: 55
  start-page: 2589
  year: 2010
  end-page: 2597
  ident: b0245
  article-title: Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement
  publication-title: Chin. Sci. Bull.
– volume: 31
  start-page: 1839
  year: 2011
  end-page: 1847
  ident: b0125
  article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 853
  year: 2005
  end-page: 863
  ident: b0220
  article-title: Use of kriging models to approximate deterministic computer models
  publication-title: AIAA J.
– volume: 162
  start-page: 1282
  year: 2016
  end-page: 1302
  ident: b0075
  article-title: An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators
  publication-title: Appl. Energy
– volume: 78
  start-page: 491
  year: 2015
  end-page: 499
  ident: b0145
  article-title: Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: b0225
  article-title: Sequential optimization method based on Kriging surrogate model
  publication-title: Comput. Appl. Chem.
– volume: 89
  start-page: 365
  year: 2015
  end-page: 376
  ident: b0065
  article-title: An experimental and computational investigation of thermal air flows through perforated pin heat sinks
  publication-title: Appl. Therm. Eng.
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b0205
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Comput.
– volume: 40
  start-page: 50
  year: 2016
  end-page: 69
  ident: b0155
  article-title: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers
  publication-title: Appl. Math. Model.
– volume: 52
  start-page: 3972
  year: 2009
  end-page: 3983
  ident: b0015
  article-title: Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins
  publication-title: Int. J. Heat Mass Transfer
– volume: 21
  start-page: 935
  year: 2011
  end-page: 951
  ident: b0035
  article-title: Development of heat transfer coefficient and friction factor correlations for offset fins using CFD
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 74
  start-page: 292
  year: 2014
  end-page: 305
  ident: b0185
  article-title: Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger–a synergy based analysis
  publication-title: Int. J. Heat Mass Transfer
– volume: 61
  start-page: 30
  year: 2014
  end-page: 37
  ident: b0100
  article-title: Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach
  publication-title: Comput. Chem. Eng.
– volume: 37
  start-page: 150
  year: 2016
  end-page: 161
  ident: b0025
  article-title: Development of Colburn j factor and Fanning friction factor correlations for compact surfaces of the triangular perforated fins using CFD
  publication-title: Heat Transfer Eng.
– volume: 37
  start-page: 1147
  year: 2013
  end-page: 1162
  ident: b0175
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
– volume: 31
  start-page: 2597
  year: 2011
  end-page: 2604
  ident: b0180
  article-title: CFD modeling and multi-objective optimization of compact heat exchanger using CAN method
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 1638
  year: 2011
  end-page: 1643
  ident: b0050
  article-title: A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger
  publication-title: Energy Convers. Manage.
– volume: 74
  start-page: 490
  year: 2014
  end-page: 500
  ident: b0020
  article-title: 3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-and-tube laminar heat exchangers
  publication-title: Int. J. Heat Mass Transfer
– volume: 56
  start-page: 987
  year: 2009
  end-page: 1005
  ident: b0010
  article-title: Studies on Fanning friction (f) and Colburn (j) factors of offset and wavy fins compact plate fin heat exchanger–a CFD approach
  publication-title: Numer. Heat Transfer, Part A: Appl.
– volume: 38
  start-page: 712
  year: 2012
  end-page: 717
  ident: b0230
  article-title: PX oxidation process optimization based on Kriging surrogate model
  publication-title: Huadong Ligong Daxue Xuebao
– volume: 9
  start-page: 197
  year: 2001
  end-page: 221
  ident: b0235
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evolutionary Comput.
– volume: 113
  start-page: 589
  year: 2014
  end-page: 602
  ident: b0085
  article-title: Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger
  publication-title: Appl. Energy
– volume: 30
  start-page: 1608
  year: 2010
  end-page: 1615
  ident: b0055
  article-title: A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 101
  start-page: 126
  year: 2015
  end-page: 135
  ident: b0165
  article-title: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm
  publication-title: Energy Convers. Manage.
– volume: 53
  start-page: 5386
  year: 2010
  end-page: 5399
  ident: b0115
  article-title: Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger
  publication-title: Int. J. Heat Mass Transfer
– volume: 78
  start-page: 860
  year: 2014
  end-page: 870
  ident: b0110
  article-title: General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins
  publication-title: Int. J. Heat Mass Transfer
– volume: 16
  start-page: 279
  year: 2015
  end-page: 294
  ident: b0095
  article-title: Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger
  publication-title: J. Zhejiang Univ. Sci. A
– volume: 92
  start-page: 2371
  year: 2014
  end-page: 2382
  ident: b0170
  article-title: Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm
  publication-title: Chem. Eng. Res. Des.
– volume: 53
  start-page: 500
  year: 2016
  end-page: 514
  ident: b0130
  article-title: Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 80
  start-page: 329
  year: 2015
  end-page: 343
  ident: b0080
  article-title: CFD modeling and simulation of sulfur trioxide decomposition in ceramic plate-fin high temperature heat exchanger and decomposer
  publication-title: Int. J. Heat Mass Transfer
– volume: 75
  start-page: 45
  year: 2014
  end-page: 53
  ident: b0060
  article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology
  publication-title: Int. J. Therm. Sci.
– reference: T. Yuan, Computational modelling of flow bypass effects on straight fin heat sink in rectangular duct, in: Semiconductor Thermal Measurement and Management Symposium, 1996 SEMI-THERM XII Proceedings, Twelfth Annual IEEE, IEEE, 1996, pp. 164–168.
– reference: W.M. Kays, A.L. London, Compact heat exchangers, 1984.
– volume: 150
  start-page: 196
  year: 2015
  end-page: 210
  ident: b0160
  article-title: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm
  publication-title: Appl. Energy
– volume: 117
  start-page: 482
  year: 2016
  end-page: 489
  ident: b0135
  article-title: Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm
  publication-title: Energy Convers. Manage.
– volume: 60
  start-page: 107
  year: 2011
  end-page: 128
  ident: b0070
  article-title: Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections
  publication-title: Numer. Heat Transfer, Part A: Appl.
– volume: 32
  start-page: 1
  year: 2012
  end-page: 12
  ident: b0005
  article-title: CFD applications in various heat exchangers design: a review
  publication-title: Appl. Therm. Eng.
– reference: S.J. Bates, J. Sienz, V.V. Toropov, Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, AIAA Paper (2004) 1–7.
– volume: 82
  start-page: 152
  year: 2015
  end-page: 161
  ident: b0140
  article-title: Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 88
  start-page: 431
  year: 2012
  end-page: 449
  ident: b0195
  article-title: Development of DDES and IDDES formulations for the k-ω shear stress transport model
  publication-title: Flow, Turbulence Combust.
– volume: 100
  start-page: 320
  year: 2016
  end-page: 331
  ident: b0040
  article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters
  publication-title: Int. J. Heat Mass Transfer
– volume: 88
  start-page: 180
  year: 2015
  end-page: 192
  ident: b0090
  article-title: Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation
  publication-title: Int. J. Therm. Sci.
– volume: 83
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0045
  article-title: Determination of heat transfer formulas for gas flow in fin-and-tube heat exchanger with oval tubes using CFD simulations
  publication-title: Chem. Eng. Process.
– volume: 69
  start-page: 267
  year: 2014
  end-page: 277
  ident: b0120
  article-title: Optimal design of plate-fin heat exchangers by a Bees Algorithm
  publication-title: Appl. Therm. Eng.
– volume: 68
  start-page: 1351
  year: 2015
  end-page: 1368
  ident: b0190
  article-title: Analysis of unsteady rotor–stator flow with variable viscosity based on experiments and CFD simulations
  publication-title: Numer. Heat Transfer, Part A: Appl.
– volume: 48
  start-page: 1797
  year: 2005
  end-page: 1807
  ident: b0240
  article-title: The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer
  publication-title: Int. J. Heat Mass Transfer
– volume: 51
  start-page: 1337
  year: 2015
  end-page: 1353
  ident: b0105
  article-title: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger
  publication-title: Heat Mass Transfer
– volume: 49
  start-page: 991
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0030
  article-title: Development of colburn ‘j’ factor and fanning friction factor ‘f’ correlations for compact heat exchanger plain fins by using CFD
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-013-1140-0
– volume: 53
  start-page: 5386
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0115
  article-title: Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.07.017
– volume: 38
  start-page: 712
  issue: 6
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0230
  article-title: PX oxidation process optimization based on Kriging surrogate model
  publication-title: Huadong Ligong Daxue Xuebao
– volume: 21
  start-page: 935
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0035
  article-title: Development of heat transfer coefficient and friction factor correlations for offset fins using CFD
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/09615531111177732
– volume: 31
  start-page: 1839
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0125
  article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.02.031
– volume: 100
  start-page: 320
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0040
  article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.04.039
– volume: 37
  start-page: 1147
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0175
  article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.03.043
– volume: 78
  start-page: 491
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0145
  article-title: Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.11.071
– ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0210
  doi: 10.2514/6.2004-2011
– ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0200
  doi: 10.1109/STHERM.1996.545106
– volume: 52
  start-page: 3972
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0015
  article-title: Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.03.026
– volume: 37
  start-page: 150
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0025
  article-title: Development of Colburn j factor and Fanning friction factor correlations for compact surfaces of the triangular perforated fins using CFD
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2015.1044395
– volume: 75
  start-page: 45
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0060
  article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.07.021
– volume: 83
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0045
  article-title: Determination of heat transfer formulas for gas flow in fin-and-tube heat exchanger with oval tubes using CFD simulations
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2014.06.011
– volume: 61
  start-page: 30
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0100
  article-title: Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.10.010
– volume: 48
  start-page: 1797
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0240
  article-title: The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.11.007
– ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0215
– volume: 74
  start-page: 292
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0185
  article-title: Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger–a synergy based analysis
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.03.015
– volume: 60
  start-page: 107
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0070
  article-title: Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections
  publication-title: Numer. Heat Transfer, Part A: Appl.
  doi: 10.1080/10407782.2011.588574
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0225
  article-title: Sequential optimization method based on Kriging surrogate model
  publication-title: Comput. Appl. Chem.
– volume: 89
  start-page: 365
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0065
  article-title: An experimental and computational investigation of thermal air flows through perforated pin heat sinks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.06.036
– volume: 56
  start-page: 987
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0010
  article-title: Studies on Fanning friction (f) and Colburn (j) factors of offset and wavy fins compact plate fin heat exchanger–a CFD approach
  publication-title: Numer. Heat Transfer, Part A: Appl.
  doi: 10.1080/10407780903507957
– volume: 51
  start-page: 1337
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0105
  article-title: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-015-1507-5
– volume: 31
  start-page: 2597
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0180
  article-title: CFD modeling and multi-objective optimization of compact heat exchanger using CAN method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.04.027
– volume: 88
  start-page: 431
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0195
  article-title: Development of DDES and IDDES formulations for the k-ω shear stress transport model
  publication-title: Flow, Turbulence Combust.
  doi: 10.1007/s10494-011-9378-4
– volume: 53
  start-page: 500
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0130
  article-title: Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.003
– volume: 30
  start-page: 1608
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0055
  article-title: A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.03.018
– volume: 117
  start-page: 482
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0135
  article-title: Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.03.047
– volume: 162
  start-page: 1282
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0075
  article-title: An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.07.065
– volume: 9
  start-page: 197
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0235
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evolutionary Comput.
  doi: 10.1162/106365601750190406
– volume: 68
  start-page: 1351
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0190
  article-title: Analysis of unsteady rotor–stator flow with variable viscosity based on experiments and CFD simulations
  publication-title: Numer. Heat Transfer, Part A: Appl.
  doi: 10.1080/10407782.2015.1052298
– volume: 78
  start-page: 860
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0110
  article-title: General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.07.060
– volume: 80
  start-page: 310
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0150
  article-title: Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.068
– volume: 52
  start-page: 1638
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0050
  article-title: A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.10.026
– volume: 80
  start-page: 329
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0080
  article-title: CFD modeling and simulation of sulfur trioxide decomposition in ceramic plate-fin high temperature heat exchanger and decomposer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.09.005
– volume: 40
  start-page: 50
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0155
  article-title: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.05.003
– volume: 101
  start-page: 126
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0165
  article-title: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.009
– volume: 16
  start-page: 279
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0095
  article-title: Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A1400270
– volume: 69
  start-page: 267
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0120
  article-title: Optimal design of plate-fin heat exchangers by a Bees Algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.042
– volume: 150
  start-page: 196
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0160
  article-title: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.024
– volume: 92
  start-page: 2371
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0170
  article-title: Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.02.005
– volume: 113
  start-page: 589
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0085
  article-title: Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.037
– volume: 32
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0005
  article-title: CFD applications in various heat exchangers design: a review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.09.001
– volume: 82
  start-page: 152
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0140
  article-title: Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.12.077
– volume: 88
  start-page: 180
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0090
  article-title: Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.10.001
– volume: 74
  start-page: 490
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0020
  article-title: 3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-and-tube laminar heat exchangers
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.03.034
– volume: 43
  start-page: 853
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0220
  article-title: Use of kriging models to approximate deterministic computer models
  publication-title: AIAA J.
  doi: 10.2514/1.8650
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0205
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Comput.
  doi: 10.1162/evco.1994.2.3.221
– volume: 55
  start-page: 2589
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0245
  article-title: Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-010-3009-7
SSID ssj0017046
Score 2.5419326
Snippet •A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its...
A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms CFD
Classification
Computational fluid dynamics
Computer simulation
Convective heat transfer
Design optimization
Field synergy
Flow resistance
Friction
Friction factor
Genetic algorithms
Heat transfer
Internal flow
Multi-objective optimization
Multiple objective analysis
Offset plate-fin heat exchanger
Optimization
Performance enhancement
Plate-fin heat exchangers
Shape optimization
Simulation
Sorting algorithms
Title Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.066
https://www.proquest.com/docview/1939007743
Volume 111
WOSCitedRecordID wos000404092900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4gXxFUMBvIDD0hVUFonsf2EprEJ0DQhMaBvkZOcbKnapOplKv-HH8rxLe3KRVSCl6iyWjvu9-Wcz845x4S8REzDGKQKChFBEAGXgULHF0DEilACehiT4f3llJ-dieFQfux0vvtcmKsxr2uxWsnpf4Ua2xBsnTq7A9xtp9iAnxF0vCLseP0r4E1KbdBkI2vKevNLNYVeg6Zh4nIubU7kdIwyMyirWovFRQ9WPgd4aWMBTt6aFwuTre5wXDBFXscXzaxaXE425e31_cWNqhRmCNMdinV9LgWq5XVc8Gm1tK_-l3WmmnaHwDR-heqbcu4VG4dLK_tdi9uvQB_oo-XcJppPpFlHLRnDjF-UzEW4grXFAomDCkReM9bONFtza4-Z8I578EuXYHcnRq-rkZ6qnqWfpA7s46bEbbJVjdv490-hsV66A8a4SNgNsjfgsRRdsnf4_nj4oX1bxUObEOYncZu8WscR_nnc38mhLWFg1M75PXLXLVPooaXXfdKB-gG5ZcKF8_lDMt0iGTUko5sko01JFW1JRvXt0ZZk1JCMIskosoJukYw6ktGWZI_I55Pj86N3gTu7I8gjIRfBQIo8hlzFZaaUkGXSz4o4kzFXQuV9VkgJJUgeyqxMQDE1UBEDUWZJv8gVcM4ek27d1PCE0DyWJVNFn0OOy2tUzDyJeKLXIRBlMRT75I3_C9PcFbbX56uMUx_BOEp_BiHVIKQhSxGEfSLbHqa2yMsOvz3yqKVOtFoxmiIBd-jlwAOeuodznuLaSupyWxF7-k8GeUburB_IA9JdzJbwnNzMrxbVfPbCkfoHoqjbNQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+shape+optimization+of+a+plate-fin+heat+exchanger+using+CFD+and+multi-objective+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Chunbao&rft.au=Bu%2C+Weiyang&rft.au=Xu%2C+Dong&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=111&rft.spage=65&rft.epage=82&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2017.03.066&rft.externalDocID=S0017931016337863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon