Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm
•A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 111; s. 65 - 82 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.08.2017
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers were employed to evaluate the optimized result.
A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks. |
|---|---|
| AbstractList | A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks. •A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its performances were significantly improved.•Effect of single parameter on the performances was analyzed.•Field synergy principles and numbers were employed to evaluate the optimized result. A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization were combined to improve the performances of the original heat exchanger, which could not be applied to the practical engineering application. The optimizations of the Colburn factor j and the friction factor f were treated as the multi-objective optimization problem due to the presence of two conflicting objectives. The second generation Non-Dominated Sorting Genetic Algorithm (NSGA-II) was employed to optimize the shape of the heat exchanger. The optimization results indicated that the Colburn factor j increased by 12.83% and the friction factor f decreased by 26.91%, which showed that the convective heat transfer was enhanced and the flow resistance was also significantly reduced. Then, internal flow fields involving temperature, pressure and velocity were qualitatively compared to further emphasize the optimization effect. Finally, the field synergy numbers were compared and analyzed, which could help to prove the rationality of the optimized result and guide the following design or optimization tasks. |
| Author | Xu, Dong Bu, Weiyang Liu, Chunbao |
| Author_xml | – sequence: 1 givenname: Chunbao surname: Liu fullname: Liu, Chunbao email: liuchunbao@jlu.edu.cn – sequence: 2 givenname: Weiyang surname: Bu fullname: Bu, Weiyang email: bwy1991@126.com – sequence: 3 givenname: Dong surname: Xu fullname: Xu, Dong email: buwy15@mails.jlu.edu.cn |
| BookMark | eNqVkMGO0zAQhi20SHQX3sESFy4Jdt0m8Q1UKOxqERc4WxNn3E6U2MF2V8DT41JOywVOo9H8-n7Nd82ufPDI2Cspailk83qsaTwi5BlSyhF8chjrtZBtLVQtmuYJW8mu1dVadvqKrUS5VFpJ8YxdpzSeV7FpVmz5dJoyVaEf0WZ6QJ6OsCAPS6aZfkKm4HlwHPgyQcbKkefnVo7f7RH8ASM_JfIHvtu_4-AHPj_CHdBjJsthOoRI-Tg_Z08dTAlf_Jk37Ov-_Zfdx-r-84fb3dv7ym46nau17uwWLWxdD9Bp18h-2PZ620IHVqpBa3SoW6F71yAoWMNGYef6Rg4WsG3VDXt54S4xfDthymYMp-hLpZFaaSHadqNKan9J2RhSiuiMpfz76-KUJiOFOds2o_nbtjnbNkKZYruA3jwCLZFmiD_-B3F3QWDR8kDlmiyhtzhQLDbNEOjfYb8AQMuxHQ |
| CitedBy_id | crossref_primary_10_1155_2020_6053129 crossref_primary_10_1016_j_cep_2017_07_014 crossref_primary_10_1007_s13369_022_07119_3 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120097 crossref_primary_10_1016_j_jobe_2024_111388 crossref_primary_10_1016_j_ceramint_2019_09_021 crossref_primary_10_1080_19942060_2022_2103589 crossref_primary_10_1016_j_renene_2017_09_011 crossref_primary_10_1016_j_ijhydene_2024_12_191 crossref_primary_10_1016_j_compstruct_2020_113047 crossref_primary_10_3390_en15176101 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126230 crossref_primary_10_1007_s13198_021_01306_5 crossref_primary_10_1007_s42452_021_04645_x crossref_primary_10_1016_j_ijrefrig_2020_07_023 crossref_primary_10_1016_j_oceaneng_2024_120219 crossref_primary_10_1016_j_tsep_2025_103899 crossref_primary_10_1016_j_applthermaleng_2019_114020 crossref_primary_10_1016_j_ijthermalsci_2022_108124 crossref_primary_10_1177_09544089221134449 crossref_primary_10_1016_j_ijthermalsci_2023_108843 crossref_primary_10_1016_j_tws_2024_112203 crossref_primary_10_3390_machines10060482 crossref_primary_10_1007_s00158_022_03415_6 crossref_primary_10_1016_j_csite_2025_106619 crossref_primary_10_1016_j_ijthermalsci_2023_108168 crossref_primary_10_1016_j_cep_2021_108369 crossref_primary_10_1016_j_icheatmasstransfer_2024_107396 crossref_primary_10_1007_s11081_020_09497_9 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_115 crossref_primary_10_1016_j_applthermaleng_2020_116088 crossref_primary_10_1016_j_energy_2017_09_098 crossref_primary_10_1007_s00231_018_2430_3 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121099 crossref_primary_10_1002_adts_202100463 crossref_primary_10_1177_0954408918779232 crossref_primary_10_1177_09576509231169545 crossref_primary_10_1016_j_ceramint_2019_04_096 crossref_primary_10_1016_j_compfluid_2021_104899 crossref_primary_10_1007_s00158_023_03661_2 crossref_primary_10_3390_pr7040204 crossref_primary_10_1007_s10973_019_08971_6 crossref_primary_10_1016_j_energy_2019_116567 crossref_primary_10_3390_en15218205 crossref_primary_10_1016_j_desal_2020_114463 crossref_primary_10_1016_j_ijthermalsci_2021_106872 crossref_primary_10_1016_j_ijrefrig_2023_05_014 crossref_primary_10_1016_j_ijhydene_2024_03_085 crossref_primary_10_1016_j_csite_2025_106708 crossref_primary_10_1016_j_energy_2021_120037 crossref_primary_10_1016_j_matdes_2025_114339 crossref_primary_10_1016_j_tsep_2023_101888 crossref_primary_10_1016_j_icheatmasstransfer_2024_108253 crossref_primary_10_3390_chemengineering5040082 crossref_primary_10_1016_j_ijthermalsci_2023_108492 crossref_primary_10_1016_j_applthermaleng_2024_123570 crossref_primary_10_2514_1_T7193 crossref_primary_10_1177_0954407020980551 crossref_primary_10_1007_s11831_019_09318_y crossref_primary_10_1016_j_tsep_2020_100568 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121002 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122256 crossref_primary_10_1016_j_applthermaleng_2023_120533 crossref_primary_10_1016_j_simpat_2021_102429 crossref_primary_10_1088_1742_6596_2509_1_012014 crossref_primary_10_1088_1742_6596_2766_1_012019 crossref_primary_10_1109_ACCESS_2021_3057494 crossref_primary_10_1061__ASCE_IS_1943_555X_0000625 crossref_primary_10_1080_01457632_2022_2148342 crossref_primary_10_1016_j_energy_2024_132615 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122818 crossref_primary_10_1080_10407790_2024_2368673 crossref_primary_10_1016_j_ijthermalsci_2023_108429 crossref_primary_10_1088_1402_4896_ad9e3a crossref_primary_10_1016_j_csite_2024_105307 crossref_primary_10_1108_JEDT_07_2020_0262 crossref_primary_10_1016_j_apm_2021_12_008 crossref_primary_10_1016_j_enconman_2025_120187 crossref_primary_10_1016_j_ijthermalsci_2019_106150 crossref_primary_10_1016_j_anucene_2022_109517 crossref_primary_10_1016_j_applthermaleng_2022_118448 crossref_primary_10_1016_j_applthermaleng_2022_118965 crossref_primary_10_1016_j_applthermaleng_2021_117414 crossref_primary_10_1515_mt_2022_0049 crossref_primary_10_1080_10618562_2021_1979524 crossref_primary_10_3390_w17172609 crossref_primary_10_1007_s40032_019_00527_9 crossref_primary_10_1111_jfpe_12889 crossref_primary_10_1016_j_est_2020_101815 crossref_primary_10_1177_09544062211014537 crossref_primary_10_1016_j_energy_2025_136035 crossref_primary_10_3390_app12031301 crossref_primary_10_3390_ma15030968 crossref_primary_10_1016_j_icheatmasstransfer_2025_109665 crossref_primary_10_1007_s00521_021_05963_2 crossref_primary_10_1007_s10973_018_7587_y |
| Cites_doi | 10.1007/s00231-013-1140-0 10.1016/j.ijheatmasstransfer.2010.07.017 10.1108/09615531111177732 10.1016/j.applthermaleng.2011.02.031 10.1016/j.ijheatmasstransfer.2016.04.039 10.1016/j.apm.2012.03.043 10.1016/j.applthermaleng.2014.11.071 10.2514/6.2004-2011 10.1109/STHERM.1996.545106 10.1016/j.ijheatmasstransfer.2009.03.026 10.1080/01457632.2015.1044395 10.1016/j.ijthermalsci.2013.07.021 10.1016/j.cep.2014.06.011 10.1016/j.compchemeng.2013.10.010 10.1016/j.ijheatmasstransfer.2004.11.007 10.1016/j.ijheatmasstransfer.2014.03.015 10.1080/10407782.2011.588574 10.1016/j.applthermaleng.2015.06.036 10.1080/10407780903507957 10.1007/s00231-015-1507-5 10.1016/j.applthermaleng.2011.04.027 10.1007/s10494-011-9378-4 10.1016/j.rser.2015.09.003 10.1016/j.applthermaleng.2010.03.018 10.1016/j.enconman.2016.03.047 10.1016/j.apenergy.2015.07.065 10.1162/106365601750190406 10.1080/10407782.2015.1052298 10.1016/j.ijheatmasstransfer.2014.07.060 10.1016/j.applthermaleng.2015.01.068 10.1016/j.enconman.2010.10.026 10.1016/j.ijheatmasstransfer.2014.09.005 10.1016/j.apm.2015.05.003 10.1016/j.enconman.2015.05.009 10.1631/jzus.A1400270 10.1016/j.applthermaleng.2013.11.042 10.1016/j.apenergy.2015.04.024 10.1016/j.cherd.2014.02.005 10.1016/j.apenergy.2013.07.037 10.1016/j.applthermaleng.2011.09.001 10.1016/j.applthermaleng.2014.12.077 10.1016/j.ijthermalsci.2014.10.001 10.1016/j.ijheatmasstransfer.2014.03.034 10.2514/1.8650 10.1162/evco.1994.2.3.221 10.1007/s11434-010-3009-7 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Aug 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2017 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2017.03.066 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| EndPage | 82 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2017_03_066 S0017931016337863 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c489t-298c5eca5fbaa89f61bd5b957a8ac13d99efe9709bf6ea3a2a43e8fb61dcae773 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404092900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sun Nov 09 08:01:22 EST 2025 Sat Nov 29 03:38:12 EST 2025 Tue Nov 18 21:25:51 EST 2025 Fri Feb 23 02:30:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Offset plate-fin heat exchanger CFD Multi-objective optimization Field synergy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c489t-298c5eca5fbaa89f61bd5b957a8ac13d99efe9709bf6ea3a2a43e8fb61dcae773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1939007743 |
| PQPubID | 2045464 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_1939007743 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2017_03_066 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_066 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2017_03_066 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Ranganayakulu, Mathur, Nithiarasu, Chennu, Paturu (b0035) 2011; 21 Qi (b0230) 2012; 38 Sun, Zhang (b0060) 2014; 75 Patel, Savsani (b0170) 2014; 92 Yaïci, Ghorab, Entchev (b0020) 2014; 74 Borrajo-Peláez, Ortega-Casanova, Cejudo-López (b0055) 2010; 30 Al-Damook, Kapur, Summers, Thompson (b0065) 2015; 89 Lu, Huang, Nien, Wang (b0050) 2011; 52 Lotfi, Sundén, Wang (b0075) 2016; 162 Wang, Guo, Zhang, Yang, Ding, Zhan (b0100) 2014; 61 Rao, Patel (b0175) 2013; 37 Khoshvaght-Aliabadi, Zangouei, Hormozi (b0090) 2015; 88 Wen, Yang, Tong, Li, Wang, Li (b0135) 2016; 117 Taler, Ocłoń (b0045) 2014; 83 Ismail, Ranganayakulu, Shah (b0015) 2009; 52 Zhou, Catton (b0070) 2011; 60 Srinivas, Deb (b0205) 1994; 2 Chen, Lin, Chen, Chang (b0040) 2016; 100 Yin, Ooka (b0150) 2015; 80 He, Qi, Qian (b0225) 2014 Nagarajan, Chen, Wang, Ma (b0085) 2014; 113 Rao, Ranganath, Ranganayakulu (b0030) 2013; 49 Bala Sundar Rao, Ranganath, Ranganayakulu (b0025) 2016; 37 T. Yuan, Computational modelling of flow bypass effects on straight fin heat sink in rectangular duct, in: Semiconductor Thermal Measurement and Management Symposium, 1996 SEMI-THERM XII Proceedings, Twelfth Annual IEEE, IEEE, 1996, pp. 164–168. Zhang, Qian, Deng, Yin (b0105) 2015; 51 Hajabdollahi (b0140) 2015; 82 Saha, Biswas, Sarkar (b0185) 2014; 74 Gritskevich, Garbaruk, Schütze, Menter (b0195) 2012; 88 Wang, Li (b0130) 2016; 53 Liu, Liu, Huang (b0245) 2010; 55 Hadidi (b0160) 2015; 150 Lemouedda, Breuer, Franz, Botsch, Delgado (b0115) 2010; 53 Bhutta, Hayat, Bashir, Khan, Ahmad, Khan (b0005) 2012; 32 Hajabdollahi, Tahani, Fard (b0180) 2011; 31 Guo, Tao, Shah (b0240) 2005; 48 Najafi, Najafi, Hoseinpoori (b0125) 2011; 31 Deb, Beyer (b0235) 2001; 9 Wang, Li (b0165) 2015; 101 Martin, Simpson (b0220) 2005; 43 Ismail, Velraj (b0010) 2009; 56 Yang, Li (b0110) 2014; 78 Zarea, Kashkooli, Mehryan, Saffarian, Beherghani (b0120) 2014; 69 Turgut (b0155) 2016; 40 W.M. Kays, A.L. London, Compact heat exchangers, 1984. S.J. Bates, J. Sienz, V.V. Toropov, Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, AIAA Paper (2004) 1–7. Liu, Zhang, Zhao, Yi, Zhou (b0095) 2015; 16 Guo, Zhang, Smith (b0145) 2015; 78 Liu, Xu, Ma, Yuan, Li (b0190) 2015; 68 Nagarajan, Chen, Wang, Ma (b0080) 2015; 80 Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0100) 2014; 61 Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0175) 2013; 37 10.1016/j.ijheatmasstransfer.2017.03.066_b0210 10.1016/j.ijheatmasstransfer.2017.03.066_b0215 Najafi (10.1016/j.ijheatmasstransfer.2017.03.066_b0125) 2011; 31 Yaïci (10.1016/j.ijheatmasstransfer.2017.03.066_b0020) 2014; 74 Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0165) 2015; 101 Yin (10.1016/j.ijheatmasstransfer.2017.03.066_b0150) 2015; 80 Sun (10.1016/j.ijheatmasstransfer.2017.03.066_b0060) 2014; 75 Hajabdollahi (10.1016/j.ijheatmasstransfer.2017.03.066_b0180) 2011; 31 Ranganayakulu (10.1016/j.ijheatmasstransfer.2017.03.066_b0035) 2011; 21 Deb (10.1016/j.ijheatmasstransfer.2017.03.066_b0235) 2001; 9 Yang (10.1016/j.ijheatmasstransfer.2017.03.066_b0110) 2014; 78 Zhang (10.1016/j.ijheatmasstransfer.2017.03.066_b0105) 2015; 51 10.1016/j.ijheatmasstransfer.2017.03.066_b0200 Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0030) 2013; 49 Guo (10.1016/j.ijheatmasstransfer.2017.03.066_b0240) 2005; 48 Zarea (10.1016/j.ijheatmasstransfer.2017.03.066_b0120) 2014; 69 Martin (10.1016/j.ijheatmasstransfer.2017.03.066_b0220) 2005; 43 Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0190) 2015; 68 Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0095) 2015; 16 Bhutta (10.1016/j.ijheatmasstransfer.2017.03.066_b0005) 2012; 32 Al-Damook (10.1016/j.ijheatmasstransfer.2017.03.066_b0065) 2015; 89 Liu (10.1016/j.ijheatmasstransfer.2017.03.066_b0245) 2010; 55 Ismail (10.1016/j.ijheatmasstransfer.2017.03.066_b0010) 2009; 56 Saha (10.1016/j.ijheatmasstransfer.2017.03.066_b0185) 2014; 74 Patel (10.1016/j.ijheatmasstransfer.2017.03.066_b0170) 2014; 92 Qi (10.1016/j.ijheatmasstransfer.2017.03.066_b0230) 2012; 38 Khoshvaght-Aliabadi (10.1016/j.ijheatmasstransfer.2017.03.066_b0090) 2015; 88 Guo (10.1016/j.ijheatmasstransfer.2017.03.066_b0145) 2015; 78 Lotfi (10.1016/j.ijheatmasstransfer.2017.03.066_b0075) 2016; 162 Hajabdollahi (10.1016/j.ijheatmasstransfer.2017.03.066_b0140) 2015; 82 Hadidi (10.1016/j.ijheatmasstransfer.2017.03.066_b0160) 2015; 150 Srinivas (10.1016/j.ijheatmasstransfer.2017.03.066_b0205) 1994; 2 He (10.1016/j.ijheatmasstransfer.2017.03.066_b0225) 2014 Bala Sundar Rao (10.1016/j.ijheatmasstransfer.2017.03.066_b0025) 2016; 37 Zhou (10.1016/j.ijheatmasstransfer.2017.03.066_b0070) 2011; 60 Nagarajan (10.1016/j.ijheatmasstransfer.2017.03.066_b0080) 2015; 80 Wang (10.1016/j.ijheatmasstransfer.2017.03.066_b0130) 2016; 53 Chen (10.1016/j.ijheatmasstransfer.2017.03.066_b0040) 2016; 100 Lu (10.1016/j.ijheatmasstransfer.2017.03.066_b0050) 2011; 52 Lemouedda (10.1016/j.ijheatmasstransfer.2017.03.066_b0115) 2010; 53 Ismail (10.1016/j.ijheatmasstransfer.2017.03.066_b0015) 2009; 52 Gritskevich (10.1016/j.ijheatmasstransfer.2017.03.066_b0195) 2012; 88 Borrajo-Peláez (10.1016/j.ijheatmasstransfer.2017.03.066_b0055) 2010; 30 Wen (10.1016/j.ijheatmasstransfer.2017.03.066_b0135) 2016; 117 Turgut (10.1016/j.ijheatmasstransfer.2017.03.066_b0155) 2016; 40 Taler (10.1016/j.ijheatmasstransfer.2017.03.066_b0045) 2014; 83 Nagarajan (10.1016/j.ijheatmasstransfer.2017.03.066_b0085) 2014; 113 |
| References_xml | – volume: 80 start-page: 310 year: 2015 end-page: 318 ident: b0150 article-title: Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm publication-title: Appl. Therm. Eng. – volume: 49 start-page: 991 year: 2013 end-page: 1000 ident: b0030 article-title: Development of colburn ‘j’ factor and fanning friction factor ‘f’ correlations for compact heat exchanger plain fins by using CFD publication-title: Heat Mass Transfer – volume: 55 start-page: 2589 year: 2010 end-page: 2597 ident: b0245 article-title: Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement publication-title: Chin. Sci. Bull. – volume: 31 start-page: 1839 year: 2011 end-page: 1847 ident: b0125 article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm publication-title: Appl. Therm. Eng. – volume: 43 start-page: 853 year: 2005 end-page: 863 ident: b0220 article-title: Use of kriging models to approximate deterministic computer models publication-title: AIAA J. – volume: 162 start-page: 1282 year: 2016 end-page: 1302 ident: b0075 article-title: An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators publication-title: Appl. Energy – volume: 78 start-page: 491 year: 2015 end-page: 499 ident: b0145 article-title: Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers publication-title: Appl. Therm. Eng. – year: 2014 ident: b0225 article-title: Sequential optimization method based on Kriging surrogate model publication-title: Comput. Appl. Chem. – volume: 89 start-page: 365 year: 2015 end-page: 376 ident: b0065 article-title: An experimental and computational investigation of thermal air flows through perforated pin heat sinks publication-title: Appl. Therm. Eng. – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b0205 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Comput. – volume: 40 start-page: 50 year: 2016 end-page: 69 ident: b0155 article-title: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers publication-title: Appl. Math. Model. – volume: 52 start-page: 3972 year: 2009 end-page: 3983 ident: b0015 article-title: Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins publication-title: Int. J. Heat Mass Transfer – volume: 21 start-page: 935 year: 2011 end-page: 951 ident: b0035 article-title: Development of heat transfer coefficient and friction factor correlations for offset fins using CFD publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 74 start-page: 292 year: 2014 end-page: 305 ident: b0185 article-title: Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger–a synergy based analysis publication-title: Int. J. Heat Mass Transfer – volume: 61 start-page: 30 year: 2014 end-page: 37 ident: b0100 article-title: Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach publication-title: Comput. Chem. Eng. – volume: 37 start-page: 150 year: 2016 end-page: 161 ident: b0025 article-title: Development of Colburn j factor and Fanning friction factor correlations for compact surfaces of the triangular perforated fins using CFD publication-title: Heat Transfer Eng. – volume: 37 start-page: 1147 year: 2013 end-page: 1162 ident: b0175 article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm publication-title: Appl. Math. Model. – volume: 31 start-page: 2597 year: 2011 end-page: 2604 ident: b0180 article-title: CFD modeling and multi-objective optimization of compact heat exchanger using CAN method publication-title: Appl. Therm. Eng. – volume: 52 start-page: 1638 year: 2011 end-page: 1643 ident: b0050 article-title: A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger publication-title: Energy Convers. Manage. – volume: 74 start-page: 490 year: 2014 end-page: 500 ident: b0020 article-title: 3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-and-tube laminar heat exchangers publication-title: Int. J. Heat Mass Transfer – volume: 56 start-page: 987 year: 2009 end-page: 1005 ident: b0010 article-title: Studies on Fanning friction (f) and Colburn (j) factors of offset and wavy fins compact plate fin heat exchanger–a CFD approach publication-title: Numer. Heat Transfer, Part A: Appl. – volume: 38 start-page: 712 year: 2012 end-page: 717 ident: b0230 article-title: PX oxidation process optimization based on Kriging surrogate model publication-title: Huadong Ligong Daxue Xuebao – volume: 9 start-page: 197 year: 2001 end-page: 221 ident: b0235 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evolutionary Comput. – volume: 113 start-page: 589 year: 2014 end-page: 602 ident: b0085 article-title: Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger publication-title: Appl. Energy – volume: 30 start-page: 1608 year: 2010 end-page: 1615 ident: b0055 article-title: A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger publication-title: Appl. Therm. Eng. – volume: 101 start-page: 126 year: 2015 end-page: 135 ident: b0165 article-title: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm publication-title: Energy Convers. Manage. – volume: 53 start-page: 5386 year: 2010 end-page: 5399 ident: b0115 article-title: Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger publication-title: Int. J. Heat Mass Transfer – volume: 78 start-page: 860 year: 2014 end-page: 870 ident: b0110 article-title: General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins publication-title: Int. J. Heat Mass Transfer – volume: 16 start-page: 279 year: 2015 end-page: 294 ident: b0095 article-title: Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger publication-title: J. Zhejiang Univ. Sci. A – volume: 92 start-page: 2371 year: 2014 end-page: 2382 ident: b0170 article-title: Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm publication-title: Chem. Eng. Res. Des. – volume: 53 start-page: 500 year: 2016 end-page: 514 ident: b0130 article-title: Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—a review publication-title: Renew. Sustain. Energy Rev. – volume: 80 start-page: 329 year: 2015 end-page: 343 ident: b0080 article-title: CFD modeling and simulation of sulfur trioxide decomposition in ceramic plate-fin high temperature heat exchanger and decomposer publication-title: Int. J. Heat Mass Transfer – volume: 75 start-page: 45 year: 2014 end-page: 53 ident: b0060 article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology publication-title: Int. J. Therm. Sci. – reference: T. Yuan, Computational modelling of flow bypass effects on straight fin heat sink in rectangular duct, in: Semiconductor Thermal Measurement and Management Symposium, 1996 SEMI-THERM XII Proceedings, Twelfth Annual IEEE, IEEE, 1996, pp. 164–168. – reference: W.M. Kays, A.L. London, Compact heat exchangers, 1984. – volume: 150 start-page: 196 year: 2015 end-page: 210 ident: b0160 article-title: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm publication-title: Appl. Energy – volume: 117 start-page: 482 year: 2016 end-page: 489 ident: b0135 article-title: Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm publication-title: Energy Convers. Manage. – volume: 60 start-page: 107 year: 2011 end-page: 128 ident: b0070 article-title: Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections publication-title: Numer. Heat Transfer, Part A: Appl. – volume: 32 start-page: 1 year: 2012 end-page: 12 ident: b0005 article-title: CFD applications in various heat exchangers design: a review publication-title: Appl. Therm. Eng. – reference: S.J. Bates, J. Sienz, V.V. Toropov, Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm, AIAA Paper (2004) 1–7. – volume: 82 start-page: 152 year: 2015 end-page: 161 ident: b0140 article-title: Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger publication-title: Appl. Therm. Eng. – volume: 88 start-page: 431 year: 2012 end-page: 449 ident: b0195 article-title: Development of DDES and IDDES formulations for the k-ω shear stress transport model publication-title: Flow, Turbulence Combust. – volume: 100 start-page: 320 year: 2016 end-page: 331 ident: b0040 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters publication-title: Int. J. Heat Mass Transfer – volume: 88 start-page: 180 year: 2015 end-page: 192 ident: b0090 article-title: Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation publication-title: Int. J. Therm. Sci. – volume: 83 start-page: 1 year: 2014 end-page: 11 ident: b0045 article-title: Determination of heat transfer formulas for gas flow in fin-and-tube heat exchanger with oval tubes using CFD simulations publication-title: Chem. Eng. Process. – volume: 69 start-page: 267 year: 2014 end-page: 277 ident: b0120 article-title: Optimal design of plate-fin heat exchangers by a Bees Algorithm publication-title: Appl. Therm. Eng. – volume: 68 start-page: 1351 year: 2015 end-page: 1368 ident: b0190 article-title: Analysis of unsteady rotor–stator flow with variable viscosity based on experiments and CFD simulations publication-title: Numer. Heat Transfer, Part A: Appl. – volume: 48 start-page: 1797 year: 2005 end-page: 1807 ident: b0240 article-title: The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer publication-title: Int. J. Heat Mass Transfer – volume: 51 start-page: 1337 year: 2015 end-page: 1353 ident: b0105 article-title: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger publication-title: Heat Mass Transfer – volume: 49 start-page: 991 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0030 article-title: Development of colburn ‘j’ factor and fanning friction factor ‘f’ correlations for compact heat exchanger plain fins by using CFD publication-title: Heat Mass Transfer doi: 10.1007/s00231-013-1140-0 – volume: 53 start-page: 5386 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0115 article-title: Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.07.017 – volume: 38 start-page: 712 issue: 6 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0230 article-title: PX oxidation process optimization based on Kriging surrogate model publication-title: Huadong Ligong Daxue Xuebao – volume: 21 start-page: 935 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0035 article-title: Development of heat transfer coefficient and friction factor correlations for offset fins using CFD publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/09615531111177732 – volume: 31 start-page: 1839 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0125 article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.02.031 – volume: 100 start-page: 320 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0040 article-title: Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.04.039 – volume: 37 start-page: 1147 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0175 article-title: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.03.043 – volume: 78 start-page: 491 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0145 article-title: Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.071 – ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0210 doi: 10.2514/6.2004-2011 – ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0200 doi: 10.1109/STHERM.1996.545106 – volume: 52 start-page: 3972 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0015 article-title: Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.03.026 – volume: 37 start-page: 150 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0025 article-title: Development of Colburn j factor and Fanning friction factor correlations for compact surfaces of the triangular perforated fins using CFD publication-title: Heat Transfer Eng. doi: 10.1080/01457632.2015.1044395 – volume: 75 start-page: 45 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0060 article-title: Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.07.021 – volume: 83 start-page: 1 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0045 article-title: Determination of heat transfer formulas for gas flow in fin-and-tube heat exchanger with oval tubes using CFD simulations publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2014.06.011 – volume: 61 start-page: 30 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0100 article-title: Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.10.010 – volume: 48 start-page: 1797 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0240 article-title: The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.11.007 – ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0215 – volume: 74 start-page: 292 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0185 article-title: Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger–a synergy based analysis publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.03.015 – volume: 60 start-page: 107 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0070 article-title: Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections publication-title: Numer. Heat Transfer, Part A: Appl. doi: 10.1080/10407782.2011.588574 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0225 article-title: Sequential optimization method based on Kriging surrogate model publication-title: Comput. Appl. Chem. – volume: 89 start-page: 365 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0065 article-title: An experimental and computational investigation of thermal air flows through perforated pin heat sinks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.06.036 – volume: 56 start-page: 987 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0010 article-title: Studies on Fanning friction (f) and Colburn (j) factors of offset and wavy fins compact plate fin heat exchanger–a CFD approach publication-title: Numer. Heat Transfer, Part A: Appl. doi: 10.1080/10407780903507957 – volume: 51 start-page: 1337 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0105 article-title: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger publication-title: Heat Mass Transfer doi: 10.1007/s00231-015-1507-5 – volume: 31 start-page: 2597 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0180 article-title: CFD modeling and multi-objective optimization of compact heat exchanger using CAN method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.04.027 – volume: 88 start-page: 431 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0195 article-title: Development of DDES and IDDES formulations for the k-ω shear stress transport model publication-title: Flow, Turbulence Combust. doi: 10.1007/s10494-011-9378-4 – volume: 53 start-page: 500 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0130 article-title: Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.003 – volume: 30 start-page: 1608 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0055 article-title: A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.03.018 – volume: 117 start-page: 482 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0135 article-title: Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.03.047 – volume: 162 start-page: 1282 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0075 article-title: An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.065 – volume: 9 start-page: 197 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0235 article-title: Self-adaptive genetic algorithms with simulated binary crossover publication-title: Evolutionary Comput. doi: 10.1162/106365601750190406 – volume: 68 start-page: 1351 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0190 article-title: Analysis of unsteady rotor–stator flow with variable viscosity based on experiments and CFD simulations publication-title: Numer. Heat Transfer, Part A: Appl. doi: 10.1080/10407782.2015.1052298 – volume: 78 start-page: 860 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0110 article-title: General prediction of the thermal hydraulic performance for plate-fin heat exchanger with offset strip fins publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.07.060 – volume: 80 start-page: 310 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0150 article-title: Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.068 – volume: 52 start-page: 1638 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0050 article-title: A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.10.026 – volume: 80 start-page: 329 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0080 article-title: CFD modeling and simulation of sulfur trioxide decomposition in ceramic plate-fin high temperature heat exchanger and decomposer publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.09.005 – volume: 40 start-page: 50 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0155 article-title: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.05.003 – volume: 101 start-page: 126 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0165 article-title: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.009 – volume: 16 start-page: 279 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0095 article-title: Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A1400270 – volume: 69 start-page: 267 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0120 article-title: Optimal design of plate-fin heat exchangers by a Bees Algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.042 – volume: 150 start-page: 196 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0160 article-title: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.024 – volume: 92 start-page: 2371 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0170 article-title: Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.02.005 – volume: 113 start-page: 589 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0085 article-title: Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.07.037 – volume: 32 start-page: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0005 article-title: CFD applications in various heat exchangers design: a review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.09.001 – volume: 82 start-page: 152 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0140 article-title: Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.12.077 – volume: 88 start-page: 180 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0090 article-title: Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.10.001 – volume: 74 start-page: 490 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0020 article-title: 3D CFD analysis of the effect of inlet air flow maldistribution on the fluid flow and heat transfer performances of plate-fin-and-tube laminar heat exchangers publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.03.034 – volume: 43 start-page: 853 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0220 article-title: Use of kriging models to approximate deterministic computer models publication-title: AIAA J. doi: 10.2514/1.8650 – volume: 2 start-page: 221 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0205 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 55 start-page: 2589 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2017.03.066_b0245 article-title: Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-010-3009-7 |
| SSID | ssj0017046 |
| Score | 2.5419326 |
| Snippet | •A theoretical optimization using CFD and multi-objective optimization for the heat exchanger was carried out.•An optimized heat exchanger was obtained and its... A theoretical optimization was carried out to develop a plate-fin heat exchanger for the hydraulic retarder. CFD simulation and multi-objective optimization... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65 |
| SubjectTerms | CFD Classification Computational fluid dynamics Computer simulation Convective heat transfer Design optimization Field synergy Flow resistance Friction Friction factor Genetic algorithms Heat transfer Internal flow Multi-objective optimization Multiple objective analysis Offset plate-fin heat exchanger Optimization Performance enhancement Plate-fin heat exchangers Shape optimization Simulation Sorting algorithms |
| Title | Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.066 https://www.proquest.com/docview/1939007743 |
| Volume | 111 |
| WOSCitedRecordID | wos000404092900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4gXxG1iMJAfeECqgpqr7Sc0jU2A0MTDEH2znMRhqdokapOp-0n7lxzf0lIGWoV4iaoj9cTJ-Xz8xT4XhN4AhWZpkYaepCzyIur7nqry7YG_JCkAKKe00M0myNkZnUzY18Hg2uXCXM5IVdHVijX_1dQgA2Or1NkdzN0rBQH8BqPDFcwO11sZXqfUenU6Na5stLwQjRzV4BrmNufS5EQ2M6CZXlFWiiy2I7lyOcCdiQU4_aAPFuZb6uC-Uhd5nf2oF2V7Md-kt7_uL25UpdC30OqArKu-FMCW13HBX8rOHP13VSrqfodAC7_L8krY5RWEk87Qfiux-xWwBrpoud4Hg4yFNpjV-WDrcY0XNd0j3Hoc3OjpzabD9F05VU-gBu_GruL1iK5cm9xQZHtr8etDEl2025T_rpErjXwcctB4B-0FJGZ0iPaOPp1MPvdHVmRsssLc491Hb9fBhH8f5Z840RY70JTn_BF6aL9V8JHB2GM0kNUTdE_HDGfLp6jZQhrWSMObSMN1gQXukYbV8HCPNKyRhgFpGKCBt5CGLdJwj7Rn6NvpyfnxR8828PCyiLLWCxjNYpmJuEiFoKxI_DSPUxYTQUXmhzljspCMjMFbJFKEIhBRKGmRJn6eCUlIuI-GVV3J5wgD02Qyj5KEERnlLGRxEQWSiZj6Ema_OEDv3Svkma1ur5qszPhtDXuAWK-hMZVedvjvsbMat8zVMFIOcN1By6EzOLczdMnhA4upmltR-OIfBvgSPVjPxUM0bBedfIXuZpdtuVy8tlD-CTbH2oI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+shape+optimization+of+a+plate-fin+heat+exchanger+using+CFD+and+multi-objective+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Liu%2C+Chunbao&rft.au=Bu%2C+Weiyang&rft.au=Xu%2C+Dong&rft.date=2017-08-01&rft.issn=0017-9310&rft.volume=111&rft.spage=65&rft.epage=82&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2017.03.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2017_03_066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |