Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity
Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ canno...
Gespeichert in:
| Veröffentlicht in: | BioEssays Jg. 44; H. 11; S. e2200084 - n/a |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Wiley Subscription Services, Inc
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research.
Single‐cell RNA sequencing compares the transcriptomes of individual cells to study their function, evolution and interactions. We review emerging technologies and their applications, and highlight the limitations and the need for reproducible experimental protocols and robust computational pipelines. |
|---|---|
| AbstractList | Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research. Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research. Single‐cell RNA sequencing compares the transcriptomes of individual cells to study their function, evolution and interactions. We review emerging technologies and their applications, and highlight the limitations and the need for reproducible experimental protocols and robust computational pipelines. Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic 'average' cannot outright be used as representative of the 'average cell'. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single-cell RNA sequencing (scRNA-Seq) enables the comparison of the transcriptomes of individual cells. This provides high-resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context-specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA-Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA-Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research.Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic 'average' cannot outright be used as representative of the 'average cell'. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single-cell RNA sequencing (scRNA-Seq) enables the comparison of the transcriptomes of individual cells. This provides high-resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context-specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA-Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA-Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research. |
| Author | Arora, Anjali Sheldon, Helen Elshenawy, Badran Ke, May Buffa, Francesca M |
| Author_xml | – sequence: 1 givenname: May orcidid: 0000-0003-4414-384X surname: Ke fullname: Ke, May organization: University of Oxford – sequence: 2 givenname: Badran surname: Elshenawy fullname: Elshenawy, Badran organization: University of Oxford – sequence: 3 givenname: Helen surname: Sheldon fullname: Sheldon, Helen organization: University of Oxford – sequence: 4 givenname: Anjali surname: Arora fullname: Arora, Anjali email: anjali.arora@oncology.ox.ac.uk organization: University of Oxford – sequence: 5 givenname: Francesca M orcidid: 0000-0003-0409-406X surname: Buffa fullname: Buffa, Francesca M email: francesca.buffa@oncology.ox.ac.uk, francesca.buffa@unibocconi.it organization: Bocconi University |
| BookMark | eNqF0U9LHDEYBvBQFLpqrz0HevEy2_yZSTLeVrFWEAtqz0M2885uJCZrkkHm5kfoZ_STNNuVFoTiKZD8npe8PAdozwcPCH2mZE4JYV-XFtKcEcYIIar-gGa0YbSiSqo9NCNMNFXLavkRHaR0X0grWD1D9tb6lQNswDl8c714ef6V4HEEb8r9CV7gTXiCOIwOT5BxyrYws9bOgV8VgTOYtQ8urCacQ3kf--nPrNHpiNeQIYYVeLB5OkL7g3YJPr2eh-jnt_O7s-_V1Y-Ly7PFVWVq1dYVM1oPXCgFaugpYcAlo9w0NTc9rxshiFRcLXmvxaA0080giSZEi9Ys-0FofoiOd3M3MZRFUu4ebNp-SXsIY-qYorSVghD5PpWU8uLkln55Q-_DGH1ZpCgmWtJITouqd8rEkFKEoTM262yDz1Fb11HSbavqtlV1f6sqsfmb2CbaBx2n_wfaXeDJOpje0d3p5fntv-xvH0qqLQ |
| CitedBy_id | crossref_primary_10_3390_ijms26094317 crossref_primary_10_1186_s13045_023_01494_6 crossref_primary_10_1093_bioinformatics_btae518 crossref_primary_10_1016_j_exer_2025_110417 crossref_primary_10_1016_j_jaci_2025_03_033 crossref_primary_10_3389_fevo_2023_1196859 crossref_primary_10_1039_D5TB00744E crossref_primary_10_1134_S0006297923020074 crossref_primary_10_3390_cells12182286 crossref_primary_10_1038_s41575_023_00784_1 crossref_primary_10_1093_humupd_dmae006 crossref_primary_10_1016_j_biotechadv_2024_108506 crossref_primary_10_1016_j_arr_2024_102454 crossref_primary_10_1016_j_postharvbio_2024_113223 crossref_primary_10_3389_fgene_2023_1256991 crossref_primary_10_1016_j_heliyon_2024_e35856 crossref_primary_10_1038_s41467_024_47329_x crossref_primary_10_1002_bit_28377 crossref_primary_10_1038_s41598_023_31915_y crossref_primary_10_1002_jbt_70218 crossref_primary_10_1182_blood_2023020597 crossref_primary_10_1016_j_heliyon_2024_e37185 crossref_primary_10_3389_fimmu_2023_1106289 crossref_primary_10_3390_ijms26052074 crossref_primary_10_1002_INMD_20250042 crossref_primary_10_3389_fimmu_2023_1271800 crossref_primary_10_1186_s10020_025_01085_w crossref_primary_10_1016_j_critrevonc_2023_104065 crossref_primary_10_7554_eLife_85792 crossref_primary_10_1016_j_cmpb_2025_108974 crossref_primary_10_1016_j_bbagen_2023_130545 crossref_primary_10_1016_j_taap_2024_116865 crossref_primary_10_1093_hr_uhae189 crossref_primary_10_3390_cimb46060316 crossref_primary_10_1007_s10571_025_01590_w crossref_primary_10_1016_j_heliyon_2024_e33367 crossref_primary_10_1093_jleuko_qiad136 |
| Cites_doi | 10.1126/science.aaa6090 10.1186/s13059-021-02519-4 10.1038/s41587-019-0071-9 10.1186/s13059-017-1362-4 10.1038/s41588-020-00726-6 10.1016/j.ccell.2021.07.004 10.1038/nprot.2016.154 10.1016/j.gpb.2020.02.005 10.1038/s41467-020-17440-w 10.1093/bioinformatics/btw227 10.1038/s43588-021-00086-z 10.1038/s41587-022-01312-3 10.1038/s41591-018-0096-5 10.1186/s13073-021-01000-y 10.1093/bib/bby007 10.1073/pnas.1912459116 10.1016/j.bbcan.2017.02.001 10.1186/s13059-019-1874-1 10.7554/eLife.62586 10.1038/s41587-020-00762-x 10.1093/nar/gkx754 10.1371/journal.pcbi.1004575 10.1186/s13059-017-1382-0 10.1038/ncomms15081 10.1016/j.cell.2015.05.002 10.1038/s41598-021-99003-7 10.1038/s41596-018-0073-y 10.1126/science.aba5257 10.1186/s13059-021-02584-9 10.1038/s41576-021-00370-8 10.1126/science.aao4750 10.1038/s41392-022-00962-8 10.1093/bioinformatics/btw777 10.1186/s13059-014-0550-8 10.1038/s12276-020-0420-2 10.1093/bioinformatics/btv634 10.1186/s13059-020-02048-6 10.1093/bib/bbu002 10.1073/pnas.1918314117 10.1038/s41596-020-0292-x 10.1038/s41587-022-01284-4 10.1093/bioinformatics/btp616 10.1088/1742-5468/2008/10/P10008 10.1002/cam4.2113 10.1126/science.aai8478 10.1186/s13059-015-0805-z 10.1186/s13073-017-0467-4 10.3389/fphy.2021.760834 10.1038/s41586-021-03634-9 10.1126/sciadv.abf1356 10.1016/j.cell.2015.04.044 10.1038/s42003-020-0837-0 10.1038/s41591-020-0844-1 10.1038/nmeth.4236 10.1038/nri.2017.76 10.1016/j.neuron.2019.01.027 10.1016/j.celrep.2017.10.030 10.1016/j.cell.2019.06.024 10.1093/gigascience/giy083 10.1126/science.aax6648 10.1186/s12859-019-2599-6 10.1038/s41590-022-01215-0 10.1038/s41576-019-0093-7 10.1038/ncomms3612 10.1016/j.celrep.2020.107628 10.1093/gigascience/giz010 10.1038/s41569-020-0359-y 10.1038/s41467-018-06052-0 10.1038/nmeth.4263 10.1038/nprot.2014.006 10.1038/nmeth.4380 10.1038/s41587-021-01091-3 10.1038/s41598-019-41695-z 10.1016/j.ccell.2021.08.011 10.1038/s41551-021-00782-1 10.3389/fimmu.2022.885267 10.15252/embj.2021110409 10.1038/s41467-021-21246-9 10.1038/s41591-018-0078-7 10.1038/nbt.4124 10.1093/bioinformatics/bty332 10.1038/s41587-020-0472-9 10.1186/s13059-020-1926-6 10.1016/j.cell.2018.05.060 10.1016/j.cell.2017.10.044 10.1126/science.abl4896 10.1073/pnas.2001906117 10.1038/s41577-022-00675-7 10.1038/s41592-019-0667-5 10.1038/s41698-022-00251-1 10.1093/bioinformatics/btt229 10.2174/1389202921999200625220812 10.1186/s13578-022-00801-x 10.1038/nature09807 10.1007/978-3-030-16391-4_9 10.1101/gr.217331.116 10.1186/s13059-022-02622-0 10.1038/nature14966 10.1002/bies.201900221 10.3390/cancers13071718 10.1038/s41467-021-21312-2 10.1038/s41590-021-00931-3 10.1093/bioinformatics/btab641 10.1038/ncomms8866 10.1038/nmeth.1315 10.1038/s41586-018-0394-6 10.1016/j.bbcan.2017.01.003 10.3389/fgene.2021.646936 10.15698/mic2021.09.759 10.1016/j.ccell.2020.03.007 10.1016/j.cell.2021.04.048 10.1038/s41581-021-00463-x 10.1016/j.ccell.2021.09.010 10.3389/fimmu.2018.02425 10.1126/science.abe6474 10.1038/550451a 10.1038/s41467-018-07582-3 10.1186/s13059-015-0844-5 10.1038/nprot.2016.105 10.1038/s41586-019-1198-z 10.1038/s41467-018-08023-x 10.1038/nbt.4096 10.1038/s41586-019-0969-x 10.1002/1873-3468.12684 10.1038/nbt.2859 10.1038/s41588-021-00911-1 10.1016/j.molcel.2021.03.016 10.1016/j.cmet.2020.03.009 10.1038/s41467-017-00244-w 10.1038/nbt.3973 10.1038/s41586-018-0393-7 10.1016/j.cmet.2016.08.018 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. BioEssays published by Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. BioEssays published by Wiley Periodicals LLC. |
| DBID | 24P AAYXX CITATION 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1002/bies.202200084 |
| DatabaseName | Wiley Online Library Open Access CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_bies_202200084 BIES202200084 |
| Genre | article |
| GrantInformation_xml | – fundername: H2020 European Research Council funderid: microC/772970 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4894-2caaf3688e8fd102e37213c543cd3456607838b3da6f8a2a5f70a00a69cbdf6a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850306200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Fri Jul 11 18:22:51 EDT 2025 Fri Jul 11 16:21:33 EDT 2025 Fri Jul 25 10:33:14 EDT 2025 Sat Nov 29 05:24:48 EST 2025 Tue Nov 18 22:24:42 EST 2025 Wed Jan 22 16:22:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4894-2caaf3688e8fd102e37213c543cd3456607838b3da6f8a2a5f70a00a69cbdf6a3 |
| Notes | May Ke and Badran Elshenawy, Anjali Arora and Francesca M. Buffa contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| ORCID | 0000-0003-4414-384X 0000-0003-0409-406X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200084 |
| PQID | 2726905731 |
| PQPubID | 37030 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2811976007 proquest_miscellaneous_2711307377 proquest_journals_2726905731 crossref_citationtrail_10_1002_bies_202200084 crossref_primary_10_1002_bies_202200084 wiley_primary_10_1002_bies_202200084_BIES202200084 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 560 2013; 4 2019; 10 2022; 23 2016; 32 2019; 566 2020; 17 2020; 15 2020; 11 2017; 550 2019; 569 2022; 22 2011; 472 2018; 7 2018; 174 2018; 9 2010; 26 2019; 20 2022; 40 2014; 15 2018; 34 2018; 36 2021; 81 2019; 8 2019; 9 2020; 42 2019; 37 2020; 38 2019; 102 2020; 37 2015; 525 2018; 24 2016; 11 2018; 19 2018; 18 2021; 53 2020; 31 2022; 6 2022; 7 2022; 12 2022; 13 2021; 371 2020; 26 2020; 21 2021; 374 2016; 24 2019; 178 2014; 32 2018; 13 2022; 376 2013; 29 2017; 8 2018; 360 2021; 22 2017; 45 2008; 9 2017; 591 2017; 1867 2015; 348 2017; 355 2008; 2008 2017; 9 2019; 365 2020; 5 2020; 3 2020; 52 2021; 596 2017; 33 2021; 39 2017; 35 2019; 116 2014; 9 2021; 9 2021; 8 2021; 7 2015; 161 2021; 5 2015; 6 2015; 16 2017; 27 2017; 21 2015; 11 2021; 184 2017; 171 2022; 41 2021; 1 2021; 13 2021; 10 2021; 12 2021; 11 2022 2017; 14 2021 2021; 17 2021; 19 2017; 12 2020; 117 2017; 18 2009; 6 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 Maaten L. (e_1_2_12_38_1) 2008; 9 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 Imdahl F. (e_1_2_12_60_1) 2020; 5 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_122_1 e_1_2_12_29_1 e_1_2_12_126_1 e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_132_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
| References_xml | – volume: 8 start-page: 3072 year: 2019 end-page: 3085 article-title: Dissecting intratumoral myeloid cell plasticity by single cell RNA‐seq publication-title: Cancer Medicine – volume: 1867 start-page: 151 year: 2017 end-page: 161 article-title: Tumor evolution: Linear, branching, neutral or punctuated? publication-title: Biochimica et Biophysica Acta (BBA) – Reviews on Cancer – volume: 1867 start-page: 127 year: 2017 end-page: 138 article-title: Advances in understanding tumour evolution through single‐cell sequencing publication-title: Biochimica et Biophysica Acta – Reviews on Cancer – volume: 52 start-page: 1208 year: 2020 end-page: 1218 article-title: Pan‐cancer single‐cell RNA‐seq identifies recurring programs of cellular heterogeneity publication-title: Nature Genetics – volume: 525 start-page: 251 year: 2015 end-page: 255 article-title: Single‐cell messenger RNA sequencing reveals rare intestinal cell types publication-title: Nature – year: 2022 article-title: Multi‐omics single‐cell data integration and regulatory inference with graph‐linked embedding publication-title: Nature Biotechnology – volume: 45 start-page: 10978 year: 2017 end-page: 10988 article-title: Accounting for technical noise in differential expression analysis of single‐cell RNA sequencing data publication-title: Nucleic Acids Research – volume: 15 start-page: 1484 year: 2020 end-page: 1506 article-title: CellPhoneDB: Inferring cell‐cell communication from combined expression of multi‐subunit ligand‐receptor complexes publication-title: Nature Protocols – volume: 9 start-page: 2579 year: 2008 end-page: 605 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – volume: 37 start-page: 547 year: 2019 end-page: 554 article-title: A comparison of single‐cell trajectory inference methods publication-title: Nature Biotechnology – volume: 1 start-page: 395 year: 2021 end-page: 402 article-title: Undisclosed, unmet and neglected challenges in multi‐omics studies publication-title: Nature Computational Science – volume: 9 start-page: 5233 year: 2019 article-title: From Louvain to Leiden: Guaranteeing well‐connected communities publication-title: Science Reports – volume: 20 start-page: 296 year: 2019 article-title: Normalization and variance stabilization of single‐cell RNA‐seq data using regularized negative binomial regression publication-title: Genome Biology – volume: 32 start-page: 2567 year: 2016 end-page: 2576 article-title: densityCut: An efficient and versatile topological approach for automatic clustering of biological data publication-title: Bioinformatics – volume: 16 start-page: 232 year: 2015 end-page: 241 article-title: An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples publication-title: Briefings in Bioinformatics – volume: 184 start-page: 3573 year: 2021 end-page: 3587.e29 article-title: Integrated analysis of multimodal single‐cell data publication-title: Cell – volume: 376 year: 2022 article-title: The Tabula Sapiens: A multiple‐organ, single‐cell transcriptomic atlas of humans publication-title: Science – volume: 117 start-page: 18412 year: 2020 end-page: 18423 article-title: A single‐cell Raman‐based platform to identify developmental stages of human pluripotent stem cell‐derived neurons publication-title: Proceedings of the National Academy of Sciences USA – volume: 560 start-page: 319 year: 2018 end-page: 324 article-title: A revised airway epithelial hierarchy includes CFTR‐expressing ionocytes publication-title: Nature – volume: 8 year: 2019 article-title: Modeling genotypes in their microenvironment to predict single‐ and multi‐cellular behavior publication-title: Gigascience – volume: 33 start-page: 1179 year: 2017 end-page: 86 article-title: Scater: Pre‐processing, quality control, normalization and visualization of single‐cell RNA‐seq data in R publication-title: Bioinformatics – volume: 32 start-page: 381 year: 2014 end-page: 386 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nature Biotechnology – volume: 13 start-page: 1718 year: 2021 article-title: Unveiling cancer metabolism through spontaneous and coherent Raman spectroscopy and stable isotope probing publication-title: Cancers (Basel) – volume: 21 start-page: 602 year: 2020 end-page: 609 article-title: The comparison of two single‐cell sequencing platforms: BD Rhapsody and 10x genomics chromium publication-title: Current Genomics – volume: 18 start-page: 234 year: 2017 article-title: Single‐cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment publication-title: Genome Biology – volume: 566 start-page: 496 year: 2019 end-page: 502 article-title: The single‐cell transcriptional landscape of mammalian organogenesis publication-title: Nature – volume: 10 start-page: 380 year: 2019 article-title: Bulk tissue cell type deconvolution with multi‐subject single‐cell expression reference publication-title: Nature Communication – volume: 40 start-page: 527 year: 2022 end-page: 538 article-title: Identifying phenotype‐associated subpopulations by integrating bulk and single‐cell sequencing data publication-title: Nature Biotechnology – volume: 102 start-page: 143 year: 2019 end-page: 158.e7 article-title: Multimodal single‐cell analysis reveals physiological maturation in the developing human neocortex publication-title: Neuron – volume: 21 start-page: 130 year: 2020 article-title: Systematic assessment of tissue dissociation and storage biases in single‐cell and single‐nucleus RNA‐seq workflows publication-title: Genome Biology – volume: 178 start-page: 237 year: 2019 end-page: 52 article-title: Single‐cell sequencing in precision medicine publication-title: Cancer Treatment and Research – volume: 171 start-page: 1611 year: 2017 end-page: 1624.e24 article-title: Single‐cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer publication-title: Cell – volume: 53 start-page: 1334 year: 2021 end-page: 1347 article-title: A single‐cell and spatially resolved atlas of human breast cancers publication-title: Nature Genetics – volume: 21 start-page: 1399 year: 2017 end-page: 1410 article-title: Single‐cell RNA‐Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma publication-title: Cell Reports – volume: 21 start-page: 31 year: 2020 article-title: Eleven grand challenges in single‐cell data science publication-title: Genome Biology – volume: 14 start-page: 483 year: 2017 end-page: 486 article-title: SC3: Consensus clustering of single‐cell RNA‐seq data publication-title: Nature Methods – volume: 16 start-page: 278 year: 2015 article-title: MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single‐cell RNA sequencing data publication-title: Genome Biology – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 8 start-page: 208 year: 2021 end-page: 222 article-title: Understanding the pathogenesis of infectious diseases by single‐cell RNA sequencing publication-title: Microbial Cell – volume: 35 start-page: 936 year: 2017 end-page: 939 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nature Biotechnology – volume: 4 start-page: 2612 year: 2013 article-title: Inferring tumour purity and stromal and immune cell admixture from expression data publication-title: Nature Communication – volume: 29 start-page: i62 year: 2013 end-page: i70 article-title: Learning subgroup‐specific regulatory interactions and regulator independence with PARADIGM publication-title: Bioinformatics – volume: 13 start-page: 2742 year: 2018 end-page: 2757 article-title: Tutorial: Guidelines for the experimental design of single‐cell RNA sequencing studies publication-title: Nature Protocols – volume: 12 start-page: 1029 year: 2021 article-title: Fast and precise single‐cell data analysis using a hierarchical autoencoder publication-title: Nature Communication – volume: 39 start-page: 1422 year: 2021 end-page: 1437.e10 article-title: The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma publication-title: Cancer Cell – volume: 365 start-page: 1401 year: 2019 end-page: 1405 article-title: Mapping human cell phenotypes to genotypes with single‐cell genomics publication-title: Science – volume: 9 start-page: 5150 year: 2018 article-title: Spatially and functionally distinct subclasses of breast cancer‐associated fibroblasts revealed by single cell RNA sequencing publication-title: Nature Communication – volume: 17 start-page: 159 year: 2020 end-page: 162 article-title: NicheNet: Modeling intercellular communication by linking ligands to target genes publication-title: Nature Methods – volume: 11 start-page: 1757 year: 2016 end-page: 1774 article-title: Cell Painting, a high‐content image‐based assay for morphological profiling using multiplexed fluorescent dyes publication-title: Nature Protocols – volume: 17 start-page: 457 year: 2020 end-page: 473 article-title: Single‐cell RNA sequencing in cardiovascular development, disease and medicine publication-title: Nature Reviews Cardiology – volume: 360 start-page: 331 year: 2018 end-page: 335 article-title: Developmental and oncogenic programs in H3K27M gliomas dissected by single‐cell RNA‐seq publication-title: Science – volume: 11 year: 2015 article-title: SINCERA: A pipeline for single‐cell RNA‐Seq profiling analysis publication-title: PLoS Computational Biology – volume: 36 start-page: 411 year: 2018 end-page: 420 article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species publication-title: Nature Biotechnology – volume: 6 start-page: 7866 year: 2015 article-title: A draft network of ligand‐receptor‐mediated multicellular signalling in human publication-title: Nature Communication – volume: 7 start-page: 161 year: 2022 article-title: Integrating single‐cell RNA sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis publication-title: Signal Transduction and Targeted Therapy – volume: 5 start-page: 785 year: 2021 end-page: 786 article-title: Single‐cell analysis of ductal differentiation publication-title: Nature Biomedical Engineering – volume: 16 start-page: 241 year: 2015 article-title: ZIFA: Dimensionality reduction for zero‐inflated single‐cell gene expression analysis publication-title: Genome Biology – volume: 14 start-page: 584 year: 2017 end-page: 586 article-title: SCnorm: Robust normalization of single‐cell RNA‐seq data publication-title: Nature Methods – volume: 178 start-page: 835 year: 2019 end-page: 849.e21 article-title: An integrative model of cellular states, plasticity, and genetics for glioblastoma publication-title: Cell – volume: 24 start-page: 608 year: 2016 end-page: 615 article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes publication-title: Cell Metabolism – volume: 472 start-page: 90 year: 2011 end-page: 94 article-title: Tumour evolution inferred by single‐cell sequencing publication-title: Nature – volume: 19 start-page: 15 year: 2018 article-title: SCANPY: Large‐scale single‐cell gene expression data analysis publication-title: Genome Biology – volume: 8 year: 2017 article-title: Single‐cell RNA‐seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nature Communication – volume: 52 start-page: 1428 year: 2020 end-page: 1442 article-title: Single‐cell multiomics: Technologies and data analysis methods publication-title: Experimental & Molecular Medicine – volume: 596 start-page: 211 year: 2021 end-page: 220 article-title: Exploring tissue architecture using spatial transcriptomics publication-title: Nature – volume: 18 start-page: 35 year: 2018 end-page: 45 article-title: Single‐cell RNA sequencing to explore immune cell heterogeneity publication-title: Nature Reviews Immunology – volume: 7 year: 2018 article-title: Clustering trees: A visualization for evaluating clusterings at multiple resolutions publication-title: Gigascience – volume: 7 year: 2021 article-title: CytoTalk: De novo construction of signal transduction networks using single‐cell transcriptomic data publication-title: Science Advances – volume: 34 start-page: 3223 year: 2018 end-page: 3224 article-title: DEsingle for detecting three types of differential expression in single‐cell RNA‐seq data publication-title: Bioinformatics – volume: 9 start-page: 171 year: 2014 end-page: 181 article-title: Full‐length RNA‐seq from single cells using Smart‐seq2 publication-title: Nature Protocols – volume: 371 year: 2021 article-title: Microbial single‐cell RNA sequencing by split‐pool barcoding publication-title: Science – volume: 17 start-page: 710 year: 2021 end-page: 724 article-title: Multi‐omics integration in the age of million single‐cell data publication-title: Nature Reviews Nephrology – volume: 38 start-page: 586 year: 2020 end-page: 599 article-title: Multiplex digital spatial profiling of proteins and RNA in fixed tissue publication-title: Nature Biotechnology – volume: 39 start-page: 13 year: 2021 end-page: 17 article-title: The Organoid Cell Atlas publication-title: Nature Biotechnology – volume: 19 start-page: 253 year: 2021 end-page: 266 article-title: Direct comparative analyses of 10X genomics chromium and Smart‐seq2 publication-title: Genomics, Proteomics & Bioinformatics – volume: 41 year: 2022 article-title: Astrogenesis in the murine dentate gyrus is a life‐long and dynamic process publication-title: The EMBO Journal – volume: 5 start-page: 1202 year: 2020 end-page: 1206 article-title: Single‐cell RNA‐sequencing reports growth‐condition‐specific global transcriptomes of individual bacteria publication-title: Nature Biomedical Engineering – volume: 13 start-page: 189 year: 2021 article-title: Predicting heterogeneity in clone‐specific therapeutic vulnerabilities using single‐cell transcriptomic signatures publication-title: Genome Medicine – volume: 6 start-page: 377 year: 2009 end-page: 382 article-title: mRNA‐Seq whole‐transcriptome analysis of a single cell publication-title: Nature Methods – volume: 11 year: 2021 article-title: A topology‐preserving dimensionality reduction method for single‐cell RNA‐seq data using graph autoencoder publication-title: Science Reports – volume: 10 year: 2021 article-title: Single‐cell RNA‐seq reveals transcriptomic heterogeneity mediated by host‐pathogen dynamics in lymphoblastoid cell lines publication-title: Elife – volume: 39 start-page: 1062 year: 2021 end-page: 1080 article-title: From bench to bedside: Single‐cell analysis for cancer immunotherapy publication-title: Cancer Cell – volume: 117 start-page: 10876 year: 2020 end-page: 10887 article-title: Single‐cell resolution analysis of the human pancreatic ductal progenitor cell niche publication-title: Proceedings of the National Academy of Sciences USA – volume: 12 start-page: 44 year: 2017 end-page: 73 article-title: Single‐cell barcoding and sequencing using droplet microfluidics publication-title: Nature Protocols – volume: 22 start-page: 769 year: 2021 end-page: 780 article-title: The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape publication-title: Nature Immunology – volume: 348 year: 2015 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science – volume: 550 start-page: 451 year: 2017 end-page: 453 article-title: The Human Cell Atlas: From vision to reality publication-title: Nature – volume: 12 start-page: 1088 year: 2021 article-title: Inference and analysis of cell‐cell communication using CellChat publication-title: Nature Communication – volume: 9 start-page: 75 year: 2017 article-title: A practical guide to single‐cell RNA‐sequencing for biomedical research and clinical applications publication-title: Genome Medicine – volume: 6 start-page: 9 year: 2022 article-title: Single‐cell analysis of gastric pre‐cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity publication-title: NPJ Precision Oncology – volume: 31 year: 2020 article-title: Single‐cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth publication-title: Cell Reports – volume: 27 start-page: 1300 year: 2017 end-page: 1311 article-title: Integrated single‐cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia publication-title: Genome Research – volume: 161 start-page: 1202 year: 2015 end-page: 1214 article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets publication-title: Cell – volume: 23 start-page: 49 year: 2022 article-title: Benchmarking clustering algorithms on estimating the number of cell types from single‐cell RNA‐sequencing data publication-title: Genome Biology – volume: 22 start-page: 627 year: 2021 end-page: 644 article-title: Integrating single‐cell and spatial transcriptomics to elucidate intercellular tissue dynamics publication-title: Nature Reviews Genetics – volume: 32 start-page: 533 year: 2016 end-page: 541 article-title: EMDomics: A robust and powerful method for the identification of genes differentially expressed between heterogeneous classes publication-title: Bioinformatics – volume: 9 year: 2021 article-title: Light sheet fluorescence microscopy illuminating soft matter publication-title: Frontiers in Physics – volume: 37 start-page: 471 year: 2020 end-page: 484 article-title: Intratumor heterogeneity: The Rosetta Stone of therapy resistance publication-title: Cancer Cell – volume: 591 start-page: 2213 year: 2017 end-page: 2225 article-title: Computational approaches for interpreting scRNA‐seq data publication-title: FEBS Letters – volume: 26 start-page: 792 year: 2020 end-page: 802 article-title: A single‐cell and single‐nucleus RNA‐Seq toolbox for fresh and frozen human tumors publication-title: Nature Medicine – volume: 3 start-page: 126 year: 2020 article-title: Single‐cell RNA sequencing reveals a heterogeneous response to Glucocorticoids in breast cancer cells publication-title: Communications Biology – volume: 36 start-page: 469 year: 2018 end-page: 473 article-title: Simultaneous lineage tracing and cell‐type identification using CRISPR‐Cas9‐induced genetic scars publication-title: Nature Biotechnology – volume: 22 start-page: 301 year: 2021 article-title: Over 1000 tools reveal trends in the single‐cell RNA‐seq analysis landscape publication-title: Genome Biology – volume: 20 start-page: 1384 year: 2019 end-page: 1394 article-title: How to design a single‐cell RNA‐sequencing experiment: Pitfalls, challenges and perspectives publication-title: Briefings in Bioinformatics – volume: 14 start-page: 865 year: 2017 end-page: 868 article-title: Simultaneous epitope and transcriptome measurement in single cells publication-title: Nature Methods – volume: 12 year: 2021 article-title: A comparison for dimensionality reduction methods of single‐cell RNA‐seq data publication-title: Frontiers in Genetics – volume: 355 year: 2017 article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq publication-title: Science – volume: 23 start-page: 971 year: 2022 end-page: 984 article-title: Single‐cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression publication-title: Nature Immunology – volume: 2008 year: 2008 article-title: Fast unfolding of communities in large networks publication-title: Journal of Statistical Mechanics: Theory and Experiment – volume: 116 start-page: 19490 year: 2019 end-page: 19499 article-title: Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle‐dependent gene expression publication-title: Proceedings of the National Academy of Sciences USA – volume: 9 start-page: 3588 year: 2018 article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single‐cell RNA‐seq publication-title: Nature Communication – volume: 24 start-page: 1277 year: 2018 end-page: 1289 article-title: Phenotype molding of stromal cells in the lung tumor microenvironment publication-title: Nature Medicine – volume: 12 start-page: 80 year: 2022 article-title: Integrating spatial transcriptomics with single‐cell transcriptomics reveals a spatiotemporal gene landscape of the human developing kidney publication-title: Cell & Bioscience – volume: 81 start-page: 1631 year: 2021 end-page: 1639 article-title: Applicability of spatial transcriptional profiling to cancer research publication-title: Molecular Cell – volume: 161 start-page: 1187 year: 2015 end-page: 1201 article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells publication-title: Cell – volume: 42 year: 2020 article-title: Spatially resolved transcriptomes‐next generation tools for tissue exploration publication-title: Bioessays – start-page: 164 year: 2021 end-page: 172 article-title: PsiNorm: A scalable normalization for single‐cell RNA‐seq data publication-title: Bioinformatics – volume: 8 start-page: 228 year: 2017 article-title: Nanogrid single‐nucleus RNA sequencing reveals phenotypic diversity in breast cancer publication-title: Nature Communication – volume: 31 start-page: 862 year: 2020 end-page: 877.e14 article-title: Single‐cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis publication-title: Cell Metabolism – volume: 11 start-page: 4296 year: 2020 article-title: Multiplexed single‐cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action publication-title: Nature Communication – volume: 569 start-page: 576 year: 2019 end-page: 580 article-title: Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia publication-title: Nature – volume: 24 start-page: 986 year: 2018 end-page: 993 article-title: Single‐cell profiling of breast cancer T cells reveals a tissue‐resident memory subset associated with improved prognosis publication-title: Nature Medicine – volume: 20 start-page: 40 year: 2019 article-title: Comparative analysis of differential gene expression analysis tools for single‐cell RNA sequencing data publication-title: BMC Bioinformatics – volume: 374 year: 2021 article-title: Pan‐cancer single‐cell landscape of tumor‐infiltrating T cells publication-title: Science – volume: 560 start-page: 377 year: 2018 end-page: 381 article-title: A single‐cell atlas of the airway epithelium reveals the CFTR‐rich pulmonary ionocyte publication-title: Nature – volume: 39 start-page: 1578 year: 2021 end-page: 1593.e8 article-title: Single‐cell analyses reveal key immune cell subsets associated with response to PD‐L1 blockade in triple‐negative breast cancer publication-title: Cancer Cell – year: 2022 article-title: Fast and highly sensitive full‐length single‐cell RNA sequencing using FLASH‐seq publication-title: Nature Biotechnology – volume: 20 start-page: 257 year: 2019 end-page: 272 article-title: Integrative single‐cell analysis publication-title: Nature Reviews Genetics – volume: 9 start-page: 2425 year: 2018 article-title: A single‐cell sequencing guide for immunologists publication-title: Frontiers in Immunology – volume: 13 year: 2022 article-title: Mapping and validation of scRNA‐Seq‐derived cell‐cell communication networks in the tumor microenvironment publication-title: Frontiers in Immunology – volume: 23 start-page: 27 year: 2022 article-title: Comparison and evaluation of statistical error models for scRNA‐seq publication-title: Genome Biology – volume: 174 start-page: 1293 year: 2018 end-page: 1308.e36 article-title: Single‐cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell – volume: 15 start-page: 550 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biology – volume: 22 start-page: 67 year: 2022 end-page: 68 article-title: Expanding dendritic cell nomenclature in the single‐cell era publication-title: Nature Reviews Immunology – ident: e_1_2_12_97_1 doi: 10.1126/science.aaa6090 – ident: e_1_2_12_26_1 doi: 10.1186/s13059-021-02519-4 – ident: e_1_2_12_111_1 doi: 10.1038/s41587-019-0071-9 – ident: e_1_2_12_85_1 doi: 10.1186/s13059-017-1362-4 – ident: e_1_2_12_70_1 doi: 10.1038/s41588-020-00726-6 – ident: e_1_2_12_112_1 doi: 10.1016/j.ccell.2021.07.004 – ident: e_1_2_12_135_1 doi: 10.1038/nprot.2016.154 – ident: e_1_2_12_20_1 doi: 10.1016/j.gpb.2020.02.005 – ident: e_1_2_12_101_1 doi: 10.1038/s41467-020-17440-w – ident: e_1_2_12_44_1 doi: 10.1093/bioinformatics/btw227 – ident: e_1_2_12_126_1 doi: 10.1038/s43588-021-00086-z – ident: e_1_2_12_21_1 doi: 10.1038/s41587-022-01312-3 – ident: e_1_2_12_79_1 doi: 10.1038/s41591-018-0096-5 – ident: e_1_2_12_103_1 doi: 10.1186/s13073-021-01000-y – ident: e_1_2_12_16_1 doi: 10.1093/bib/bby007 – ident: e_1_2_12_98_1 doi: 10.1073/pnas.1912459116 – ident: e_1_2_12_65_1 doi: 10.1016/j.bbcan.2017.02.001 – ident: e_1_2_12_33_1 doi: 10.1186/s13059-019-1874-1 – ident: e_1_2_12_102_1 doi: 10.7554/eLife.62586 – ident: e_1_2_12_5_1 doi: 10.1038/s41587-020-00762-x – ident: e_1_2_12_29_1 doi: 10.1093/nar/gkx754 – ident: e_1_2_12_43_1 doi: 10.1371/journal.pcbi.1004575 – ident: e_1_2_12_48_1 doi: 10.1186/s13059-017-1382-0 – ident: e_1_2_12_75_1 doi: 10.1038/ncomms15081 – ident: e_1_2_12_134_1 doi: 10.1016/j.cell.2015.05.002 – ident: e_1_2_12_40_1 doi: 10.1038/s41598-021-99003-7 – ident: e_1_2_12_113_1 doi: 10.1038/s41596-018-0073-y – ident: e_1_2_12_62_1 doi: 10.1126/science.aba5257 – ident: e_1_2_12_119_1 doi: 10.1186/s13059-021-02584-9 – ident: e_1_2_12_14_1 doi: 10.1038/s41576-021-00370-8 – ident: e_1_2_12_107_1 doi: 10.1126/science.aao4750 – ident: e_1_2_12_15_1 doi: 10.1038/s41392-022-00962-8 – ident: e_1_2_12_32_1 doi: 10.1093/bioinformatics/btw777 – ident: e_1_2_12_30_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_12_24_1 doi: 10.1038/s12276-020-0420-2 – ident: e_1_2_12_54_1 doi: 10.1093/bioinformatics/btv634 – ident: e_1_2_12_116_1 doi: 10.1186/s13059-020-02048-6 – ident: e_1_2_12_2_1 doi: 10.1093/bib/bbu002 – ident: e_1_2_12_59_1 doi: 10.1073/pnas.1918314117 – ident: e_1_2_12_90_1 doi: 10.1038/s41596-020-0292-x – ident: e_1_2_12_12_1 doi: 10.1038/s41587-022-01284-4 – volume: 9 start-page: 2579 year: 2008 ident: e_1_2_12_38_1 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – ident: e_1_2_12_31_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_12_45_1 doi: 10.1088/1742-5468/2008/10/P10008 – ident: e_1_2_12_82_1 doi: 10.1002/cam4.2113 – ident: e_1_2_12_84_1 doi: 10.1126/science.aai8478 – ident: e_1_2_12_37_1 doi: 10.1186/s13059-015-0805-z – ident: e_1_2_12_4_1 doi: 10.1186/s13073-017-0467-4 – ident: e_1_2_12_131_1 doi: 10.3389/fphy.2021.760834 – ident: e_1_2_12_96_1 doi: 10.1038/s41586-021-03634-9 – ident: e_1_2_12_92_1 doi: 10.1126/sciadv.abf1356 – ident: e_1_2_12_25_1 doi: 10.1016/j.cell.2015.04.044 – ident: e_1_2_12_100_1 doi: 10.1038/s42003-020-0837-0 – ident: e_1_2_12_115_1 doi: 10.1038/s41591-020-0844-1 – ident: e_1_2_12_28_1 doi: 10.1038/nmeth.4236 – ident: e_1_2_12_120_1 doi: 10.1038/nri.2017.76 – ident: e_1_2_12_57_1 doi: 10.1016/j.neuron.2019.01.027 – ident: e_1_2_12_73_1 doi: 10.1016/j.celrep.2017.10.030 – ident: e_1_2_12_108_1 doi: 10.1016/j.cell.2019.06.024 – ident: e_1_2_12_50_1 doi: 10.1093/gigascience/giy083 – ident: e_1_2_12_11_1 doi: 10.1126/science.aax6648 – ident: e_1_2_12_53_1 doi: 10.1186/s12859-019-2599-6 – ident: e_1_2_12_63_1 doi: 10.1038/s41590-022-01215-0 – ident: e_1_2_12_125_1 doi: 10.1038/s41576-019-0093-7 – ident: e_1_2_12_3_1 doi: 10.1038/ncomms3612 – ident: e_1_2_12_81_1 doi: 10.1016/j.celrep.2020.107628 – ident: e_1_2_12_6_1 doi: 10.1093/gigascience/giz010 – ident: e_1_2_12_66_1 doi: 10.1038/s41569-020-0359-y – ident: e_1_2_12_74_1 doi: 10.1038/s41467-018-06052-0 – ident: e_1_2_12_35_1 doi: 10.1038/nmeth.4263 – volume: 5 start-page: 1202 year: 2020 ident: e_1_2_12_60_1 article-title: Single‐cell RNA‐sequencing reports growth‐condition‐specific global transcriptomes of individual bacteria publication-title: Nature Biomedical Engineering – ident: e_1_2_12_18_1 doi: 10.1038/nprot.2014.006 – ident: e_1_2_12_22_1 doi: 10.1038/nmeth.4380 – ident: e_1_2_12_10_1 doi: 10.1038/s41587-021-01091-3 – ident: e_1_2_12_46_1 doi: 10.1038/s41598-019-41695-z – ident: e_1_2_12_71_1 doi: 10.1016/j.ccell.2021.08.011 – ident: e_1_2_12_58_1 doi: 10.1038/s41551-021-00782-1 – ident: e_1_2_12_88_1 doi: 10.3389/fimmu.2022.885267 – ident: e_1_2_12_114_1 doi: 10.15252/embj.2021110409 – ident: e_1_2_12_89_1 doi: 10.1038/s41467-021-21246-9 – ident: e_1_2_12_86_1 doi: 10.1038/s41591-018-0078-7 – ident: e_1_2_12_132_1 doi: 10.1038/nbt.4124 – ident: e_1_2_12_51_1 doi: 10.1093/bioinformatics/bty332 – ident: e_1_2_12_99_1 doi: 10.1038/s41587-020-0472-9 – ident: e_1_2_12_118_1 doi: 10.1186/s13059-020-1926-6 – ident: e_1_2_12_83_1 doi: 10.1016/j.cell.2018.05.060 – ident: e_1_2_12_78_1 doi: 10.1016/j.cell.2017.10.044 – ident: e_1_2_12_104_1 doi: 10.1126/science.abl4896 – ident: e_1_2_12_128_1 doi: 10.1073/pnas.2001906117 – ident: e_1_2_12_117_1 doi: 10.1038/s41577-022-00675-7 – ident: e_1_2_12_91_1 doi: 10.1038/s41592-019-0667-5 – ident: e_1_2_12_76_1 doi: 10.1038/s41698-022-00251-1 – ident: e_1_2_12_127_1 doi: 10.1093/bioinformatics/btt229 – ident: e_1_2_12_17_1 doi: 10.2174/1389202921999200625220812 – ident: e_1_2_12_93_1 doi: 10.1186/s13578-022-00801-x – ident: e_1_2_12_64_1 doi: 10.1038/nature09807 – ident: e_1_2_12_133_1 doi: 10.1007/978-3-030-16391-4_9 – ident: e_1_2_12_109_1 doi: 10.1101/gr.217331.116 – ident: e_1_2_12_41_1 doi: 10.1186/s13059-022-02622-0 – ident: e_1_2_12_42_1 doi: 10.1038/nature14966 – ident: e_1_2_12_94_1 doi: 10.1002/bies.201900221 – ident: e_1_2_12_129_1 doi: 10.3390/cancers13071718 – ident: e_1_2_12_39_1 doi: 10.1038/s41467-021-21312-2 – ident: e_1_2_12_122_1 doi: 10.1038/s41590-021-00931-3 – ident: e_1_2_12_34_1 doi: 10.1093/bioinformatics/btab641 – ident: e_1_2_12_87_1 doi: 10.1038/ncomms8866 – ident: e_1_2_12_121_1 doi: 10.1038/nmeth.1315 – ident: e_1_2_12_124_1 doi: 10.1038/s41586-018-0394-6 – ident: e_1_2_12_106_1 doi: 10.1016/j.bbcan.2017.01.003 – ident: e_1_2_12_36_1 doi: 10.3389/fgene.2021.646936 – ident: e_1_2_12_61_1 doi: 10.15698/mic2021.09.759 – ident: e_1_2_12_72_1 doi: 10.1016/j.ccell.2020.03.007 – ident: e_1_2_12_47_1 doi: 10.1016/j.cell.2021.04.048 – ident: e_1_2_12_13_1 doi: 10.1038/s41581-021-00463-x – ident: e_1_2_12_7_1 doi: 10.1016/j.ccell.2021.09.010 – ident: e_1_2_12_19_1 doi: 10.3389/fimmu.2018.02425 – ident: e_1_2_12_69_1 doi: 10.1126/science.abe6474 – ident: e_1_2_12_105_1 doi: 10.1038/550451a – ident: e_1_2_12_80_1 doi: 10.1038/s41467-018-07582-3 – ident: e_1_2_12_52_1 doi: 10.1186/s13059-015-0844-5 – ident: e_1_2_12_130_1 doi: 10.1038/nprot.2016.105 – ident: e_1_2_12_110_1 doi: 10.1038/s41586-019-1198-z – ident: e_1_2_12_9_1 doi: 10.1038/s41467-018-08023-x – ident: e_1_2_12_55_1 doi: 10.1038/nbt.4096 – ident: e_1_2_12_49_1 doi: 10.1038/s41586-019-0969-x – ident: e_1_2_12_27_1 doi: 10.1002/1873-3468.12684 – ident: e_1_2_12_56_1 doi: 10.1038/nbt.2859 – ident: e_1_2_12_8_1 doi: 10.1038/s41588-021-00911-1 – ident: e_1_2_12_95_1 doi: 10.1016/j.molcel.2021.03.016 – ident: e_1_2_12_67_1 doi: 10.1016/j.cmet.2020.03.009 – ident: e_1_2_12_77_1 doi: 10.1038/s41467-017-00244-w – ident: e_1_2_12_23_1 doi: 10.1038/nbt.3973 – ident: e_1_2_12_123_1 doi: 10.1038/s41586-018-0393-7 – ident: e_1_2_12_68_1 doi: 10.1016/j.cmet.2016.08.018 |
| SSID | ssj0009624 |
| Score | 2.5592475 |
| SecondaryResourceType | review_article |
| Snippet | Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2200084 |
| SubjectTerms | bioinformatics biomedical research Cardiovascular diseases complex disease computational biology Computer applications Context diabetes Diabetes mellitus Disease disease progression Disease resistance evolution Gene sequencing Heterogeneity Medical research neoplasms New technology Pipelines Populations Questions RNA scRNA‐seq sequence analysis single‐cell RNA sequencing therapeutics transcriptome Transcriptomes transcriptomics Tumors tumour microenvironment |
| Title | Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200084 https://www.proquest.com/docview/2726905731 https://www.proquest.com/docview/2711307377 https://www.proquest.com/docview/2811976007 |
| Volume | 44 |
| WOSCitedRecordID | wos000850306200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7apIVc0jfdJA0qBHISsSVZj9y2j6WHsoQ8YG9GlmUaWHZD4g3klp-Q35hfkhnb600ObaG9GMsaGSHNSN_o8Q3AXuVEEaV2HDs4clUYwb1IFS-cSLUoykTEsgk2YcZjO5m4o0e3-Ft-iH7BjSyjGa_JwH1xdbAiDS3IkxR0UZQ44Z_DeppKS8EbhDpa0e7qJqwtOhoZR0_DLGkbE3HwtPzTaWmFNR8j1mbKGb36_8q-hs0ObrJhqx9v4FmcvYWXbQDKm3dwfoIz1zQyWr5nx-Ph_e1dd7Yavx-yIbugIGrVYspuYs1wNECx0IVfQQlW9wvzrJ6zhqq2-RedbWW_6KTNHBU0ItJ_D2ej76dff_Au-AIPyjrFRfC-ktraaKsSUUiU6CvKkCkZSomoS9P-ny1k6XVlvfBZZRKfJF67UJSV9vIDrM3ms_gRGO1tZ9HZRKlMKeNdVFpFETDpEA9VA-DLts9Dx0xOATKmecupLHJqvrxvvgHs9_IXLSfHbyV3ll2Zd7aJuUZoRzyQ6QA-99loVdQ-fhbnC5JBbcLRz5g_yFjagiV-_wGIpvP_Upv8CyL8PrX1L4W2YYPe28uQO7BWXy7iJ3gRruvzq8vdRvfxaSZ2F9a_HY_Ofj4ASLoGXA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RaAUXoA_E8qorIfVkkTiOY3NbHitQl1XFQ-IWOY6jIqFdBAGJGz-B38gvYSbJZsuhVEIcbU8cazxjj8fjbwA2CyMyHynDcYI9l1kiuBWh5JkRoRJZHgifV8kmksFAn5-b3000Ib2FqfEhWocbaUa1XpOCk0N6a4IamtFRUtBLUQKF_wAzEmUJhXxm77h31p8g76oqsy2eNWKOh41kjNwYiK2XPbzcmSbm5t9Ga7Xr9BbeYbyLMN-YnKxby8hnmPLDL_CpTkJ5_xUuTnD3uvSMXPjseNB9enhs4quxfpt12RUlUsO_sHtfMlwRkMw1KViQgpWtc56VI1bB1VZ9UXwr-0PRNiMUUo_W_jc46-2f7h7wJgEDd1IbyYWztoiU1l4XOVoiPsLzYuRiGbk8QstL0R2gzqLcqkJbYeMiCWwQWGVclhfKRkswPRwN_TIwut-OvdGBlLGUiTVeKumFw6JBm6joAB8zP3UNOjklybhMa1xlkRL70pZ9HfjZ0l_VuBz_pFwbz2Xa6Ce2JkIZwoIMO_CjbUbNIv7YoR_dEk0Y0gqYJK_QaLqGJYz_Dohq9v8zmnQHrfy2tPKWj77D7MHpUT_tHw5-rcIc1dePI9dgury-9evw0d2VFzfXG40qPANnTAla |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7aTRt6Sds0IdumqQqBnERsWZal3jZNl4aGJeQHcjOyLJHAsrsk3kBufYQ-Y5-kM7bX2xyaQulR8liIkUb6Rhp9A7AbjCh8ogzHAfZcFpngVsSSF0bEShRlJHxZJ5vIRiN9eWlO2mhCegvT8EN0B25kGfV6TQbuZ2XYX7KGFuRKCnopSqTwT2FFUiaZHqwcng4vjpfMu6rObIu-RsrR2cgWzI2R2H_YwsOdaQk3fwet9a4zfPkf-vsK1lrIyQbNHHkNT_xkHZ43SSjv38D1Ge5eY8_oCJ-djgY_v_9o46ux_hMbsBklUgvzMbv3FcMVAcVcm4IFJVjVHc6zaspqutq6LYpvZVcUbTPFSeoR7W_AxfDL-eevvE3AwJ3URnLhrA2J0trrUCIS8Qn6i4lLZeLKBJGXojtAXSSlVUFbYdOQRTaKrDKuKIOyySb0JtOJ3wJG99upNzqSMpUys8ZLJb1wWDSIiUIf-EL5uWvZySlJxjhveJVFTurLO_X1Ya-TnzW8HH-U3F6MZd7aJ37NhDLEBRn34WP3GS2L9GMnfjonmTimFTDLHpHRdA1LHP99EPXo_6U3-QGi_K709l9--gCrJ4fD_Pho9O0dvKDq5m3kNvSqm7l_D8_cXXV9e7PTWsIv4vUI1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+cell+RNA%E2%80%90sequencing%3A+A+powerful+yet+still+challenging+technology+to+study+cellular+heterogeneity&rft.jtitle=BioEssays&rft.au=Ke%2C+May&rft.au=Elshenawy%2C+Badran&rft.au=Sheldon%2C+Helen&rft.au=Arora%2C+Anjali&rft.date=2022-11-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=44&rft.issue=11&rft_id=info:doi/10.1002%2Fbies.202200084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202200084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |