Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity

Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ canno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays Jg. 44; H. 11; S. e2200084 - n/a
Hauptverfasser: Ke, May, Elshenawy, Badran, Sheldon, Helen, Arora, Anjali, Buffa, Francesca M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Wiley Subscription Services, Inc 01.11.2022
Schlagworte:
ISSN:0265-9247, 1521-1878, 1521-1878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research. Single‐cell RNA sequencing compares the transcriptomes of individual cells to study their function, evolution and interactions. We review emerging technologies and their applications, and highlight the limitations and the need for reproducible experimental protocols and robust computational pipelines.
AbstractList Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research.
Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the transcriptomes of individual cells. This provides high‐resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context‐specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA‐Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA‐Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research. Single‐cell RNA sequencing compares the transcriptomes of individual cells to study their function, evolution and interactions. We review emerging technologies and their applications, and highlight the limitations and the need for reproducible experimental protocols and robust computational pipelines.
Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic 'average' cannot outright be used as representative of the 'average cell'. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single-cell RNA sequencing (scRNA-Seq) enables the comparison of the transcriptomes of individual cells. This provides high-resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context-specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA-Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA-Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research.Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic 'average' cannot outright be used as representative of the 'average cell'. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single-cell RNA sequencing (scRNA-Seq) enables the comparison of the transcriptomes of individual cells. This provides high-resolution maps of the dynamic cellular programmes allowing us to answer fundamental biological questions on their function and evolution. It also allows to address medical questions such as the role of rare cell populations contributing to disease progression and therapeutic resistance. Furthermore, it provides an understanding of context-specific dependencies, namely the behaviour and function that a cell has in a specific context, which can be crucial to understand some complex diseases, such as diabetes, cardiovascular disease and cancer. Here, we provide an overview of scRNA-Seq, including a comparative review of emerging technologies and computational pipelines. We discuss the current and emerging applications and focus on tumour heterogeneity a clear example of how scRNA-Seq can provide new understanding of a complex disease. Additionally, we review the limitations and highlight the need of powerful computational pipelines and reproducible protocols for the broader acceptance of this technique in basic and clinical research.
Author Arora, Anjali
Sheldon, Helen
Elshenawy, Badran
Ke, May
Buffa, Francesca M
Author_xml – sequence: 1
  givenname: May
  orcidid: 0000-0003-4414-384X
  surname: Ke
  fullname: Ke, May
  organization: University of Oxford
– sequence: 2
  givenname: Badran
  surname: Elshenawy
  fullname: Elshenawy, Badran
  organization: University of Oxford
– sequence: 3
  givenname: Helen
  surname: Sheldon
  fullname: Sheldon, Helen
  organization: University of Oxford
– sequence: 4
  givenname: Anjali
  surname: Arora
  fullname: Arora, Anjali
  email: anjali.arora@oncology.ox.ac.uk
  organization: University of Oxford
– sequence: 5
  givenname: Francesca M
  orcidid: 0000-0003-0409-406X
  surname: Buffa
  fullname: Buffa, Francesca M
  email: francesca.buffa@oncology.ox.ac.uk, francesca.buffa@unibocconi.it
  organization: Bocconi University
BookMark eNqF0U9LHDEYBvBQFLpqrz0HevEy2_yZSTLeVrFWEAtqz0M2885uJCZrkkHm5kfoZ_STNNuVFoTiKZD8npe8PAdozwcPCH2mZE4JYV-XFtKcEcYIIar-gGa0YbSiSqo9NCNMNFXLavkRHaR0X0grWD1D9tb6lQNswDl8c714ef6V4HEEb8r9CV7gTXiCOIwOT5BxyrYws9bOgV8VgTOYtQ8urCacQ3kf--nPrNHpiNeQIYYVeLB5OkL7g3YJPr2eh-jnt_O7s-_V1Y-Ly7PFVWVq1dYVM1oPXCgFaugpYcAlo9w0NTc9rxshiFRcLXmvxaA0080giSZEi9Ys-0FofoiOd3M3MZRFUu4ebNp-SXsIY-qYorSVghD5PpWU8uLkln55Q-_DGH1ZpCgmWtJITouqd8rEkFKEoTM262yDz1Fb11HSbavqtlV1f6sqsfmb2CbaBx2n_wfaXeDJOpje0d3p5fntv-xvH0qqLQ
CitedBy_id crossref_primary_10_3390_ijms26094317
crossref_primary_10_1186_s13045_023_01494_6
crossref_primary_10_1093_bioinformatics_btae518
crossref_primary_10_1016_j_exer_2025_110417
crossref_primary_10_1016_j_jaci_2025_03_033
crossref_primary_10_3389_fevo_2023_1196859
crossref_primary_10_1039_D5TB00744E
crossref_primary_10_1134_S0006297923020074
crossref_primary_10_3390_cells12182286
crossref_primary_10_1038_s41575_023_00784_1
crossref_primary_10_1093_humupd_dmae006
crossref_primary_10_1016_j_biotechadv_2024_108506
crossref_primary_10_1016_j_arr_2024_102454
crossref_primary_10_1016_j_postharvbio_2024_113223
crossref_primary_10_3389_fgene_2023_1256991
crossref_primary_10_1016_j_heliyon_2024_e35856
crossref_primary_10_1038_s41467_024_47329_x
crossref_primary_10_1002_bit_28377
crossref_primary_10_1038_s41598_023_31915_y
crossref_primary_10_1002_jbt_70218
crossref_primary_10_1182_blood_2023020597
crossref_primary_10_1016_j_heliyon_2024_e37185
crossref_primary_10_3389_fimmu_2023_1106289
crossref_primary_10_3390_ijms26052074
crossref_primary_10_1002_INMD_20250042
crossref_primary_10_3389_fimmu_2023_1271800
crossref_primary_10_1186_s10020_025_01085_w
crossref_primary_10_1016_j_critrevonc_2023_104065
crossref_primary_10_7554_eLife_85792
crossref_primary_10_1016_j_cmpb_2025_108974
crossref_primary_10_1016_j_bbagen_2023_130545
crossref_primary_10_1016_j_taap_2024_116865
crossref_primary_10_1093_hr_uhae189
crossref_primary_10_3390_cimb46060316
crossref_primary_10_1007_s10571_025_01590_w
crossref_primary_10_1016_j_heliyon_2024_e33367
crossref_primary_10_1093_jleuko_qiad136
Cites_doi 10.1126/science.aaa6090
10.1186/s13059-021-02519-4
10.1038/s41587-019-0071-9
10.1186/s13059-017-1362-4
10.1038/s41588-020-00726-6
10.1016/j.ccell.2021.07.004
10.1038/nprot.2016.154
10.1016/j.gpb.2020.02.005
10.1038/s41467-020-17440-w
10.1093/bioinformatics/btw227
10.1038/s43588-021-00086-z
10.1038/s41587-022-01312-3
10.1038/s41591-018-0096-5
10.1186/s13073-021-01000-y
10.1093/bib/bby007
10.1073/pnas.1912459116
10.1016/j.bbcan.2017.02.001
10.1186/s13059-019-1874-1
10.7554/eLife.62586
10.1038/s41587-020-00762-x
10.1093/nar/gkx754
10.1371/journal.pcbi.1004575
10.1186/s13059-017-1382-0
10.1038/ncomms15081
10.1016/j.cell.2015.05.002
10.1038/s41598-021-99003-7
10.1038/s41596-018-0073-y
10.1126/science.aba5257
10.1186/s13059-021-02584-9
10.1038/s41576-021-00370-8
10.1126/science.aao4750
10.1038/s41392-022-00962-8
10.1093/bioinformatics/btw777
10.1186/s13059-014-0550-8
10.1038/s12276-020-0420-2
10.1093/bioinformatics/btv634
10.1186/s13059-020-02048-6
10.1093/bib/bbu002
10.1073/pnas.1918314117
10.1038/s41596-020-0292-x
10.1038/s41587-022-01284-4
10.1093/bioinformatics/btp616
10.1088/1742-5468/2008/10/P10008
10.1002/cam4.2113
10.1126/science.aai8478
10.1186/s13059-015-0805-z
10.1186/s13073-017-0467-4
10.3389/fphy.2021.760834
10.1038/s41586-021-03634-9
10.1126/sciadv.abf1356
10.1016/j.cell.2015.04.044
10.1038/s42003-020-0837-0
10.1038/s41591-020-0844-1
10.1038/nmeth.4236
10.1038/nri.2017.76
10.1016/j.neuron.2019.01.027
10.1016/j.celrep.2017.10.030
10.1016/j.cell.2019.06.024
10.1093/gigascience/giy083
10.1126/science.aax6648
10.1186/s12859-019-2599-6
10.1038/s41590-022-01215-0
10.1038/s41576-019-0093-7
10.1038/ncomms3612
10.1016/j.celrep.2020.107628
10.1093/gigascience/giz010
10.1038/s41569-020-0359-y
10.1038/s41467-018-06052-0
10.1038/nmeth.4263
10.1038/nprot.2014.006
10.1038/nmeth.4380
10.1038/s41587-021-01091-3
10.1038/s41598-019-41695-z
10.1016/j.ccell.2021.08.011
10.1038/s41551-021-00782-1
10.3389/fimmu.2022.885267
10.15252/embj.2021110409
10.1038/s41467-021-21246-9
10.1038/s41591-018-0078-7
10.1038/nbt.4124
10.1093/bioinformatics/bty332
10.1038/s41587-020-0472-9
10.1186/s13059-020-1926-6
10.1016/j.cell.2018.05.060
10.1016/j.cell.2017.10.044
10.1126/science.abl4896
10.1073/pnas.2001906117
10.1038/s41577-022-00675-7
10.1038/s41592-019-0667-5
10.1038/s41698-022-00251-1
10.1093/bioinformatics/btt229
10.2174/1389202921999200625220812
10.1186/s13578-022-00801-x
10.1038/nature09807
10.1007/978-3-030-16391-4_9
10.1101/gr.217331.116
10.1186/s13059-022-02622-0
10.1038/nature14966
10.1002/bies.201900221
10.3390/cancers13071718
10.1038/s41467-021-21312-2
10.1038/s41590-021-00931-3
10.1093/bioinformatics/btab641
10.1038/ncomms8866
10.1038/nmeth.1315
10.1038/s41586-018-0394-6
10.1016/j.bbcan.2017.01.003
10.3389/fgene.2021.646936
10.15698/mic2021.09.759
10.1016/j.ccell.2020.03.007
10.1016/j.cell.2021.04.048
10.1038/s41581-021-00463-x
10.1016/j.ccell.2021.09.010
10.3389/fimmu.2018.02425
10.1126/science.abe6474
10.1038/550451a
10.1038/s41467-018-07582-3
10.1186/s13059-015-0844-5
10.1038/nprot.2016.105
10.1038/s41586-019-1198-z
10.1038/s41467-018-08023-x
10.1038/nbt.4096
10.1038/s41586-019-0969-x
10.1002/1873-3468.12684
10.1038/nbt.2859
10.1038/s41588-021-00911-1
10.1016/j.molcel.2021.03.016
10.1016/j.cmet.2020.03.009
10.1038/s41467-017-00244-w
10.1038/nbt.3973
10.1038/s41586-018-0393-7
10.1016/j.cmet.2016.08.018
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. BioEssays published by Wiley Periodicals LLC.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. BioEssays published by Wiley Periodicals LLC.
DBID 24P
AAYXX
CITATION
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.202200084
DatabaseName Wiley Online Library Open Access
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 10_1002_bies_202200084
BIES202200084
Genre article
GrantInformation_xml – fundername: H2020 European Research Council
  funderid: microC/772970
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4894-2caaf3688e8fd102e37213c543cd3456607838b3da6f8a2a5f70a00a69cbdf6a3
IEDL.DBID 24P
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850306200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 18:22:51 EDT 2025
Fri Jul 11 16:21:33 EDT 2025
Fri Jul 25 10:33:14 EDT 2025
Sat Nov 29 05:24:48 EST 2025
Tue Nov 18 22:24:42 EST 2025
Wed Jan 22 16:22:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4894-2caaf3688e8fd102e37213c543cd3456607838b3da6f8a2a5f70a00a69cbdf6a3
Notes May Ke and Badran Elshenawy, Anjali Arora and Francesca M. Buffa contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-4414-384X
0000-0003-0409-406X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200084
PQID 2726905731
PQPubID 37030
PageCount 16
ParticipantIDs proquest_miscellaneous_2811976007
proquest_miscellaneous_2711307377
proquest_journals_2726905731
crossref_citationtrail_10_1002_bies_202200084
crossref_primary_10_1002_bies_202200084
wiley_primary_10_1002_bies_202200084_BIES202200084
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle BioEssays
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2013; 4
2019; 10
2022; 23
2016; 32
2019; 566
2020; 17
2020; 15
2020; 11
2017; 550
2019; 569
2022; 22
2011; 472
2018; 7
2018; 174
2018; 9
2010; 26
2019; 20
2022; 40
2014; 15
2018; 34
2018; 36
2021; 81
2019; 8
2019; 9
2020; 42
2019; 37
2020; 38
2019; 102
2020; 37
2015; 525
2018; 24
2016; 11
2018; 19
2018; 18
2021; 53
2020; 31
2022; 6
2022; 7
2022; 12
2022; 13
2021; 371
2020; 26
2020; 21
2021; 374
2016; 24
2019; 178
2014; 32
2018; 13
2022; 376
2013; 29
2017; 8
2018; 360
2021; 22
2017; 45
2008; 9
2017; 591
2017; 1867
2015; 348
2017; 355
2008; 2008
2017; 9
2019; 365
2020; 5
2020; 3
2020; 52
2021; 596
2017; 33
2021; 39
2017; 35
2019; 116
2014; 9
2021; 9
2021; 8
2021; 7
2015; 161
2021; 5
2015; 6
2015; 16
2017; 27
2017; 21
2015; 11
2021; 184
2017; 171
2022; 41
2021; 1
2021; 13
2021; 10
2021; 12
2021; 11
2022
2017; 14
2021
2021; 17
2021; 19
2017; 12
2020; 117
2017; 18
2009; 6
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
Maaten L. (e_1_2_12_38_1) 2008; 9
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
Imdahl F. (e_1_2_12_60_1) 2020; 5
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_122_1
e_1_2_12_29_1
e_1_2_12_126_1
e_1_2_12_103_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_132_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 8
  start-page: 3072
  year: 2019
  end-page: 3085
  article-title: Dissecting intratumoral myeloid cell plasticity by single cell RNA‐seq
  publication-title: Cancer Medicine
– volume: 1867
  start-page: 151
  year: 2017
  end-page: 161
  article-title: Tumor evolution: Linear, branching, neutral or punctuated?
  publication-title: Biochimica et Biophysica Acta (BBA) – Reviews on Cancer
– volume: 1867
  start-page: 127
  year: 2017
  end-page: 138
  article-title: Advances in understanding tumour evolution through single‐cell sequencing
  publication-title: Biochimica et Biophysica Acta – Reviews on Cancer
– volume: 52
  start-page: 1208
  year: 2020
  end-page: 1218
  article-title: Pan‐cancer single‐cell RNA‐seq identifies recurring programs of cellular heterogeneity
  publication-title: Nature Genetics
– volume: 525
  start-page: 251
  year: 2015
  end-page: 255
  article-title: Single‐cell messenger RNA sequencing reveals rare intestinal cell types
  publication-title: Nature
– year: 2022
  article-title: Multi‐omics single‐cell data integration and regulatory inference with graph‐linked embedding
  publication-title: Nature Biotechnology
– volume: 45
  start-page: 10978
  year: 2017
  end-page: 10988
  article-title: Accounting for technical noise in differential expression analysis of single‐cell RNA sequencing data
  publication-title: Nucleic Acids Research
– volume: 15
  start-page: 1484
  year: 2020
  end-page: 1506
  article-title: CellPhoneDB: Inferring cell‐cell communication from combined expression of multi‐subunit ligand‐receptor complexes
  publication-title: Nature Protocols
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 605
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 37
  start-page: 547
  year: 2019
  end-page: 554
  article-title: A comparison of single‐cell trajectory inference methods
  publication-title: Nature Biotechnology
– volume: 1
  start-page: 395
  year: 2021
  end-page: 402
  article-title: Undisclosed, unmet and neglected challenges in multi‐omics studies
  publication-title: Nature Computational Science
– volume: 9
  start-page: 5233
  year: 2019
  article-title: From Louvain to Leiden: Guaranteeing well‐connected communities
  publication-title: Science Reports
– volume: 20
  start-page: 296
  year: 2019
  article-title: Normalization and variance stabilization of single‐cell RNA‐seq data using regularized negative binomial regression
  publication-title: Genome Biology
– volume: 32
  start-page: 2567
  year: 2016
  end-page: 2576
  article-title: densityCut: An efficient and versatile topological approach for automatic clustering of biological data
  publication-title: Bioinformatics
– volume: 16
  start-page: 232
  year: 2015
  end-page: 241
  article-title: An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples
  publication-title: Briefings in Bioinformatics
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587.e29
  article-title: Integrated analysis of multimodal single‐cell data
  publication-title: Cell
– volume: 376
  year: 2022
  article-title: The Tabula Sapiens: A multiple‐organ, single‐cell transcriptomic atlas of humans
  publication-title: Science
– volume: 117
  start-page: 18412
  year: 2020
  end-page: 18423
  article-title: A single‐cell Raman‐based platform to identify developmental stages of human pluripotent stem cell‐derived neurons
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 560
  start-page: 319
  year: 2018
  end-page: 324
  article-title: A revised airway epithelial hierarchy includes CFTR‐expressing ionocytes
  publication-title: Nature
– volume: 8
  year: 2019
  article-title: Modeling genotypes in their microenvironment to predict single‐ and multi‐cellular behavior
  publication-title: Gigascience
– volume: 33
  start-page: 1179
  year: 2017
  end-page: 86
  article-title: Scater: Pre‐processing, quality control, normalization and visualization of single‐cell RNA‐seq data in R
  publication-title: Bioinformatics
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nature Biotechnology
– volume: 13
  start-page: 1718
  year: 2021
  article-title: Unveiling cancer metabolism through spontaneous and coherent Raman spectroscopy and stable isotope probing
  publication-title: Cancers (Basel)
– volume: 21
  start-page: 602
  year: 2020
  end-page: 609
  article-title: The comparison of two single‐cell sequencing platforms: BD Rhapsody and 10x genomics chromium
  publication-title: Current Genomics
– volume: 18
  start-page: 234
  year: 2017
  article-title: Single‐cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment
  publication-title: Genome Biology
– volume: 566
  start-page: 496
  year: 2019
  end-page: 502
  article-title: The single‐cell transcriptional landscape of mammalian organogenesis
  publication-title: Nature
– volume: 10
  start-page: 380
  year: 2019
  article-title: Bulk tissue cell type deconvolution with multi‐subject single‐cell expression reference
  publication-title: Nature Communication
– volume: 40
  start-page: 527
  year: 2022
  end-page: 538
  article-title: Identifying phenotype‐associated subpopulations by integrating bulk and single‐cell sequencing data
  publication-title: Nature Biotechnology
– volume: 102
  start-page: 143
  year: 2019
  end-page: 158.e7
  article-title: Multimodal single‐cell analysis reveals physiological maturation in the developing human neocortex
  publication-title: Neuron
– volume: 21
  start-page: 130
  year: 2020
  article-title: Systematic assessment of tissue dissociation and storage biases in single‐cell and single‐nucleus RNA‐seq workflows
  publication-title: Genome Biology
– volume: 178
  start-page: 237
  year: 2019
  end-page: 52
  article-title: Single‐cell sequencing in precision medicine
  publication-title: Cancer Treatment and Research
– volume: 171
  start-page: 1611
  year: 2017
  end-page: 1624.e24
  article-title: Single‐cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer
  publication-title: Cell
– volume: 53
  start-page: 1334
  year: 2021
  end-page: 1347
  article-title: A single‐cell and spatially resolved atlas of human breast cancers
  publication-title: Nature Genetics
– volume: 21
  start-page: 1399
  year: 2017
  end-page: 1410
  article-title: Single‐cell RNA‐Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma
  publication-title: Cell Reports
– volume: 21
  start-page: 31
  year: 2020
  article-title: Eleven grand challenges in single‐cell data science
  publication-title: Genome Biology
– volume: 14
  start-page: 483
  year: 2017
  end-page: 486
  article-title: SC3: Consensus clustering of single‐cell RNA‐seq data
  publication-title: Nature Methods
– volume: 16
  start-page: 278
  year: 2015
  article-title: MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single‐cell RNA sequencing data
  publication-title: Genome Biology
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 8
  start-page: 208
  year: 2021
  end-page: 222
  article-title: Understanding the pathogenesis of infectious diseases by single‐cell RNA sequencing
  publication-title: Microbial Cell
– volume: 35
  start-page: 936
  year: 2017
  end-page: 939
  article-title: Multiplexed quantification of proteins and transcripts in single cells
  publication-title: Nature Biotechnology
– volume: 4
  start-page: 2612
  year: 2013
  article-title: Inferring tumour purity and stromal and immune cell admixture from expression data
  publication-title: Nature Communication
– volume: 29
  start-page: i62
  year: 2013
  end-page: i70
  article-title: Learning subgroup‐specific regulatory interactions and regulator independence with PARADIGM
  publication-title: Bioinformatics
– volume: 13
  start-page: 2742
  year: 2018
  end-page: 2757
  article-title: Tutorial: Guidelines for the experimental design of single‐cell RNA sequencing studies
  publication-title: Nature Protocols
– volume: 12
  start-page: 1029
  year: 2021
  article-title: Fast and precise single‐cell data analysis using a hierarchical autoencoder
  publication-title: Nature Communication
– volume: 39
  start-page: 1422
  year: 2021
  end-page: 1437.e10
  article-title: The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma
  publication-title: Cancer Cell
– volume: 365
  start-page: 1401
  year: 2019
  end-page: 1405
  article-title: Mapping human cell phenotypes to genotypes with single‐cell genomics
  publication-title: Science
– volume: 9
  start-page: 5150
  year: 2018
  article-title: Spatially and functionally distinct subclasses of breast cancer‐associated fibroblasts revealed by single cell RNA sequencing
  publication-title: Nature Communication
– volume: 17
  start-page: 159
  year: 2020
  end-page: 162
  article-title: NicheNet: Modeling intercellular communication by linking ligands to target genes
  publication-title: Nature Methods
– volume: 11
  start-page: 1757
  year: 2016
  end-page: 1774
  article-title: Cell Painting, a high‐content image‐based assay for morphological profiling using multiplexed fluorescent dyes
  publication-title: Nature Protocols
– volume: 17
  start-page: 457
  year: 2020
  end-page: 473
  article-title: Single‐cell RNA sequencing in cardiovascular development, disease and medicine
  publication-title: Nature Reviews Cardiology
– volume: 360
  start-page: 331
  year: 2018
  end-page: 335
  article-title: Developmental and oncogenic programs in H3K27M gliomas dissected by single‐cell RNA‐seq
  publication-title: Science
– volume: 11
  year: 2015
  article-title: SINCERA: A pipeline for single‐cell RNA‐Seq profiling analysis
  publication-title: PLoS Computational Biology
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nature Biotechnology
– volume: 6
  start-page: 7866
  year: 2015
  article-title: A draft network of ligand‐receptor‐mediated multicellular signalling in human
  publication-title: Nature Communication
– volume: 7
  start-page: 161
  year: 2022
  article-title: Integrating single‐cell RNA sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis
  publication-title: Signal Transduction and Targeted Therapy
– volume: 5
  start-page: 785
  year: 2021
  end-page: 786
  article-title: Single‐cell analysis of ductal differentiation
  publication-title: Nature Biomedical Engineering
– volume: 16
  start-page: 241
  year: 2015
  article-title: ZIFA: Dimensionality reduction for zero‐inflated single‐cell gene expression analysis
  publication-title: Genome Biology
– volume: 14
  start-page: 584
  year: 2017
  end-page: 586
  article-title: SCnorm: Robust normalization of single‐cell RNA‐seq data
  publication-title: Nature Methods
– volume: 178
  start-page: 835
  year: 2019
  end-page: 849.e21
  article-title: An integrative model of cellular states, plasticity, and genetics for glioblastoma
  publication-title: Cell
– volume: 24
  start-page: 608
  year: 2016
  end-page: 615
  article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes
  publication-title: Cell Metabolism
– volume: 472
  start-page: 90
  year: 2011
  end-page: 94
  article-title: Tumour evolution inferred by single‐cell sequencing
  publication-title: Nature
– volume: 19
  start-page: 15
  year: 2018
  article-title: SCANPY: Large‐scale single‐cell gene expression data analysis
  publication-title: Genome Biology
– volume: 8
  year: 2017
  article-title: Single‐cell RNA‐seq enables comprehensive tumour and immune cell profiling in primary breast cancer
  publication-title: Nature Communication
– volume: 52
  start-page: 1428
  year: 2020
  end-page: 1442
  article-title: Single‐cell multiomics: Technologies and data analysis methods
  publication-title: Experimental & Molecular Medicine
– volume: 596
  start-page: 211
  year: 2021
  end-page: 220
  article-title: Exploring tissue architecture using spatial transcriptomics
  publication-title: Nature
– volume: 18
  start-page: 35
  year: 2018
  end-page: 45
  article-title: Single‐cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nature Reviews Immunology
– volume: 7
  year: 2018
  article-title: Clustering trees: A visualization for evaluating clusterings at multiple resolutions
  publication-title: Gigascience
– volume: 7
  year: 2021
  article-title: CytoTalk: De novo construction of signal transduction networks using single‐cell transcriptomic data
  publication-title: Science Advances
– volume: 34
  start-page: 3223
  year: 2018
  end-page: 3224
  article-title: DEsingle for detecting three types of differential expression in single‐cell RNA‐seq data
  publication-title: Bioinformatics
– volume: 9
  start-page: 171
  year: 2014
  end-page: 181
  article-title: Full‐length RNA‐seq from single cells using Smart‐seq2
  publication-title: Nature Protocols
– volume: 371
  year: 2021
  article-title: Microbial single‐cell RNA sequencing by split‐pool barcoding
  publication-title: Science
– volume: 17
  start-page: 710
  year: 2021
  end-page: 724
  article-title: Multi‐omics integration in the age of million single‐cell data
  publication-title: Nature Reviews Nephrology
– volume: 38
  start-page: 586
  year: 2020
  end-page: 599
  article-title: Multiplex digital spatial profiling of proteins and RNA in fixed tissue
  publication-title: Nature Biotechnology
– volume: 39
  start-page: 13
  year: 2021
  end-page: 17
  article-title: The Organoid Cell Atlas
  publication-title: Nature Biotechnology
– volume: 19
  start-page: 253
  year: 2021
  end-page: 266
  article-title: Direct comparative analyses of 10X genomics chromium and Smart‐seq2
  publication-title: Genomics, Proteomics & Bioinformatics
– volume: 41
  year: 2022
  article-title: Astrogenesis in the murine dentate gyrus is a life‐long and dynamic process
  publication-title: The EMBO Journal
– volume: 5
  start-page: 1202
  year: 2020
  end-page: 1206
  article-title: Single‐cell RNA‐sequencing reports growth‐condition‐specific global transcriptomes of individual bacteria
  publication-title: Nature Biomedical Engineering
– volume: 13
  start-page: 189
  year: 2021
  article-title: Predicting heterogeneity in clone‐specific therapeutic vulnerabilities using single‐cell transcriptomic signatures
  publication-title: Genome Medicine
– volume: 6
  start-page: 377
  year: 2009
  end-page: 382
  article-title: mRNA‐Seq whole‐transcriptome analysis of a single cell
  publication-title: Nature Methods
– volume: 11
  year: 2021
  article-title: A topology‐preserving dimensionality reduction method for single‐cell RNA‐seq data using graph autoencoder
  publication-title: Science Reports
– volume: 10
  year: 2021
  article-title: Single‐cell RNA‐seq reveals transcriptomic heterogeneity mediated by host‐pathogen dynamics in lymphoblastoid cell lines
  publication-title: Elife
– volume: 39
  start-page: 1062
  year: 2021
  end-page: 1080
  article-title: From bench to bedside: Single‐cell analysis for cancer immunotherapy
  publication-title: Cancer Cell
– volume: 117
  start-page: 10876
  year: 2020
  end-page: 10887
  article-title: Single‐cell resolution analysis of the human pancreatic ductal progenitor cell niche
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 12
  start-page: 44
  year: 2017
  end-page: 73
  article-title: Single‐cell barcoding and sequencing using droplet microfluidics
  publication-title: Nature Protocols
– volume: 22
  start-page: 769
  year: 2021
  end-page: 780
  article-title: The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
  publication-title: Nature Immunology
– volume: 348
  year: 2015
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
– volume: 550
  start-page: 451
  year: 2017
  end-page: 453
  article-title: The Human Cell Atlas: From vision to reality
  publication-title: Nature
– volume: 12
  start-page: 1088
  year: 2021
  article-title: Inference and analysis of cell‐cell communication using CellChat
  publication-title: Nature Communication
– volume: 9
  start-page: 75
  year: 2017
  article-title: A practical guide to single‐cell RNA‐sequencing for biomedical research and clinical applications
  publication-title: Genome Medicine
– volume: 6
  start-page: 9
  year: 2022
  article-title: Single‐cell analysis of gastric pre‐cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity
  publication-title: NPJ Precision Oncology
– volume: 31
  year: 2020
  article-title: Single‐cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth
  publication-title: Cell Reports
– volume: 27
  start-page: 1300
  year: 2017
  end-page: 1311
  article-title: Integrated single‐cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia
  publication-title: Genome Research
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  article-title: Highly parallel genome‐wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
– volume: 23
  start-page: 49
  year: 2022
  article-title: Benchmarking clustering algorithms on estimating the number of cell types from single‐cell RNA‐sequencing data
  publication-title: Genome Biology
– volume: 22
  start-page: 627
  year: 2021
  end-page: 644
  article-title: Integrating single‐cell and spatial transcriptomics to elucidate intercellular tissue dynamics
  publication-title: Nature Reviews Genetics
– volume: 32
  start-page: 533
  year: 2016
  end-page: 541
  article-title: EMDomics: A robust and powerful method for the identification of genes differentially expressed between heterogeneous classes
  publication-title: Bioinformatics
– volume: 9
  year: 2021
  article-title: Light sheet fluorescence microscopy illuminating soft matter
  publication-title: Frontiers in Physics
– volume: 37
  start-page: 471
  year: 2020
  end-page: 484
  article-title: Intratumor heterogeneity: The Rosetta Stone of therapy resistance
  publication-title: Cancer Cell
– volume: 591
  start-page: 2213
  year: 2017
  end-page: 2225
  article-title: Computational approaches for interpreting scRNA‐seq data
  publication-title: FEBS Letters
– volume: 26
  start-page: 792
  year: 2020
  end-page: 802
  article-title: A single‐cell and single‐nucleus RNA‐Seq toolbox for fresh and frozen human tumors
  publication-title: Nature Medicine
– volume: 3
  start-page: 126
  year: 2020
  article-title: Single‐cell RNA sequencing reveals a heterogeneous response to Glucocorticoids in breast cancer cells
  publication-title: Communications Biology
– volume: 36
  start-page: 469
  year: 2018
  end-page: 473
  article-title: Simultaneous lineage tracing and cell‐type identification using CRISPR‐Cas9‐induced genetic scars
  publication-title: Nature Biotechnology
– volume: 22
  start-page: 301
  year: 2021
  article-title: Over 1000 tools reveal trends in the single‐cell RNA‐seq analysis landscape
  publication-title: Genome Biology
– volume: 20
  start-page: 1384
  year: 2019
  end-page: 1394
  article-title: How to design a single‐cell RNA‐sequencing experiment: Pitfalls, challenges and perspectives
  publication-title: Briefings in Bioinformatics
– volume: 14
  start-page: 865
  year: 2017
  end-page: 868
  article-title: Simultaneous epitope and transcriptome measurement in single cells
  publication-title: Nature Methods
– volume: 12
  year: 2021
  article-title: A comparison for dimensionality reduction methods of single‐cell RNA‐seq data
  publication-title: Frontiers in Genetics
– volume: 355
  year: 2017
  article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq
  publication-title: Science
– volume: 23
  start-page: 971
  year: 2022
  end-page: 984
  article-title: Single‐cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression
  publication-title: Nature Immunology
– volume: 2008
  year: 2008
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– volume: 116
  start-page: 19490
  year: 2019
  end-page: 19499
  article-title: Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle‐dependent gene expression
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 9
  start-page: 3588
  year: 2018
  article-title: Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single‐cell RNA‐seq
  publication-title: Nature Communication
– volume: 24
  start-page: 1277
  year: 2018
  end-page: 1289
  article-title: Phenotype molding of stromal cells in the lung tumor microenvironment
  publication-title: Nature Medicine
– volume: 12
  start-page: 80
  year: 2022
  article-title: Integrating spatial transcriptomics with single‐cell transcriptomics reveals a spatiotemporal gene landscape of the human developing kidney
  publication-title: Cell & Bioscience
– volume: 81
  start-page: 1631
  year: 2021
  end-page: 1639
  article-title: Applicability of spatial transcriptional profiling to cancer research
  publication-title: Molecular Cell
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  article-title: Droplet barcoding for single‐cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
– volume: 42
  year: 2020
  article-title: Spatially resolved transcriptomes‐next generation tools for tissue exploration
  publication-title: Bioessays
– start-page: 164
  year: 2021
  end-page: 172
  article-title: PsiNorm: A scalable normalization for single‐cell RNA‐seq data
  publication-title: Bioinformatics
– volume: 8
  start-page: 228
  year: 2017
  article-title: Nanogrid single‐nucleus RNA sequencing reveals phenotypic diversity in breast cancer
  publication-title: Nature Communication
– volume: 31
  start-page: 862
  year: 2020
  end-page: 877.e14
  article-title: Single‐cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis
  publication-title: Cell Metabolism
– volume: 11
  start-page: 4296
  year: 2020
  article-title: Multiplexed single‐cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action
  publication-title: Nature Communication
– volume: 569
  start-page: 576
  year: 2019
  end-page: 580
  article-title: Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia
  publication-title: Nature
– volume: 24
  start-page: 986
  year: 2018
  end-page: 993
  article-title: Single‐cell profiling of breast cancer T cells reveals a tissue‐resident memory subset associated with improved prognosis
  publication-title: Nature Medicine
– volume: 20
  start-page: 40
  year: 2019
  article-title: Comparative analysis of differential gene expression analysis tools for single‐cell RNA sequencing data
  publication-title: BMC Bioinformatics
– volume: 374
  year: 2021
  article-title: Pan‐cancer single‐cell landscape of tumor‐infiltrating T cells
  publication-title: Science
– volume: 560
  start-page: 377
  year: 2018
  end-page: 381
  article-title: A single‐cell atlas of the airway epithelium reveals the CFTR‐rich pulmonary ionocyte
  publication-title: Nature
– volume: 39
  start-page: 1578
  year: 2021
  end-page: 1593.e8
  article-title: Single‐cell analyses reveal key immune cell subsets associated with response to PD‐L1 blockade in triple‐negative breast cancer
  publication-title: Cancer Cell
– year: 2022
  article-title: Fast and highly sensitive full‐length single‐cell RNA sequencing using FLASH‐seq
  publication-title: Nature Biotechnology
– volume: 20
  start-page: 257
  year: 2019
  end-page: 272
  article-title: Integrative single‐cell analysis
  publication-title: Nature Reviews Genetics
– volume: 9
  start-page: 2425
  year: 2018
  article-title: A single‐cell sequencing guide for immunologists
  publication-title: Frontiers in Immunology
– volume: 13
  year: 2022
  article-title: Mapping and validation of scRNA‐Seq‐derived cell‐cell communication networks in the tumor microenvironment
  publication-title: Frontiers in Immunology
– volume: 23
  start-page: 27
  year: 2022
  article-title: Comparison and evaluation of statistical error models for scRNA‐seq
  publication-title: Genome Biology
– volume: 174
  start-page: 1293
  year: 2018
  end-page: 1308.e36
  article-title: Single‐cell map of diverse immune phenotypes in the breast tumor microenvironment
  publication-title: Cell
– volume: 15
  start-page: 550
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biology
– volume: 22
  start-page: 67
  year: 2022
  end-page: 68
  article-title: Expanding dendritic cell nomenclature in the single‐cell era
  publication-title: Nature Reviews Immunology
– ident: e_1_2_12_97_1
  doi: 10.1126/science.aaa6090
– ident: e_1_2_12_26_1
  doi: 10.1186/s13059-021-02519-4
– ident: e_1_2_12_111_1
  doi: 10.1038/s41587-019-0071-9
– ident: e_1_2_12_85_1
  doi: 10.1186/s13059-017-1362-4
– ident: e_1_2_12_70_1
  doi: 10.1038/s41588-020-00726-6
– ident: e_1_2_12_112_1
  doi: 10.1016/j.ccell.2021.07.004
– ident: e_1_2_12_135_1
  doi: 10.1038/nprot.2016.154
– ident: e_1_2_12_20_1
  doi: 10.1016/j.gpb.2020.02.005
– ident: e_1_2_12_101_1
  doi: 10.1038/s41467-020-17440-w
– ident: e_1_2_12_44_1
  doi: 10.1093/bioinformatics/btw227
– ident: e_1_2_12_126_1
  doi: 10.1038/s43588-021-00086-z
– ident: e_1_2_12_21_1
  doi: 10.1038/s41587-022-01312-3
– ident: e_1_2_12_79_1
  doi: 10.1038/s41591-018-0096-5
– ident: e_1_2_12_103_1
  doi: 10.1186/s13073-021-01000-y
– ident: e_1_2_12_16_1
  doi: 10.1093/bib/bby007
– ident: e_1_2_12_98_1
  doi: 10.1073/pnas.1912459116
– ident: e_1_2_12_65_1
  doi: 10.1016/j.bbcan.2017.02.001
– ident: e_1_2_12_33_1
  doi: 10.1186/s13059-019-1874-1
– ident: e_1_2_12_102_1
  doi: 10.7554/eLife.62586
– ident: e_1_2_12_5_1
  doi: 10.1038/s41587-020-00762-x
– ident: e_1_2_12_29_1
  doi: 10.1093/nar/gkx754
– ident: e_1_2_12_43_1
  doi: 10.1371/journal.pcbi.1004575
– ident: e_1_2_12_48_1
  doi: 10.1186/s13059-017-1382-0
– ident: e_1_2_12_75_1
  doi: 10.1038/ncomms15081
– ident: e_1_2_12_134_1
  doi: 10.1016/j.cell.2015.05.002
– ident: e_1_2_12_40_1
  doi: 10.1038/s41598-021-99003-7
– ident: e_1_2_12_113_1
  doi: 10.1038/s41596-018-0073-y
– ident: e_1_2_12_62_1
  doi: 10.1126/science.aba5257
– ident: e_1_2_12_119_1
  doi: 10.1186/s13059-021-02584-9
– ident: e_1_2_12_14_1
  doi: 10.1038/s41576-021-00370-8
– ident: e_1_2_12_107_1
  doi: 10.1126/science.aao4750
– ident: e_1_2_12_15_1
  doi: 10.1038/s41392-022-00962-8
– ident: e_1_2_12_32_1
  doi: 10.1093/bioinformatics/btw777
– ident: e_1_2_12_30_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_12_24_1
  doi: 10.1038/s12276-020-0420-2
– ident: e_1_2_12_54_1
  doi: 10.1093/bioinformatics/btv634
– ident: e_1_2_12_116_1
  doi: 10.1186/s13059-020-02048-6
– ident: e_1_2_12_2_1
  doi: 10.1093/bib/bbu002
– ident: e_1_2_12_59_1
  doi: 10.1073/pnas.1918314117
– ident: e_1_2_12_90_1
  doi: 10.1038/s41596-020-0292-x
– ident: e_1_2_12_12_1
  doi: 10.1038/s41587-022-01284-4
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_2_12_38_1
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_31_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_12_45_1
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: e_1_2_12_82_1
  doi: 10.1002/cam4.2113
– ident: e_1_2_12_84_1
  doi: 10.1126/science.aai8478
– ident: e_1_2_12_37_1
  doi: 10.1186/s13059-015-0805-z
– ident: e_1_2_12_4_1
  doi: 10.1186/s13073-017-0467-4
– ident: e_1_2_12_131_1
  doi: 10.3389/fphy.2021.760834
– ident: e_1_2_12_96_1
  doi: 10.1038/s41586-021-03634-9
– ident: e_1_2_12_92_1
  doi: 10.1126/sciadv.abf1356
– ident: e_1_2_12_25_1
  doi: 10.1016/j.cell.2015.04.044
– ident: e_1_2_12_100_1
  doi: 10.1038/s42003-020-0837-0
– ident: e_1_2_12_115_1
  doi: 10.1038/s41591-020-0844-1
– ident: e_1_2_12_28_1
  doi: 10.1038/nmeth.4236
– ident: e_1_2_12_120_1
  doi: 10.1038/nri.2017.76
– ident: e_1_2_12_57_1
  doi: 10.1016/j.neuron.2019.01.027
– ident: e_1_2_12_73_1
  doi: 10.1016/j.celrep.2017.10.030
– ident: e_1_2_12_108_1
  doi: 10.1016/j.cell.2019.06.024
– ident: e_1_2_12_50_1
  doi: 10.1093/gigascience/giy083
– ident: e_1_2_12_11_1
  doi: 10.1126/science.aax6648
– ident: e_1_2_12_53_1
  doi: 10.1186/s12859-019-2599-6
– ident: e_1_2_12_63_1
  doi: 10.1038/s41590-022-01215-0
– ident: e_1_2_12_125_1
  doi: 10.1038/s41576-019-0093-7
– ident: e_1_2_12_3_1
  doi: 10.1038/ncomms3612
– ident: e_1_2_12_81_1
  doi: 10.1016/j.celrep.2020.107628
– ident: e_1_2_12_6_1
  doi: 10.1093/gigascience/giz010
– ident: e_1_2_12_66_1
  doi: 10.1038/s41569-020-0359-y
– ident: e_1_2_12_74_1
  doi: 10.1038/s41467-018-06052-0
– ident: e_1_2_12_35_1
  doi: 10.1038/nmeth.4263
– volume: 5
  start-page: 1202
  year: 2020
  ident: e_1_2_12_60_1
  article-title: Single‐cell RNA‐sequencing reports growth‐condition‐specific global transcriptomes of individual bacteria
  publication-title: Nature Biomedical Engineering
– ident: e_1_2_12_18_1
  doi: 10.1038/nprot.2014.006
– ident: e_1_2_12_22_1
  doi: 10.1038/nmeth.4380
– ident: e_1_2_12_10_1
  doi: 10.1038/s41587-021-01091-3
– ident: e_1_2_12_46_1
  doi: 10.1038/s41598-019-41695-z
– ident: e_1_2_12_71_1
  doi: 10.1016/j.ccell.2021.08.011
– ident: e_1_2_12_58_1
  doi: 10.1038/s41551-021-00782-1
– ident: e_1_2_12_88_1
  doi: 10.3389/fimmu.2022.885267
– ident: e_1_2_12_114_1
  doi: 10.15252/embj.2021110409
– ident: e_1_2_12_89_1
  doi: 10.1038/s41467-021-21246-9
– ident: e_1_2_12_86_1
  doi: 10.1038/s41591-018-0078-7
– ident: e_1_2_12_132_1
  doi: 10.1038/nbt.4124
– ident: e_1_2_12_51_1
  doi: 10.1093/bioinformatics/bty332
– ident: e_1_2_12_99_1
  doi: 10.1038/s41587-020-0472-9
– ident: e_1_2_12_118_1
  doi: 10.1186/s13059-020-1926-6
– ident: e_1_2_12_83_1
  doi: 10.1016/j.cell.2018.05.060
– ident: e_1_2_12_78_1
  doi: 10.1016/j.cell.2017.10.044
– ident: e_1_2_12_104_1
  doi: 10.1126/science.abl4896
– ident: e_1_2_12_128_1
  doi: 10.1073/pnas.2001906117
– ident: e_1_2_12_117_1
  doi: 10.1038/s41577-022-00675-7
– ident: e_1_2_12_91_1
  doi: 10.1038/s41592-019-0667-5
– ident: e_1_2_12_76_1
  doi: 10.1038/s41698-022-00251-1
– ident: e_1_2_12_127_1
  doi: 10.1093/bioinformatics/btt229
– ident: e_1_2_12_17_1
  doi: 10.2174/1389202921999200625220812
– ident: e_1_2_12_93_1
  doi: 10.1186/s13578-022-00801-x
– ident: e_1_2_12_64_1
  doi: 10.1038/nature09807
– ident: e_1_2_12_133_1
  doi: 10.1007/978-3-030-16391-4_9
– ident: e_1_2_12_109_1
  doi: 10.1101/gr.217331.116
– ident: e_1_2_12_41_1
  doi: 10.1186/s13059-022-02622-0
– ident: e_1_2_12_42_1
  doi: 10.1038/nature14966
– ident: e_1_2_12_94_1
  doi: 10.1002/bies.201900221
– ident: e_1_2_12_129_1
  doi: 10.3390/cancers13071718
– ident: e_1_2_12_39_1
  doi: 10.1038/s41467-021-21312-2
– ident: e_1_2_12_122_1
  doi: 10.1038/s41590-021-00931-3
– ident: e_1_2_12_34_1
  doi: 10.1093/bioinformatics/btab641
– ident: e_1_2_12_87_1
  doi: 10.1038/ncomms8866
– ident: e_1_2_12_121_1
  doi: 10.1038/nmeth.1315
– ident: e_1_2_12_124_1
  doi: 10.1038/s41586-018-0394-6
– ident: e_1_2_12_106_1
  doi: 10.1016/j.bbcan.2017.01.003
– ident: e_1_2_12_36_1
  doi: 10.3389/fgene.2021.646936
– ident: e_1_2_12_61_1
  doi: 10.15698/mic2021.09.759
– ident: e_1_2_12_72_1
  doi: 10.1016/j.ccell.2020.03.007
– ident: e_1_2_12_47_1
  doi: 10.1016/j.cell.2021.04.048
– ident: e_1_2_12_13_1
  doi: 10.1038/s41581-021-00463-x
– ident: e_1_2_12_7_1
  doi: 10.1016/j.ccell.2021.09.010
– ident: e_1_2_12_19_1
  doi: 10.3389/fimmu.2018.02425
– ident: e_1_2_12_69_1
  doi: 10.1126/science.abe6474
– ident: e_1_2_12_105_1
  doi: 10.1038/550451a
– ident: e_1_2_12_80_1
  doi: 10.1038/s41467-018-07582-3
– ident: e_1_2_12_52_1
  doi: 10.1186/s13059-015-0844-5
– ident: e_1_2_12_130_1
  doi: 10.1038/nprot.2016.105
– ident: e_1_2_12_110_1
  doi: 10.1038/s41586-019-1198-z
– ident: e_1_2_12_9_1
  doi: 10.1038/s41467-018-08023-x
– ident: e_1_2_12_55_1
  doi: 10.1038/nbt.4096
– ident: e_1_2_12_49_1
  doi: 10.1038/s41586-019-0969-x
– ident: e_1_2_12_27_1
  doi: 10.1002/1873-3468.12684
– ident: e_1_2_12_56_1
  doi: 10.1038/nbt.2859
– ident: e_1_2_12_8_1
  doi: 10.1038/s41588-021-00911-1
– ident: e_1_2_12_95_1
  doi: 10.1016/j.molcel.2021.03.016
– ident: e_1_2_12_67_1
  doi: 10.1016/j.cmet.2020.03.009
– ident: e_1_2_12_77_1
  doi: 10.1038/s41467-017-00244-w
– ident: e_1_2_12_23_1
  doi: 10.1038/nbt.3973
– ident: e_1_2_12_123_1
  doi: 10.1038/s41586-018-0393-7
– ident: e_1_2_12_68_1
  doi: 10.1016/j.cmet.2016.08.018
SSID ssj0009624
Score 2.5592475
SecondaryResourceType review_article
Snippet Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2200084
SubjectTerms bioinformatics
biomedical research
Cardiovascular diseases
complex disease
computational biology
Computer applications
Context
diabetes
Diabetes mellitus
Disease
disease progression
Disease resistance
evolution
Gene sequencing
Heterogeneity
Medical research
neoplasms
New technology
Pipelines
Populations
Questions
RNA
scRNA‐seq
sequence analysis
single‐cell RNA sequencing
therapeutics
transcriptome
Transcriptomes
transcriptomics
Tumors
tumour microenvironment
Title Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202200084
https://www.proquest.com/docview/2726905731
https://www.proquest.com/docview/2711307377
https://www.proquest.com/docview/2811976007
Volume 44
WOSCitedRecordID wos000850306200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7apIVc0jfdJA0qBHISsSVZj9y2j6WHsoQ8YG9GlmUaWHZD4g3klp-Q35hfkhnb600ObaG9GMsaGSHNSN_o8Q3AXuVEEaV2HDs4clUYwb1IFS-cSLUoykTEsgk2YcZjO5m4o0e3-Ft-iH7BjSyjGa_JwH1xdbAiDS3IkxR0UZQ44Z_DeppKS8EbhDpa0e7qJqwtOhoZR0_DLGkbE3HwtPzTaWmFNR8j1mbKGb36_8q-hs0ObrJhqx9v4FmcvYWXbQDKm3dwfoIz1zQyWr5nx-Ph_e1dd7Yavx-yIbugIGrVYspuYs1wNECx0IVfQQlW9wvzrJ6zhqq2-RedbWW_6KTNHBU0ItJ_D2ej76dff_Au-AIPyjrFRfC-ktraaKsSUUiU6CvKkCkZSomoS9P-ny1k6XVlvfBZZRKfJF67UJSV9vIDrM3ms_gRGO1tZ9HZRKlMKeNdVFpFETDpEA9VA-DLts9Dx0xOATKmecupLHJqvrxvvgHs9_IXLSfHbyV3ll2Zd7aJuUZoRzyQ6QA-99loVdQ-fhbnC5JBbcLRz5g_yFjagiV-_wGIpvP_Upv8CyL8PrX1L4W2YYPe28uQO7BWXy7iJ3gRruvzq8vdRvfxaSZ2F9a_HY_Ofj4ASLoGXA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RaAUXoA_E8qorIfVkkTiOY3NbHitQl1XFQ-IWOY6jIqFdBAGJGz-B38gvYSbJZsuhVEIcbU8cazxjj8fjbwA2CyMyHynDcYI9l1kiuBWh5JkRoRJZHgifV8kmksFAn5-b3000Ib2FqfEhWocbaUa1XpOCk0N6a4IamtFRUtBLUQKF_wAzEmUJhXxm77h31p8g76oqsy2eNWKOh41kjNwYiK2XPbzcmSbm5t9Ga7Xr9BbeYbyLMN-YnKxby8hnmPLDL_CpTkJ5_xUuTnD3uvSMXPjseNB9enhs4quxfpt12RUlUsO_sHtfMlwRkMw1KViQgpWtc56VI1bB1VZ9UXwr-0PRNiMUUo_W_jc46-2f7h7wJgEDd1IbyYWztoiU1l4XOVoiPsLzYuRiGbk8QstL0R2gzqLcqkJbYeMiCWwQWGVclhfKRkswPRwN_TIwut-OvdGBlLGUiTVeKumFw6JBm6joAB8zP3UNOjklybhMa1xlkRL70pZ9HfjZ0l_VuBz_pFwbz2Xa6Ce2JkIZwoIMO_CjbUbNIv7YoR_dEk0Y0gqYJK_QaLqGJYz_Dohq9v8zmnQHrfy2tPKWj77D7MHpUT_tHw5-rcIc1dePI9dgury-9evw0d2VFzfXG40qPANnTAla
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7aTRt6Sds0IdumqQqBnERsWZal3jZNl4aGJeQHcjOyLJHAsrsk3kBufYQ-Y5-kM7bX2xyaQulR8liIkUb6Rhp9A7AbjCh8ogzHAfZcFpngVsSSF0bEShRlJHxZJ5vIRiN9eWlO2mhCegvT8EN0B25kGfV6TQbuZ2XYX7KGFuRKCnopSqTwT2FFUiaZHqwcng4vjpfMu6rObIu-RsrR2cgWzI2R2H_YwsOdaQk3fwet9a4zfPkf-vsK1lrIyQbNHHkNT_xkHZ43SSjv38D1Ge5eY8_oCJ-djgY_v_9o46ux_hMbsBklUgvzMbv3FcMVAcVcm4IFJVjVHc6zaspqutq6LYpvZVcUbTPFSeoR7W_AxfDL-eevvE3AwJ3URnLhrA2J0trrUCIS8Qn6i4lLZeLKBJGXojtAXSSlVUFbYdOQRTaKrDKuKIOyySb0JtOJ3wJG99upNzqSMpUys8ZLJb1wWDSIiUIf-EL5uWvZySlJxjhveJVFTurLO_X1Ya-TnzW8HH-U3F6MZd7aJ37NhDLEBRn34WP3GS2L9GMnfjonmTimFTDLHpHRdA1LHP99EPXo_6U3-QGi_K709l9--gCrJ4fD_Pho9O0dvKDq5m3kNvSqm7l_D8_cXXV9e7PTWsIv4vUI1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+cell+RNA%E2%80%90sequencing%3A+A+powerful+yet+still+challenging+technology+to+study+cellular+heterogeneity&rft.jtitle=BioEssays&rft.au=Ke%2C+May&rft.au=Elshenawy%2C+Badran&rft.au=Sheldon%2C+Helen&rft.au=Arora%2C+Anjali&rft.date=2022-11-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=44&rft.issue=11&rft_id=info:doi/10.1002%2Fbies.202200084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202200084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon