Statistical clustering of temporal networks through a dynamic stochastic block model

Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Jg. 79; H. 4; S. 1119 - 1141
Hauptverfasser: Matias, Catherine, Miele, Vincent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Wiley 01.09.2017
Oxford University Press
Royal Statistical Society
Schlagworte:
ISSN:1369-7412, 1467-9868
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.
AbstractList Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within‐group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets. We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.
Summary Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within‐group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets. We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.
Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within group connectivity behavior. We study identifiability of the model parameters , propose an inference procedure based on a variational expectation maximization algorithm as well as a model selection criterion to select for the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and compare our procedure with existing ones on synthetic datasets. We also illustrate our approach on dynamic contact networks, one of encounters among high school students and two others on animal interactions. An implementation of the method is available as a R package called dynsbm.
Author Matias, Catherine
Miele, Vincent
Author_xml – sequence: 1
  givenname: Catherine
  surname: Matias
  fullname: Matias, Catherine
– sequence: 2
  givenname: Vincent
  surname: Miele
  fullname: Miele, Vincent
BackLink https://hal.science/hal-01167837$$DView record in HAL
BookMark eNp9kU1r3DAQhkVIoUnaS-8BQS9twKk-vJJ8TEPzAQuFbnoWsnac1Ua2tpLcsP8-cp3mEEoHgTTD8w6aeY_R4RAGQOgDJee0xJeYUntOGSPkAB3RWsiqUUIdljcXTSVryt6i45S2pISQ_AjdrbLJLmVnjcfWjylDdMM9Dh3O0O9CLOUB8mOIDwnnTQzj_QYbvN4PpncWpxzsxkxy3PpgH3Af1uDfoTed8QneP98n6OfVt7vLm2r5_fr28mJZ2Vo1pKLA15LVlJB2zSjprFK1bZWEhbCm45YwaLkRtuMcBAdZDnQLQQwtOaGGn6DPc9-N8XoXXW_iXgfj9M3FUk81QqmQisvfrLCfZnYXw68RUta9Sxa8NwOEMemyMrLgNWGkoB9fodswxqFMomnDFGuUVLRQZzNlY0gpQvfyA0r0ZIaezNB_zCgweQVbNy0-DDka5_8tobPk0XnY_6e5_rFaff2rOZ0122JMfNEwISWni5o_AbIFp8E
CitedBy_id crossref_primary_10_1093_biomet_asy016
crossref_primary_10_1007_s41109_019_0136_1
crossref_primary_10_1007_s11634_022_00492_9
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_1080_00949655_2024_2439481
crossref_primary_10_1093_jrsssb_qkad084
crossref_primary_10_1002_sta4_459
crossref_primary_10_1007_s10687_023_00478_6
crossref_primary_10_1093_biomet_asz068
crossref_primary_10_1103_PhysRevE_106_044306
crossref_primary_10_1007_s13253_019_00363_5
crossref_primary_10_1214_25_AOS2506
crossref_primary_10_1002_asmb_2354
crossref_primary_10_1073_pnas_2108815119
crossref_primary_10_1007_s00265_022_03167_9
crossref_primary_10_1177_1550147718756872
crossref_primary_10_1093_beheco_arz083
crossref_primary_10_1371_journal_pone_0215296
crossref_primary_10_1080_24725854_2022_2148780
crossref_primary_10_1093_comnet_cnad039
crossref_primary_10_1002_cpe_5314
crossref_primary_10_1080_10618600_2023_2267630
crossref_primary_10_1111_stan_12219
crossref_primary_10_1016_j_socnet_2025_05_001
crossref_primary_10_1109_TMI_2020_3030047
crossref_primary_10_1214_24_BA1463
crossref_primary_10_1007_s41109_019_0230_4
crossref_primary_10_3389_fpsyg_2021_773289
crossref_primary_10_1121_10_0037073
crossref_primary_10_1214_22_BA1338
crossref_primary_10_1214_24_AOS2441
crossref_primary_10_1016_j_ins_2024_121069
crossref_primary_10_1007_s00357_025_09500_x
crossref_primary_10_1016_j_tree_2021_11_012
crossref_primary_10_1109_TNSE_2023_3337281
crossref_primary_10_1016_j_socnet_2022_02_001
crossref_primary_10_1155_ddns_6643841
crossref_primary_10_1145_3657300
crossref_primary_10_1007_s11222_025_10723_6
crossref_primary_10_1080_00401706_2019_1623076
crossref_primary_10_1007_s10479_023_05419_x
crossref_primary_10_1007_s11634_020_00403_w
crossref_primary_10_1080_01621459_2020_1833888
crossref_primary_10_1093_jrsssa_qnad028
crossref_primary_10_1145_3172867
crossref_primary_10_1002_sta4_594
crossref_primary_10_1109_TIT_2019_2893947
crossref_primary_10_1371_journal_pcbi_1007434
crossref_primary_10_1016_j_socnet_2022_12_003
crossref_primary_10_1007_s13171_021_00258_z
crossref_primary_10_1080_01621459_2021_2024436
crossref_primary_10_1080_07350015_2024_2395423
crossref_primary_10_1080_10618600_2022_2164289
crossref_primary_10_1146_annurev_soc_073117_041106
crossref_primary_10_1214_21_AOS2079
crossref_primary_10_1002_sta4_70080
crossref_primary_10_1016_j_csda_2021_107179
crossref_primary_10_1080_01621459_2022_2054817
crossref_primary_10_1007_s41109_020_00270_6
crossref_primary_10_1109_TIT_2022_3213429
crossref_primary_10_1007_s11222_017_9788_9
crossref_primary_10_1016_j_csda_2020_107051
crossref_primary_10_1214_25_BA1545
crossref_primary_10_1214_21_BA1300
crossref_primary_10_1146_annurev_statistics_040220_091910
crossref_primary_10_1093_jrsssa_qnad036
crossref_primary_10_1186_s41256_018_0067_x
crossref_primary_10_1016_j_cities_2024_105033
crossref_primary_10_1007_s11222_016_9713_7
crossref_primary_10_1177_1471082X20963254
crossref_primary_10_1080_03610918_2020_1743858
crossref_primary_10_1111_rssc_12387
crossref_primary_10_1088_2632_072X_ac52e6
crossref_primary_10_1214_18_AOS1751
crossref_primary_10_3233_MGS_190315
crossref_primary_10_1080_10618600_2024_2447478
crossref_primary_10_1007_s11222_018_9832_4
crossref_primary_10_1109_TIT_2024_3471953
crossref_primary_10_1007_s10994_023_06507_6
crossref_primary_10_1007_s11222_025_10606_w
crossref_primary_10_1007_s13278_018_0537_7
crossref_primary_10_1002_cjs_70012
crossref_primary_10_1002_env_2709
crossref_primary_10_1007_s10260_023_00712_2
crossref_primary_10_1093_cercor_bhz150
crossref_primary_10_1177_1471082X19871128
crossref_primary_10_1080_10618600_2025_2510494
crossref_primary_10_1016_j_neuroimage_2020_116611
crossref_primary_10_1007_s11336_023_09926_5
crossref_primary_10_1016_j_knosys_2016_07_021
crossref_primary_10_1080_07350015_2022_2146695
crossref_primary_10_1002_wics_1566
crossref_primary_10_1007_s11222_020_09947_5
crossref_primary_10_1080_10618600_2024_2319162
crossref_primary_10_1038_s42005_024_01889_y
crossref_primary_10_1073_pnas_1718449115
crossref_primary_10_1016_j_eswa_2021_114649
crossref_primary_10_1214_20_AOS1953
crossref_primary_10_1080_07350015_2022_2041423
crossref_primary_10_3390_math8020239
crossref_primary_10_1109_TSIPN_2021_3052047
crossref_primary_10_1371_journal_pcbi_1007834
crossref_primary_10_1049_sil2_12129
crossref_primary_10_1109_TBDATA_2020_2974849
crossref_primary_10_1007_s11634_025_00634_9
crossref_primary_10_1007_s41109_019_0232_2
crossref_primary_10_1109_TNNLS_2022_3149285
crossref_primary_10_1016_j_jmva_2019_104540
crossref_primary_10_1016_j_ejor_2019_07_024
crossref_primary_10_1007_s11634_024_00604_7
crossref_primary_10_1111_jbi_13773
crossref_primary_10_1080_01621459_2019_1677242
crossref_primary_10_1145_3713076
crossref_primary_10_1109_ACCESS_2018_2884002
crossref_primary_10_1002_asmb_2548
crossref_primary_10_1007_s11222_023_10342_z
crossref_primary_10_1109_TR_2023_3234907
crossref_primary_10_1016_j_jmva_2024_105333
crossref_primary_10_1080_01621459_2025_2455202
crossref_primary_10_1016_j_csda_2024_108070
crossref_primary_10_1007_s13278_024_01292_z
crossref_primary_10_1103_PhysRevE_103_052307
crossref_primary_10_1214_22_BA1355
crossref_primary_10_1080_10618600_2025_2484011
crossref_primary_10_1007_s11192_024_05130_z
crossref_primary_10_1111_insr_12398
crossref_primary_10_1016_j_neucom_2017_09_013
crossref_primary_10_1080_01621459_2018_1562934
crossref_primary_10_1007_s11192_022_04463_x
crossref_primary_10_1017_nws_2018_19
crossref_primary_10_1007_s00373_024_02791_8
crossref_primary_10_1016_j_patrec_2020_07_014
crossref_primary_10_1093_jrsssa_qnad115
crossref_primary_10_1002_sta4_381
crossref_primary_10_1007_s11222_025_10573_2
crossref_primary_10_1016_j_csda_2022_107449
crossref_primary_10_1111_1365_2656_13217
crossref_primary_10_1007_s11634_024_00583_9
crossref_primary_10_1007_s11222_023_10265_9
crossref_primary_10_1145_3442589
crossref_primary_10_1016_j_csda_2018_01_010
crossref_primary_10_1017_nws_2021_21
crossref_primary_10_1016_j_anbehav_2023_04_017
crossref_primary_10_1007_s41109_023_00567_2
Cites_doi 10.1140/epjb/e2015-60657-4
10.1214/13-AOS1124
10.1145/1117454.1117459
10.1214/10-AOAS359
10.1214/aoms/1177698805
10.1007/978-3-319-06608-0_7
10.1198/016214502388618906
10.1016/j.patcog.2008.06.019
10.1214/09-AOAS311
10.1146/annurev.soc.012809.102709
10.1109/JSTSP.2014.2310294
10.1214/12-EJS729
10.1111/ele.12304
10.1109/34.865189
10.1007/BF01908075
10.1038/nphys209
10.1007/s10994-010-5214-7
10.1007/978-0-387-88146-1
10.1016/j.physrep.2009.11.002
10.1007/s11222-007-9046-7
10.1561/2200000005
10.1177/1471082X1001200105
10.1371/journal.pone.0138645
10.1016/j.jspi.2010.11.022
10.1371/journal.pone.0107878
10.1214/09-AOS689
10.1051/proc/201447004
10.1016/0304-4149(92)90141-C
10.1023/A:1007665907178
10.1007/s00440-014-0576-6
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.1467-9868.2011.01009.x
ContentType Journal Article
Copyright 2016 Royal Statistical Society
Copyright © 2017 The Royal Statistical Society and Blackwell Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Royal Statistical Society
– notice: Copyright © 2017 The Royal Statistical Society and Blackwell Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
DOI 10.1111/rssb.12200
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
International Bibliography of the Social Sciences (IBSS)

CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9868
EndPage 1141
ExternalDocumentID oai:HAL:hal-01167837v2
10_1111_rssb_12200
RSSB12200
26773154
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADULT
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AANHP
AARHZ
ACBWZ
ACFRR
ACRPL
ACYXJ
ADNMO
ADQBN
AGQPQ
ANFBD
AS~
ATGXG
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
NHB
RJQFR
ZGI
AAYXX
ABEJV
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4890-1e3d724100bd210fc884cb87e56caf3c02eb3a6cf33e63e73e7ef560a13e601a3
IEDL.DBID DRFUL
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411712300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Tue Oct 14 20:56:48 EDT 2025
Fri Oct 03 00:10:49 EDT 2025
Mon Nov 10 00:43:54 EST 2025
Sat Nov 29 05:52:02 EST 2025
Tue Nov 18 21:55:54 EST 2025
Sun Sep 21 06:16:27 EDT 2025
Thu Jul 03 22:16:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords stochastic block model
variational expectation maximization
contact network
dynamic random graph
graph clustering
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4890-1e3d724100bd210fc884cb87e56caf3c02eb3a6cf33e63e73e7ef560a13e601a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6665-2421
0000-0001-7584-0088
OpenAccessLink https://hal.science/hal-01167837
PQID 1928298781
PQPubID 39359
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01167837v2
proquest_miscellaneous_2000534020
proquest_journals_1928298781
crossref_primary_10_1111_rssb_12200
crossref_citationtrail_10_1111_rssb_12200
wiley_primary_10_1111_rssb_12200_RSSB12200
jstor_primary_26773154
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2017
Publisher Wiley
Oxford University Press
Royal Statistical Society
Publisher_xml – name: Wiley
– name: Oxford University Press
– name: Royal Statistical Society
References 2013; 28
2002; 97
2010
1985; 2
2008; 18
2011; 82
2000; 22
2010; 486
2013; 41
2015; 10
2008; 9
2009
2014; 47
2011; 37
2006; 2
2012; 12
2012; 74
1977; 39
2015; 88
1999; 37
2005; 7
2005; 6
2014; 8443
2016
2014; 162
2008; 41
2014; 17
1967; 38
2011; 141
2012; 6
2014; 9
2010; 2
2014; 8
2010; 4
2009; 37
1992; 40
Colizza (2023021709330105300_rssb12200-cit-0008) 2006; 2
Airoldi (2023021709330105300_rssb12200-cit-0001) 2008; 9
Fortunato (2023021709330105300_rssb12200-cit-0011) 2010; 486
Teicher (2023021709330105300_rssb12200-cit-0032) 1967; 38
Leroux (2023021709330105300_rssb12200-cit-0024) 1992; 40
Kolaczyk (2023021709330105300_rssb12200-cit-0022) 2009
Xing (2023021709330105300_rssb12200-cit-0033) 2010; 4
Ishiguro (2023021709330105300_rssb12200-cit-0020) 2010
Zreik (2023021709330105300_rssb12200-cit-0039) 2016
Herlau (2023021709330105300_rssb12200-cit-0016) 2013; 28
Allman (2023021709330105300_rssb12200-cit-0003) 2011; 141
Daudin (2023021709330105300_rssb12200-cit-0009) 2008; 18
Snijders (2023021709330105300_rssb12200-cit-0031) 2011; 37
Heaukulani (2023021709330105300_rssb12200-cit-0015) 2013; 28
Zanghi (2023021709330105300_rssb12200-cit-0037) 2008; 41
Celisse (2023021709330105300_rssb12200-cit-0007) 2012; 6
Sarkar (2023021709330105300_rssb12200-cit-0029) 2005; 7
Allman (2023021709330105300_rssb12200-cit-0002) 2009; 37
Rubenstein (2023021709330105300_rssb12200-cit-0028) 2015; 10
Xu (2023021709330105300_rssb12200-cit-0035) 2009
Zanghi (2023021709330105300_rssb12200-cit-0038) 2010; 4
Gunawardana (2023021709330105300_rssb12200-cit-0014) 2005; 6
Ambroise (2023021709330105300_rssb12200-cit-0004) 2012; 74
Dempster (2023021709330105300_rssb12200-cit-0010) 1977; 39
Xu (2023021709330105300_rssb12200-cit-0034) 2014; 8
Fournet (2023021709330105300_rssb12200-cit-0012) 2014; 9
Latouche (2023021709330105300_rssb12200-cit-0023) 2012; 12
Hoff (2023021709330105300_rssb12200-cit-0017) 2002; 97
Matias (2023021709330105300_rssb12200-cit-0026) 2014; 47
Yang (2023021709330105300_rssb12200-cit-0036) 2011; 82
Shizuka (2023021709330105300_rssb12200-cit-0030) 2014; 17
Mossel (2023021709330105300_rssb12200-cit-0027) 2014; 162
Jordan (2023021709330105300_rssb12200-cit-0021) 1999; 37
Biernacki (2023021709330105300_rssb12200-cit-0006) 2000; 22
Liu (2023021709330105300_rssb12200-cit-0025) 2014; 8443
Hubert (2023021709330105300_rssb12200-cit-0019) 1985; 2
Bickel (2023021709330105300_rssb12200-cit-0005) 2013; 41
Goldenberg (2023021709330105300_rssb12200-cit-0013) 2010; 2
Holme (2023021709330105300_rssb12200-cit-0018) 2015; 88
References_xml – volume: 74
  start-page: 3
  year: 2012
  end-page: 35
  article-title: New consistent and asymptotically normal parameter estimates for random‐graph mixture models
  publication-title: J. R. Statist. Soc.
– volume: 37
  start-page: 183
  year: 1999
  end-page: 233
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
– year: 2009
– volume: 4
  start-page: 687
  year: 2010
  end-page: 714
  article-title: Strategies for online inference of model‐based clustering in large and growing networks
  publication-title: Ann. Appl. Statist.
– volume: 4
  start-page: 535
  year: 2010
  end-page: 566
  article-title: A state‐space mixed membership blockmodel for dynamic network tomography
  publication-title: Ann. Appl. Statist.
– volume: 18
  start-page: 173
  year: 2008
  end-page: 183
  article-title: A mixture model for random graphs
  publication-title: Statist. Comput.
– volume: 88
  start-page: 234
  year: 2015
  article-title: Modern temporal network theory: a colloquium
  publication-title: Eur. Phys. J.
– volume: 12
  start-page: 93
  year: 2012
  end-page: 115
  article-title: Variational Bayesian inference and complexity control for stochastic block models
  publication-title: Statist. Modllng
– volume: 2
  start-page: 110
  year: 2006
  end-page: 115
  article-title: Detecting rich‐club ordering in complex networks
  publication-title: Nat. Phys.
– volume: 38
  start-page: 1300
  year: 1967
  end-page: 1302
  article-title: Identifiability of mixtures of product measures
  publication-title: Ann. Math. Statist.
– volume: 9
  start-page: 1981
  year: 2008
  end-page: 2014
  article-title: Mixed‐membership stochastic block‐models
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 31
  year: 2005
  end-page: 40
  article-title: Dynamic social network analysis using latent space models
  publication-title: SIGKDD Explorns Newslett
– volume: 6
  start-page: 2049
  year: 2005
  end-page: 2073
  article-title: Convergence theorems for generalized alternating minimization procedures
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 55
  year: 2014
  end-page: 74
  article-title: Modeling heterogeneity in random graphs through latent space models: a selective review
  publication-title: ESAIM Proc.
– volume: 82
  start-page: 157
  year: 2011
  end-page: 189
  article-title: Detecting communities and their evolutions in dynamic social networks—a Bayesian approach
  publication-title: Mach. Learn.
– volume: 37
  start-page: 3099
  year: 2009
  end-page: 3132
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: Ann. Statist.
– volume: 6
  start-page: 1847
  year: 2012
  end-page: 1899
  article-title: Consistency of maximum‐likelihood and variational estimators in the Stochastic Block Model
  publication-title: Electron. J. Statist.
– volume: 9
  year: 2014
  article-title: Contact patterns among high school students
  publication-title: PLOS One
– volume: 28
  start-page: 275
  year: 2013
  end-page: 283
  article-title: Dynamic probabilistic models for latent feature propagation in social networks
  publication-title: JMLR Wrkshp Conf. Proc.
– volume: 40
  start-page: 127
  year: 1992
  end-page: 143
  article-title: Maximum‐likelihood estimation for hidden Markov models
  publication-title: Stoch. Processes. Appl.
– start-page: 919
  year: 2010
  end-page: 927
– volume: 37
  start-page: 129
  year: 2011
  end-page: 151
  article-title: Statistical models for social networks
  publication-title: A. Rev. Sociol.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  article-title: Comparing partitions
  publication-title: J. Classificn
– volume: 8443
  start-page: 78
  year: 2014
  end-page: 89
  article-title: Persistent community detection in dynamic social networks
  publication-title: Lect. Notes Comput. Sci.
– volume: 97
  start-page: 1090
  year: 2002
  end-page: 1098
  article-title: Latent space approaches to social network analysis
  publication-title: J. Am. Statist. Ass.
– volume: 41
  start-page: 1922
  year: 2013
  end-page: 1943
  article-title: Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels
  publication-title: Ann. Statist.
– volume: 22
  start-page: 719
  year: 2000
  end-page: 725
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattn Anal. Mach. Intell.
– volume: 162
  start-page: 431
  year: 2014
  end-page: 461
  article-title: Reconstruction and estimation in the planted partition model
  publication-title: Probab. Theor. Reltd Flds
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion)
  publication-title: J. R. Statist. Soc.
– start-page: 620
  year: 2009
  end-page: 625
– volume: 141
  start-page: 1719
  year: 2011
  end-page: 1736
  article-title: Parameters identifiability in a class of random graph mixture models
  publication-title: J. Statist. Planng Inf.
– volume: 17
  start-page: 998
  year: 2014
  end-page: 1007
  article-title: Across‐year social stability shapes network structure in wintering migrant sparrows
  publication-title: Ecol. Lett.
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
– volume: 2
  start-page: 129
  year: 2010
  end-page: 233
  article-title: A survey of statistical network models
  publication-title: Found. Trends Mach. Learn.
– year: 2016
  article-title: The dynamic random subgraph model for the clustering of evolving networks
  publication-title: Computnl Statist.
– volume: 41
  start-page: 3592
  year: 2008
  end-page: 3599
  article-title: Fast online graph clustering via Erdős Rényi mixture
  publication-title: Pattn Recogn
– volume: 8
  start-page: 552
  year: 2014
  end-page: 562
  article-title: Dynamic stochastic blockmodels for time‐evolving social networks
  publication-title: IEEE J. Select. Top. Signl Process.
– volume: 28
  start-page: 960
  year: 2013
  end-page: 968
  article-title: Modeling temporal evolution and multiscale structure in networks
  publication-title: JMLR Wrkshp Conf. Proc.
– volume: 10
  year: 2015
  article-title: Similar but different: dynamic social network analysis highlights fundamental differences between the fission‐fusion societies of two equid species, the onager and Grevy's zebra
  publication-title: PLOS One
– volume: 6
  start-page: 2049
  year: 2005
  ident: 2023021709330105300_rssb12200-cit-0014
  article-title: Convergence theorems for generalized alternating minimization procedures
  publication-title: J. Mach. Learn. Res.
– volume: 88
  start-page: 234
  year: 2015
  ident: 2023021709330105300_rssb12200-cit-0018
  article-title: Modern temporal network theory: a colloquium
  publication-title: Eur. Phys. J.
  doi: 10.1140/epjb/e2015-60657-4
– volume: 41
  start-page: 1922
  year: 2013
  ident: 2023021709330105300_rssb12200-cit-0005
  article-title: Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels
  publication-title: Ann. Statist.
  doi: 10.1214/13-AOS1124
– volume: 7
  start-page: 31
  year: 2005
  ident: 2023021709330105300_rssb12200-cit-0029
  article-title: Dynamic social network analysis using latent space models
  publication-title: SIGKDD Explorns Newslett
  doi: 10.1145/1117454.1117459
– volume: 4
  start-page: 687
  year: 2010
  ident: 2023021709330105300_rssb12200-cit-0038
  article-title: Strategies for online inference of model-based clustering in large and growing networks
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/10-AOAS359
– volume: 38
  start-page: 1300
  year: 1967
  ident: 2023021709330105300_rssb12200-cit-0032
  article-title: Identifiability of mixtures of product measures
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177698805
– year: 2016
  ident: 2023021709330105300_rssb12200-cit-0039
  article-title: The dynamic random subgraph model for the clustering of evolving networks
  publication-title: Computnl Statist.
– volume: 8443
  start-page: 78
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0025
  article-title: Persistent community detection in dynamic social networks
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-06608-0_7
– volume: 97
  start-page: 1090
  year: 2002
  ident: 2023021709330105300_rssb12200-cit-0017
  article-title: Latent space approaches to social network analysis
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214502388618906
– volume: 41
  start-page: 3592
  year: 2008
  ident: 2023021709330105300_rssb12200-cit-0037
  article-title: Fast online graph clustering via Erdős Rényi mixture
  publication-title: Pattn Recogn
  doi: 10.1016/j.patcog.2008.06.019
– volume: 4
  start-page: 535
  year: 2010
  ident: 2023021709330105300_rssb12200-cit-0033
  article-title: A state-space mixed membership blockmodel for dynamic network tomography
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/09-AOAS311
– volume: 37
  start-page: 129
  year: 2011
  ident: 2023021709330105300_rssb12200-cit-0031
  article-title: Statistical models for social networks
  publication-title: A. Rev. Sociol.
  doi: 10.1146/annurev.soc.012809.102709
– volume: 8
  start-page: 552
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0034
  article-title: Dynamic stochastic blockmodels for time-evolving social networks
  publication-title: IEEE J. Select. Top. Signl Process.
  doi: 10.1109/JSTSP.2014.2310294
– volume: 28
  start-page: 960
  year: 2013
  ident: 2023021709330105300_rssb12200-cit-0016
  article-title: Modeling temporal evolution and multiscale structure in networks
  publication-title: JMLR Wrkshp Conf. Proc.
– volume: 6
  start-page: 1847
  year: 2012
  ident: 2023021709330105300_rssb12200-cit-0007
  article-title: Consistency of maximum-likelihood and variational estimators in the Stochastic Block Model
  publication-title: Electron. J. Statist.
  doi: 10.1214/12-EJS729
– volume: 17
  start-page: 998
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0030
  article-title: Across-year social stability shapes network structure in wintering migrant sparrows
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12304
– volume: 22
  start-page: 719
  year: 2000
  ident: 2023021709330105300_rssb12200-cit-0006
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattn Anal. Mach. Intell.
  doi: 10.1109/34.865189
– volume: 2
  start-page: 193
  year: 1985
  ident: 2023021709330105300_rssb12200-cit-0019
  article-title: Comparing partitions
  publication-title: J. Classificn
  doi: 10.1007/BF01908075
– start-page: 919
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: 2023021709330105300_rssb12200-cit-0020
– volume: 2
  start-page: 110
  year: 2006
  ident: 2023021709330105300_rssb12200-cit-0008
  article-title: Detecting rich-club ordering in complex networks
  publication-title: Nat. Phys.
  doi: 10.1038/nphys209
– volume: 82
  start-page: 157
  year: 2011
  ident: 2023021709330105300_rssb12200-cit-0036
  article-title: Detecting communities and their evolutions in dynamic social networks—a Bayesian approach
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-010-5214-7
– volume-title: Statistical Analysis of Network Data: Methods and Models
  year: 2009
  ident: 2023021709330105300_rssb12200-cit-0022
  doi: 10.1007/978-0-387-88146-1
– volume: 486
  start-page: 75
  year: 2010
  ident: 2023021709330105300_rssb12200-cit-0011
  article-title: Community detection in graphs
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2009.11.002
– volume: 18
  start-page: 173
  year: 2008
  ident: 2023021709330105300_rssb12200-cit-0009
  article-title: A mixture model for random graphs
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-007-9046-7
– volume: 2
  start-page: 129
  year: 2010
  ident: 2023021709330105300_rssb12200-cit-0013
  article-title: A survey of statistical network models
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000005
– volume: 9
  start-page: 1981
  year: 2008
  ident: 2023021709330105300_rssb12200-cit-0001
  article-title: Mixed-membership stochastic block-models
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 93
  year: 2012
  ident: 2023021709330105300_rssb12200-cit-0023
  article-title: Variational Bayesian inference and complexity control for stochastic block models
  publication-title: Statist. Modllng
  doi: 10.1177/1471082X1001200105
– volume: 10
  year: 2015
  ident: 2023021709330105300_rssb12200-cit-0028
  article-title: Similar but different: dynamic social network analysis highlights fundamental differences between the fission-fusion societies of two equid species, the onager and Grevy's zebra
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0138645
– volume: 141
  start-page: 1719
  year: 2011
  ident: 2023021709330105300_rssb12200-cit-0003
  article-title: Parameters identifiability in a class of random graph mixture models
  publication-title: J. Statist. Planng Inf.
  doi: 10.1016/j.jspi.2010.11.022
– volume: 9
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0012
  article-title: Contact patterns among high school students
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0107878
– volume: 37
  start-page: 3099
  year: 2009
  ident: 2023021709330105300_rssb12200-cit-0002
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: Ann. Statist.
  doi: 10.1214/09-AOS689
– volume: 47
  start-page: 55
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0026
  article-title: Modeling heterogeneity in random graphs through latent space models: a selective review
  publication-title: ESAIM Proc.
  doi: 10.1051/proc/201447004
– volume: 40
  start-page: 127
  year: 1992
  ident: 2023021709330105300_rssb12200-cit-0024
  article-title: Maximum-likelihood estimation for hidden Markov models
  publication-title: Stoch. Processes. Appl.
  doi: 10.1016/0304-4149(92)90141-C
– volume: 37
  start-page: 183
  year: 1999
  ident: 2023021709330105300_rssb12200-cit-0021
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 162
  start-page: 431
  year: 2014
  ident: 2023021709330105300_rssb12200-cit-0027
  article-title: Reconstruction and estimation in the planted partition model
  publication-title: Probab. Theor. Reltd Flds
  doi: 10.1007/s00440-014-0576-6
– volume: 39
  start-page: 1
  year: 1977
  ident: 2023021709330105300_rssb12200-cit-0010
  article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 74
  start-page: 3
  year: 2012
  ident: 2023021709330105300_rssb12200-cit-0004
  article-title: New consistent and asymptotically normal parameter estimates for random-graph mixture models
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2011.01009.x
– start-page: 620
  volume-title: Proc. 8th Int. Conf. Dependable, Autonomic and Secure Computing
  year: 2009
  ident: 2023021709330105300_rssb12200-cit-0035
– volume: 28
  start-page: 275
  year: 2013
  ident: 2023021709330105300_rssb12200-cit-0015
  article-title: Dynamic probabilistic models for latent feature propagation in social networks
  publication-title: JMLR Wrkshp Conf. Proc.
SSID ssj0000673
Score 2.6288757
Snippet Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and...
Summary Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties...
SourceID hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1119
SubjectTerms algorithms
animals
Binary data
Clustering
Contact network
data collection
Discrete time
Dynamic random graph
equations
Graph clustering
Graphs
Group dynamics
Groups
high school students
Inference
Markov analysis
Markov chain
Markov chains
Mathematics
Networks
Parameter identification
Property
Regression analysis
Secondary school students
Secondary schools
Statistical inference
Statistical methods
Statistics
Stochastic block model
Stochastic models
Switching theory
Time
Variational expectation–maximization
Title Statistical clustering of temporal networks through a dynamic stochastic block model
URI https://www.jstor.org/stable/26773154
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12200
https://www.proquest.com/docview/1928298781
https://www.proquest.com/docview/2000534020
https://hal.science/hal-01167837
Volume 79
WOSCitedRecordID wos000411712300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q68GLbzFaZX1cFCLJbpoHeKmP0kMp0gf0Fja7GwRLKo319zu7SWMLIoiQQzaZhc3Ozs43yeQbgGtBfcU937M9jlugJ2XLjpRktuen6P8cJnlieGZ7Qb8fTibRSw3ul__CFPwQ1Qs3bRlmv9YGzpN8xcjneZ7cuRS1vAENigu3VYfG06Az7q3uxKz47yqy0XPSkp5UZ_J8915zSBuvOh2yyExcw5yryNW4ns7O_wa9C9sl5CTtYo3sQU1l-7ClUWZB0nwAo6qBcmK60OQJ6NLILCUlddWUZEW-eE7Kyj6EE1lUsyf4GOKV6-4kQd_4Rkx5nUMYd55Hj127LLdgCy-MHNtVTAbo0B0nkRgIpiIMPZGEgWr5gqdMOBQDb-6LlDHlMxXgoVIETNzFtuNydgT1bJapYyASZzsS2u8hHkNIFXHhehJt31dpoJLEgpvlnMei5CLXJTGm8TIm0RMVm4my4KqSfS8YOH6UukTVVQKaNLvb7sX6mvnUhHH4J7XgyGi2EqN-EDAEkRY0l6qOSxvOY8S-IY3CIHQtuKhuo_XpTyo8U7NFrot44i6mY3ALbo3ifxljPBgOH8zZyV-ET2GLaixhEtuaUP-YL9QZbIpPXBjz83LNfwGU7wQf
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_8KNQXrbVHo7au1ZcKkSS75uPRVo8T41H0BN_CZneD4JErF8-_35nNXnqCFETIQz5mYbOzs_ObZPY3AIcqio0UsfCFxCVQaH3iZ0ZzX8QV-r-Aa1lantk8GQ7Tu7vsj8vNob0wLT9E98GNLMOu12Tg9EF6wcqnTVMehxGqeRlWBc4jnOCrZ9f923xxKebtxqvMR9cZOX5SSuX51_qFR1q-p3zINjXxBehchK7W9_Q33tnrT7DuQCc7bWfJJiyZ-jOsEc5saZq3YNRdoJwaz4g-AZ0am1TMkVeNWd1mjDfM1fZhkum2nj3D91D3kpqzEr3jA7MFdr7Abf989Hvgu4ILvhJpFvih4TpBlx4EpcZQsFJpKlSZJuYkVrLiKogw9Jaxqjg3MTcJHqZCyCRDvA5CyXuwUk9q8xWYxuHOFHk-RGQIqjKpQqHR-mNTJaYsPfg5H_RCOTZyKooxLuZRCQ1UYQfKg4NO9m_LwfGq1A_UXSdAtNmD07yge_ZnE0biT5EHPavaTiyKk4QjjPRgd67rwllxUyD6TaMsTdLQg_3uMdof_VSRtZnMGirjiesYReEeHFnN_6ePxfXNzS97tv0W4T34OBhd5UV-MbzcgbWIkIVNc9uFlcfpzHyDD-oJJ8n0uzOAZyLnCA8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB50PWRf9O5UrHpn9O7Fgx5tE_vj0VMX5ZZFVgXfSpqkLNzSla3r3-9Mmq27IMIh9KFpJ5BmMplv2uk3AD9VFBspYuELiVug0PrUz4zmvohL9H8B17KwPLP9ZDBIHx6yG5ebQ__CNPwQ7Qs3sgy7X5OBm0ddLlj5tK6L32GEal6FNUFVZDqwdjHs3fcXt2Le_HiV-eg6I8dPSqk8r72XPNLqiPIhm9TEJdC5CF2t7-ltfnDUn2HDgU521qySL7Biqq_QJZzZ0DRvwV3bQDk1nhF9Ajo1NimZI68as6rJGK-Zq-3DJNNNPXuGz6FGkrqzAr3jP2YL7GzDfe_y7vzKdwUXfCXSLPBDw3WCLj0ICo2hYKnSVKgiTcxprGTJVRBh6C1jVXJuYm4SPEyJkEmG2A5CyXegU00qswtM43RnijwfIjIEVZlUodBo_bEpE1MUHpzMJz1Xjo2cimKM83lUQhOV24ny4Ecr-9hwcLwpdYy6awWINvvqrJ_TNfuxCSPx58iDHavaViyKk4QjjPTgYK7r3FlxnSP6TaMsTdLQg6P2NtoffVSRlZnMairjifsYReEe_LKaf2eM-fD29o892_sf4UNYv7no5f3rwd996EYELGyW2wF0nqYz8w0-qWdcI9Pvbv2_AKKYB4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+clustering+of+temporal+networks+through+a+dynamic+stochastic+block+model&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Matias%2C+Catherine&rft.au=Miele%2C+Vincent&rft.date=2017-09-01&rft.pub=Oxford+University+Press&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=79&rft.issue=4&rft.spage=1119&rft.epage=1141&rft_id=info:doi/10.1111%2Frssb.12200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon