Revisiting astrocyte to neuron conversion with lineage tracing in vivo
In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precis...
Saved in:
| Published in: | Cell Vol. 184; no. 21; p. 5465 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
14.10.2021
|
| Subjects: | |
| ISSN: | 1097-4172, 1097-4172 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo. |
|---|---|
| AbstractList | In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo. In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo. |
| Author | Serrano, Carolina Ma, Shuaipeng Zou, Yuhua Wang, Lei-Lei Zhong, Xiaoling Zhang, Chun-Li |
| Author_xml | – sequence: 1 givenname: Lei-Lei surname: Wang fullname: Wang, Lei-Lei email: leilei.wang@utsouthwestern.edu organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: leilei.wang@utsouthwestern.edu – sequence: 2 givenname: Carolina surname: Serrano fullname: Serrano, Carolina organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 3 givenname: Xiaoling surname: Zhong fullname: Zhong, Xiaoling organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 4 givenname: Shuaipeng surname: Ma fullname: Ma, Shuaipeng organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 5 givenname: Yuhua surname: Zou fullname: Zou, Yuhua organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 6 givenname: Chun-Li surname: Zhang fullname: Zhang, Chun-Li email: chun-li.zhang@utsouthwestern.edu organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: chun-li.zhang@utsouthwestern.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34582787$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1KxDAURoMozo--gAvp0k1rkjZNs5RBR2FAEF2XNLkZM3SSMWkr8zY-i09mB0dw9R34zr1w7wydOu8AoSuCM4JJebvJFLRtRjElGRYZxuwETQkWPC0Ip6f_eIJmMW4wxhVj7BxN8oJVlFd8ipYvMNhoO-vWiYxd8GrfQdL5xEEfvEuUdwOEaEf8tN170loHcj0aQarDjHXfX4Md_AU6M7KNcHnMOXp7uH9dPKar5-XT4m6VqqKqutTInEiscmMAQ85Vo4TSvOC5kY0sQRGpS2Uo11RzXYJpxFiaQhje6IoLQefo5nfvLviPHmJXb208vEE68H2sKeOc55jRclSvj2rfbEHXu2C3Muzrv-PpDwqYYbs |
| CitedBy_id | crossref_primary_10_1016_j_jgg_2024_07_006 crossref_primary_10_3389_fcell_2024_1510897 crossref_primary_10_1016_j_neuron_2021_11_023 crossref_primary_10_3389_fncel_2021_767457 crossref_primary_10_1089_cell_2022_0065 crossref_primary_10_1002_glia_24521 crossref_primary_10_1038_s41419_023_06003_8 crossref_primary_10_15252_emmm_202114797 crossref_primary_10_1016_j_omtm_2023_08_021 crossref_primary_10_4103_1673_5374_386400 crossref_primary_10_4103_1673_5374_386401 crossref_primary_10_3390_biomedicines10102598 crossref_primary_10_1073_pnas_2417228122 crossref_primary_10_1007_s12975_024_01244_x crossref_primary_10_1002_glia_24635 crossref_primary_10_1016_j_isci_2024_111173 crossref_primary_10_1038_s41467_022_35498_6 crossref_primary_10_1007_s00018_022_04324_z crossref_primary_10_1111_nyas_15004 crossref_primary_10_1007_s12033_023_00769_0 crossref_primary_10_1038_s41586_023_06067_8 crossref_primary_10_1111_gtc_13033 crossref_primary_10_1016_j_gde_2023_102090 crossref_primary_10_1016_j_neuron_2021_11_008 crossref_primary_10_1007_s11010_022_04442_z crossref_primary_10_1186_s40659_024_00534_w crossref_primary_10_1093_procel_pwae042 crossref_primary_10_1111_cns_70448 crossref_primary_10_4103_NRR_NRR_D_24_01337 crossref_primary_10_1146_annurev_neuro_092822_083410 crossref_primary_10_3390_cells12040618 crossref_primary_10_1038_s41467_023_42746_w crossref_primary_10_1016_j_biomaterials_2024_122707 crossref_primary_10_1186_s13619_024_00211_z crossref_primary_10_1002_wrna_1740 crossref_primary_10_1111_imm_13479 crossref_primary_10_1159_000530329 crossref_primary_10_7554_eLife_106450 crossref_primary_10_1038_s44321_024_00156_5 crossref_primary_10_1111_nyas_14977 crossref_primary_10_1016_j_expneurol_2021_113943 crossref_primary_10_1016_j_neuron_2022_09_025 crossref_primary_10_1038_s41593_025_01981_8 crossref_primary_10_1016_j_stemcr_2025_102600 crossref_primary_10_1038_s41598_024_79124_5 crossref_primary_10_4103_NRR_NRR_D_24_00113 crossref_primary_10_1016_j_visres_2023_108260 crossref_primary_10_3389_fmicb_2023_1229506 crossref_primary_10_4103_1673_5374_382251 crossref_primary_10_1089_cell_2025_0008 crossref_primary_10_4103_NRR_NRR_D_23_01612 crossref_primary_10_3389_fcell_2024_1435546 crossref_primary_10_1016_j_neuron_2025_03_036 crossref_primary_10_7717_peerj_18151 crossref_primary_10_1038_s42003_022_03944_2 crossref_primary_10_1016_j_ebiom_2023_104531 crossref_primary_10_1016_j_neuron_2025_04_033 crossref_primary_10_7554_eLife_80232 crossref_primary_10_1007_s12264_022_00829_6 crossref_primary_10_1016_j_stemcr_2025_102636 crossref_primary_10_3390_cells12202499 crossref_primary_10_3390_ijms232213936 crossref_primary_10_3389_fnins_2022_919462 crossref_primary_10_3389_fcell_2022_927555 crossref_primary_10_1126_sciadv_adw9296 crossref_primary_10_3389_fnins_2023_1237176 crossref_primary_10_1016_j_cell_2021_09_027 crossref_primary_10_1038_s41434_023_00382_5 crossref_primary_10_1002_ame2_12212 crossref_primary_10_3892_etm_2023_12360 crossref_primary_10_1007_s12264_022_00981_z crossref_primary_10_1038_s41467_024_46412_7 crossref_primary_10_3390_cells12040528 crossref_primary_10_1016_j_expneurol_2022_114102 crossref_primary_10_3389_fnagi_2022_885707 crossref_primary_10_1007_s12975_025_01331_7 crossref_primary_10_1038_s44321_025_00209_3 crossref_primary_10_1002_dneu_22951 crossref_primary_10_3389_fncel_2022_898546 crossref_primary_10_1134_S000629792460426X crossref_primary_10_4103_1673_5374_360278 crossref_primary_10_1093_carcin_bgac028 crossref_primary_10_1186_s13041_022_00912_z crossref_primary_10_3390_biomedicines12030663 crossref_primary_10_1111_cns_70531 crossref_primary_10_3390_cells11193146 crossref_primary_10_1016_j_brainresbull_2023_110661 crossref_primary_10_1038_s41536_023_00310_6 crossref_primary_10_1016_j_arr_2025_102808 crossref_primary_10_4103_NRR_NRR_D_23_01897 crossref_primary_10_1007_s10072_023_07175_z crossref_primary_10_1016_j_bbi_2024_02_005 crossref_primary_10_3390_cells12172202 crossref_primary_10_1146_annurev_neuro_083022_113120 crossref_primary_10_1146_annurev_neuro_112723_035356 crossref_primary_10_3390_cells11060940 crossref_primary_10_3389_fnagi_2025_1644532 crossref_primary_10_4103_1673_5374_346463 crossref_primary_10_1002_glia_24361 crossref_primary_10_1016_j_ejphar_2024_176930 crossref_primary_10_4103_NRR_NRR_D_24_00545 crossref_primary_10_1016_j_brs_2022_09_002 crossref_primary_10_3390_biology14070817 crossref_primary_10_1016_j_neuron_2025_08_009 crossref_primary_10_1111_cns_14000 crossref_primary_10_1016_j_mcn_2024_103947 crossref_primary_10_1016_j_expneurol_2024_114817 crossref_primary_10_1042_BSR20231717 crossref_primary_10_3390_cells13141223 crossref_primary_10_3389_fcell_2022_914386 crossref_primary_10_1002_dneu_22862 crossref_primary_10_1002_dneu_22863 crossref_primary_10_1016_j_biopha_2022_113500 crossref_primary_10_1016_j_stem_2021_09_002 crossref_primary_10_3389_fncel_2023_1237641 crossref_primary_10_4103_1673_5374_390976 crossref_primary_10_3389_fncel_2022_1005399 crossref_primary_10_1038_s41536_022_00248_1 crossref_primary_10_1002_advs_202410080 crossref_primary_10_7554_eLife_106450_3 crossref_primary_10_3390_ijms222212141 crossref_primary_10_1038_s41598_024_71212_w crossref_primary_10_1186_s12974_024_03171_y crossref_primary_10_3389_fnagi_2023_1126273 crossref_primary_10_7554_eLife_97180_3 crossref_primary_10_1007_s12035_025_04991_6 crossref_primary_10_1016_j_phymed_2022_154583 crossref_primary_10_3389_fnins_2024_1435212 crossref_primary_10_1016_j_ymthe_2022_01_027 crossref_primary_10_1177_20417314241235527 crossref_primary_10_1016_j_ymthe_2022_01_029 crossref_primary_10_1016_j_ymthe_2022_01_028 crossref_primary_10_4103_1673_5374_390965 crossref_primary_10_1242_dev_200433 crossref_primary_10_3389_fcell_2022_830382 crossref_primary_10_4103_1673_5374_373710 crossref_primary_10_4103_1673_5374_380907 crossref_primary_10_7554_eLife_79994 crossref_primary_10_1002_dneu_22882 crossref_primary_10_1089_cell_2022_0110 crossref_primary_10_3389_fnins_2022_917071 crossref_primary_10_1002_dneu_22880 crossref_primary_10_1038_s41583_022_00641_1 crossref_primary_10_4103_1673_5374_390957 crossref_primary_10_3389_fbioe_2022_799152 crossref_primary_10_3389_fendo_2024_1393253 crossref_primary_10_3389_fncel_2022_850866 crossref_primary_10_1016_j_isci_2024_110706 crossref_primary_10_1038_s41380_023_02339_x crossref_primary_10_3389_fncel_2022_1077441 crossref_primary_10_1111_cpr_13422 crossref_primary_10_3390_brainsci12091175 crossref_primary_10_1016_j_ymthe_2024_10_005 crossref_primary_10_1016_j_expneurol_2023_114571 crossref_primary_10_3390_cells13171408 crossref_primary_10_1080_21507740_2023_2257159 crossref_primary_10_1016_j_omtm_2024_101288 crossref_primary_10_1186_s40035_024_00450_9 crossref_primary_10_1007_s11064_024_04241_6 crossref_primary_10_1016_j_cmet_2024_05_016 crossref_primary_10_1101_cshperspect_a041611 crossref_primary_10_3389_fnins_2024_1210447 crossref_primary_10_7554_eLife_97180 crossref_primary_10_1073_pnas_2107339119 crossref_primary_10_3390_biomedicines10020399 crossref_primary_10_1016_j_omtn_2025_102704 crossref_primary_10_3389_fnins_2025_1589790 crossref_primary_10_1016_j_ymthe_2021_10_017 crossref_primary_10_1016_j_biopha_2024_116806 crossref_primary_10_1038_s41598_022_27013_0 crossref_primary_10_1038_s41573_022_00390_x crossref_primary_10_3389_fnmol_2024_1483901 crossref_primary_10_4103_1673_5374_385869 crossref_primary_10_1016_j_pharmr_2025_100077 crossref_primary_10_3390_brainsci14111101 crossref_primary_10_4103_NRR_NRR_D_24_00281 crossref_primary_10_1016_j_conb_2025_102976 crossref_primary_10_1016_j_nbd_2023_106224 crossref_primary_10_1073_pnas_2122168120 crossref_primary_10_1016_j_gde_2023_102128 crossref_primary_10_4103_1673_5374_382224 crossref_primary_10_1016_j_stem_2023_08_001 crossref_primary_10_1016_j_exer_2025_110420 crossref_primary_10_3389_fnagi_2023_1174341 crossref_primary_10_1073_pnas_2307972120 crossref_primary_10_1111_ejn_15742 crossref_primary_10_4103_NRR_NRR_D_23_01802 crossref_primary_10_1038_s41586_023_06066_9 crossref_primary_10_1002_jcp_30716 crossref_primary_10_4103_1673_5374_353482 crossref_primary_10_1016_j_pneurobio_2021_102198 crossref_primary_10_1016_j_bbamcr_2023_119506 crossref_primary_10_7554_eLife_75636 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cell.2021.09.005 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4172 |
| ExternalDocumentID | 34582787 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS111776 – fundername: NINDS NIH HHS grantid: R01 NS092616 – fundername: NINDS NIH HHS grantid: R01 NS117065 – fundername: NINDS NIH HHS grantid: R01 NS099073 – fundername: NINDS NIH HHS grantid: R01 NS088095 |
| GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDT AAEDW AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA 7X8 AAYWO ABDGV ABUFD ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c488t-fa31a0c3ffe0e37cbc9cd7473faba6ec1ad6cf27d2d7d6efb9747f49f7bd87992 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 219 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714065000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4172 |
| IngestDate | Sun Nov 09 11:40:01 EST 2025 Thu Apr 03 07:00:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | NEUROD1 in vivo reprogramming PTBP1 DLX2 astrocyte-to-neuron conversion shRNA AAV PAX6 lineage tracing CRISPR-CasRx |
| Language | English |
| License | Copyright © 2021 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-fa31a0c3ffe0e37cbc9cd7473faba6ec1ad6cf27d2d7d6efb9747f49f7bd87992 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8526404 |
| PMID | 34582787 |
| PQID | 2577730526 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2577730526 pubmed_primary_34582787 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-14 |
| PublicationDateYYYYMMDD | 2021-10-14 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell |
| PublicationTitleAlternate | Cell |
| PublicationYear | 2021 |
| References | 34653366 - Cell. 2021 Oct 14;184(21):5303-5305 34699780 - Mol Ther. 2021 Nov 3;29(11):3097-3098 35108505 - Mol Ther. 2022 Mar 2;30(3):986-987 35123657 - Mol Ther. 2022 Mar 2;30(3):982-986 |
| References_xml | – reference: 34699780 - Mol Ther. 2021 Nov 3;29(11):3097-3098 – reference: 34653366 - Cell. 2021 Oct 14;184(21):5303-5305 – reference: 35123657 - Mol Ther. 2022 Mar 2;30(3):982-986 – reference: 35108505 - Mol Ther. 2022 Mar 2;30(3):986-987 |
| SSID | ssj0008555 |
| Score | 2.7001376 |
| Snippet | In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression... In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5465 |
| SubjectTerms | Animals Astrocytes - cytology Astrocytes - metabolism Basic Helix-Loop-Helix Transcription Factors - metabolism Brain - pathology Brain Injuries - pathology Cell Differentiation Cell Line, Tumor Cell Lineage Cellular Reprogramming Dependovirus - metabolism Down-Regulation Gene Expression Regulation Genes, Reporter Glial Fibrillary Acidic Protein - genetics Heterogeneous-Nuclear Ribonucleoproteins - metabolism Homeodomain Proteins - metabolism Humans Integrases - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Neurons - cytology Neurons - metabolism Polypyrimidine Tract-Binding Protein - metabolism Promoter Regions, Genetic - genetics Transcription Factors - metabolism |
| Title | Revisiting astrocyte to neuron conversion with lineage tracing in vivo |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34582787 https://www.proquest.com/docview/2577730526 |
| Volume | 184 |
| WOSCitedRecordID | wos000714065000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qFLz4fswXEbwG26ZtmpOIODzoGKKyW0nzgF3aba2D_fd-X9qxkyB4yS0Qvvy-94uQu7BIhBU6Aycn4CxOVcikjBWTojBKBdJZ3yH39SqGw2w8lqMu4FZ3ZZUrmegFtak0xsjvAVoC0JhE6cN0xnBrFGZXuxUam6THwZRBVIvxelp4lvitp5hkZTFo6q5ppq3vwsA4-IdR6OecBsnvJqZXNYP9_z7ygOx1RiZ9bFFxSDZseUR22rWTy2MyePct5VjwTFXdgApbNpY2FfXDLUvqK9F9GI1imJaiJQpihzZzpfHOpKSLyaI6IZ-D54-nF9btU2Aa2LRhTvFQBZo7ZwPLhS601AbcCe5UoVKrQ2VS7SJhIiNMal2BvoaLpYN_y4SU0SnZKqvSnhMKXK4V-CY6MSYGCamMCgvjOPbxgsnA--R2RaAc8Iq0VqWtvut8TaI-OWupnE_bwRo5xyQeSJCLP9y-JLv4eahGwviK9Bxwq70m23rRTOr5jQcCnMPR2w81079z |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+astrocyte+to+neuron+conversion+with+lineage+tracing+in%C2%A0vivo&rft.jtitle=Cell&rft.au=Wang%2C+Lei-Lei&rft.au=Serrano%2C+Carolina&rft.au=Zhong%2C+Xiaoling&rft.au=Ma%2C+Shuaipeng&rft.date=2021-10-14&rft.eissn=1097-4172&rft.volume=184&rft.issue=21&rft.spage=5465&rft_id=info:doi/10.1016%2Fj.cell.2021.09.005&rft_id=info%3Apmid%2F34582787&rft_id=info%3Apmid%2F34582787&rft.externalDocID=34582787 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon |