Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil
The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to t...
Saved in:
| Published in: | Journal of bioscience and bioengineering Vol. 129; no. 5; pp. 603 - 612 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Japan
Elsevier B.V
01.05.2020
|
| Subjects: | |
| ISSN: | 1389-1723, 1347-4421, 1347-4421 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages. |
|---|---|
| AbstractList | The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 10
CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages. The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages. The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 10² CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages. The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages. |
| Author | Whang, Liang-Ming Wu, Yi-Ju Grace Liu, Pao-Wen Chen, Yun-An Cheng, Sheng-Shung |
| Author_xml | – sequence: 1 givenname: Yun-An surname: Chen fullname: Chen, Yun-An organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan – sequence: 2 givenname: Pao-Wen surname: Grace Liu fullname: Grace Liu, Pao-Wen organization: Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, No. 89 Wenhua 1st Street, Rende District, Tainan County 71703, Taiwan – sequence: 3 givenname: Liang-Ming surname: Whang fullname: Whang, Liang-Ming email: whang@mail.ncku.edu.tw organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan – sequence: 4 givenname: Yi-Ju surname: Wu fullname: Wu, Yi-Ju organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan – sequence: 5 givenname: Sheng-Shung surname: Cheng fullname: Cheng, Sheng-Shung organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31992527$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkT1vHCEQhlHkKP7KP4iiLdPsmgHuYF1YiiwnsWTJTVwjFoYLp93lDGwk__twPrtxEVcMo-d9inlPydEcZyTkC9AOKKwvtt12CDHbjlHoO2AdpfCBnAAXshWCwdF-Vn0LkvFjcprztgKSSvhEjjn0PVsxeUI2N96jLU30TY5hbGLamDnYZjKlYGri3OywpDjiMjV_nlyK1qShbh1uknGmhDqH-g2YcbzwC1ZFGFsb52KmMJuC7ll8Tj56M2b8_PKekYcfN7-vf7V39z9vr7_ftVYoVdrBK3De93K1dt4MVKEcKPWSK0-lX_lBWsaFo54JAT0il2INjIFV1nolDT8j3w7eXYqPC-aip5AtjqOZMS5ZM0Hpiq25gPdRLlRVK8kr-vUFXYYJnd6lMJn0pF_vWIHLA2BTzDmh1zaU5-uUZMKogep9aXqrD6XpfWkamK6d1LB4E371vxO7OsSw3vNvwKSzDThbdCHVSrWL4f-Cf26Ls7A |
| CitedBy_id | crossref_primary_10_1016_j_marpolbul_2021_113288 crossref_primary_10_3390_su13169267 crossref_primary_10_1016_j_scitotenv_2021_147395 crossref_primary_10_1016_j_chemolab_2025_105444 crossref_primary_10_1007_s11270_024_07545_z crossref_primary_10_3390_su17125535 crossref_primary_10_1016_j_chemosphere_2022_134804 crossref_primary_10_1016_j_jenvman_2022_115175 crossref_primary_10_2478_am_2023_0011 crossref_primary_10_1016_j_envres_2025_121085 crossref_primary_10_3390_su15043599 crossref_primary_10_1007_s11274_020_02956_6 crossref_primary_10_1007_s11270_025_07940_0 crossref_primary_10_1016_j_jhazmat_2024_134322 crossref_primary_10_4014_jmb_2210_10038 crossref_primary_10_1007_s00248_023_02245_3 crossref_primary_10_1016_j_jece_2025_116032 crossref_primary_10_2166_wst_2024_364 crossref_primary_10_1007_s10646_022_02585_9 crossref_primary_10_1016_j_jece_2024_113697 crossref_primary_10_1016_j_jenvman_2023_118475 crossref_primary_10_1080_01490451_2023_2243925 crossref_primary_10_1080_15320383_2022_2066627 crossref_primary_10_1007_s11356_021_17937_x crossref_primary_10_1016_j_cej_2021_129600 crossref_primary_10_1007_s41742_024_00613_6 crossref_primary_10_1016_j_cej_2022_139372 crossref_primary_10_3390_microorganisms12122605 crossref_primary_10_1016_j_jhazmat_2025_139907 crossref_primary_10_3390_ijerph17196959 crossref_primary_10_1016_j_chemosphere_2022_137236 crossref_primary_10_1016_j_chemosphere_2021_133392 crossref_primary_10_1016_j_envpol_2020_115171 crossref_primary_10_1080_09593330_2024_2361171 |
| Cites_doi | 10.1016/S0378-3820(02)00064-4 10.1016/j.ibiod.2012.01.003 10.1007/BF02059809 10.1263/jbb.100.429 10.1016/j.ibiod.2016.09.030 10.1007/s12088-016-0584-6 10.1007/s11274-005-5742-7 10.1007/s11274-011-0880-6 10.1016/j.chemosphere.2019.05.202 10.1263/jbb.99.466 10.1063/1.4971875 10.1016/j.biortech.2012.04.021 10.1023/A:1014397732435 10.1016/j.jbiosc.2012.01.005 10.1016/S0141-1136(97)00024-X 10.1016/j.micres.2011.12.002 10.1016/j.jhazmat.2007.05.063 10.1021/es00122a018 10.1007/s12010-015-1603-5 10.1016/S0048-9697(99)00033-9 10.1002/jobm.201200369 10.1080/01919512.1997.10382861 10.1016/j.ibiod.2013.01.010 10.1016/j.jhazmat.2007.05.032 10.1128/JCM.43.8.3760-3768.2005 10.1016/j.ibiod.2014.05.004 10.1002/jctb.2153 10.1016/j.jcou.2018.10.017 10.1007/s11270-016-3031-8 10.1016/j.jbiosc.2013.05.035 10.1016/0146-6380(85)90045-2 10.1016/j.soilbio.2008.02.011 10.1016/S1389-1723(01)80069-4 10.1016/j.scitotenv.2012.07.032 10.1016/j.soilbio.2013.11.016 10.1016/j.nbt.2015.01.005 10.1038/sj.jim.7000236 10.1016/j.ibiod.2011.09.002 10.1016/j.ibiod.2004.02.002 10.1016/j.jbiosc.2018.07.018 10.1007/BF00634106 10.1016/j.envpol.2007.04.015 10.1080/09593330.2012.673017 10.1016/j.soilbio.2005.01.012 10.1016/j.orggeochem.2012.12.002 10.1016/j.ibiod.2007.08.002 10.1007/s11368-011-0441-5 10.1016/j.jhazmat.2010.07.038 10.1021/es970740g 10.1016/j.apsoil.2013.02.009 10.4014/jmb.0903.03001 10.1016/j.ibiod.2007.05.012 10.1016/j.scitotenv.2014.11.087 10.1007/s11274-013-1518-7 10.1007/s10529-008-9667-8 10.1016/j.ibiod.2014.01.026 10.1016/j.ibiod.2017.07.001 |
| ContentType | Journal Article |
| Copyright | 2019 The Society for Biotechnology, Japan Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 The Society for Biotechnology, Japan – notice: Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jbiosc.2019.12.001 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1347-4421 |
| EndPage | 612 |
| ExternalDocumentID | 31992527 10_1016_j_jbiosc_2019_12_001 S1389172319309521 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 2WC 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CS3 D-I DU5 E3Z EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TKC TR2 UNMZH XFK Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c488t-bf81dff9756dfab08e7b00f738f07f5fb7c234d0f24419ee37461221c8ccf87a3 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614229200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-1723 1347-4421 |
| IngestDate | Sat Sep 27 21:32:25 EDT 2025 Sun Nov 09 13:48:07 EST 2025 Wed Feb 19 02:30:14 EST 2025 Sat Nov 29 07:02:19 EST 2025 Tue Nov 18 22:08:47 EST 2025 Thu Jun 13 14:30:57 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Soil total petroleum hydrocarbons contamination Internal transcribed spacer microarray Soil organic matter Diesel Hydrocarbon fractional analysis Fuel oil Terminal restriction fragment length polymorphism analysis |
| Language | English |
| License | Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c488t-bf81dff9756dfab08e7b00f738f07f5fb7c234d0f24419ee37461221c8ccf87a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31992527 |
| PQID | 2348221873 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2400526341 proquest_miscellaneous_2348221873 pubmed_primary_31992527 crossref_citationtrail_10_1016_j_jbiosc_2019_12_001 crossref_primary_10_1016_j_jbiosc_2019_12_001 elsevier_sciencedirect_doi_10_1016_j_jbiosc_2019_12_001 |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 2020-05-00 2020-May 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Japan |
| PublicationPlace_xml | – name: Japan |
| PublicationTitle | Journal of bioscience and bioengineering |
| PublicationTitleAlternate | J Biosci Bioeng |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Vinas, Grifoll, Sabate, Solanas (bib14) 2002; 28 Lin, Shen, Tan, Huang, Chen, Arun, Young (bib60) 2012; 167 Chung, Alexander (bib29) 1998; 32 Laorrattanasak, Rongsayamanont, Khondee, Paorach, Soonglerdsongpha, Pinyakong, Luepromchai (bib61) 2016; 227 Adamczyk, Kiikkila, Kitunen, Smolander (bib47) 2013; 67 Langenheim (bib48) 1994; 20 Dudasova, Lukacova, Murinova, Puskarova, Pangallo, Dercova (bib51) 2014; 54 Chen, Whang, Pan, Yang, Liu (bib10) 2017; 124 Chen, Liu, Whang (bib27) 2019; 233 Mancera-Lopez, Rodriguez-Casasola, Rios-Leal, Esparza-Garcia, Chavez-Gomez, Rodriguez-Vazquez, Barrera-Cortes (bib23) 2007; 54 Young, Lin, Yeh, Shen, Chang (bib35) 2005; 21 Wang, Nomura, Nakajima, Uchiyama (bib16) 2012; 113 Meyer, Beker, Buecker, Peralba, Frazzon, Osti, Andreazza, Camargo, Bento (bib1) 2014; 95 Whang, Liu, Ma, Cheng (bib6) 2008; 151 Dong, Kong, Wang, Huang (bib49) 2014; 69 Liu, Chang, Chen, Wang, Hsu (bib40) 2013; 85 Liu, Wang, Huang, Wang (bib45) 2012; 33 Bremner (bib30) 1996 Howard, Howard (bib32) 1990; 9 Environmental Protection Agency (bib44) 1996 Wieczorek, Marchut-Mikołajczyk, Antczak (bib9) 2015; 4 Jung, Sohn, Neppolian, Choi (bib56) 2008; 150 Kasel, Bennett, Tibbits (bib46) 2008; 40 Gallego, Loredo, Llamas, Vazquez, Sanchez (bib43) 2001; 12 Liu, Chang, Chen, Wang, Hsu (bib39) 2014; 95 Tachibana (bib20) 2012; 5 Chaineau, Morel, Dupont, Bury, Oudot (bib17) 1999; 227 Lin, Chang, Young (bib34) 2008; 30 Mancera-Lopez, Esparza-Garcia, Chavez-Gomez, Rodriguez-Vazquez, Saucedo-Castaneda, Barrera-Cortes (bib22) 2008; 61 Oudot, Merlin, Pinvidic (bib25) 1998; 45 Chiou, Porter, Shoup (bib38) 1984; 18 Sharma, Kumar, Rehman (bib8) 2014; 2 Saisriyoot, Sahaya, Thanapimmetha, Chisti, Srinophakun (bib62) 2016; 8 Reyes-Cesar, Absalon, Fernandez, Gonzalez, Cortes-Espinosa (bib67) 2014; 30 Kang, Kim, Koga (bib63) 1997; 18 Marchand, St-Arnaud, Hogland, Bell, Hijri (bib19) 2017; 116 Ahmed, Thiele-Bruhn, Aziz, Hilal, Elroby, Al-Youbi, Leinweber, Kuhn (bib53) 2015; 508 Hsiao, Huang, Bouchara, Barton, Li, Chang (bib37) 2005; 43 Machnikowska, Pawelec, Podgorska (bib58) 2002; 77 Xu, Lu (bib3) 2010; 183 Peck (bib68) 2010 Shintani, Sugiyama, Sakurai, Yamada, Kimbara (bib7) 2019; 127 Wang, Liu, Lu, Zhao, Xu, Cui (bib11) 2012; 116 (bib31) 2003 Chiou, Shoup, Porter (bib41) 1985; 8 Vila, Nieto, Mertens, Springael, Grifoll (bib52) 2010; 73 Serrano, Gallego, Gonzalez, Tejada (bib54) 2008; 151 Abbasian, Lockington, Mallavarapu, Naidu (bib15) 2015; 176 Llado, Solanas, de Lapuente, Borras, Vinas (bib18) 2012; 435–436 Ghazali, Rahman, Salleh, Basri (bib55) 2004; 54 Biache, Faure, Mansuy-Huault, Cebron, Beguiristain, Leyval (bib57) 2013; 56 Wittich (bib28) 1998 Kwapisz, Wszelaka, Marchut, Bielecki (bib59) 2008; 61 Chaineau, Rougeux, Yepremian, Oudot (bib21) 2005; 37 Kang, Park, Jung, Park (bib24) 2009; 19 Uzura, Katsuragi, Tani (bib13) 2001; 91 Marco-Urrea, Garcia-Romera, Aranda (bib66) 2015; 32 Lee, Nam, Kim, Zhang, Jeong, Baek, Kwon (bib5) 2018; 28 Liu, Chang, Whang, Kao, Pan, Cheng (bib2) 2011; 65 Gardner (bib42) 1986; vol. 1 Deshmukh, Khardenavis, Purohit (bib4) 2016; 56 Lin, Young, Ho, Yeh, Chou, Wei, Chang (bib33) 2005; 99 Sugimori, Utsue (bib65) 2012; 28 Tang, Zhu, Kookana, Katayama (bib26) 2013; 116 Dudasova, Lukacova, Murinova, Dercova (bib50) 2012; 69 Wu, Jiang, Cai, Rong, Dai, Liang, Huang (bib64) 2012; 12 Liu, Whang, Chang, Tseng, Pan, Cheng (bib36) 2009; 84 Lee, Kim, Kwon, Park, Kim, Goodfellow, Lee (bib12) 2005; 100 Kwapisz (10.1016/j.jbiosc.2019.12.001_bib59) 2008; 61 Lin (10.1016/j.jbiosc.2019.12.001_bib34) 2008; 30 Wang (10.1016/j.jbiosc.2019.12.001_bib11) 2012; 116 Abbasian (10.1016/j.jbiosc.2019.12.001_bib15) 2015; 176 Mancera-Lopez (10.1016/j.jbiosc.2019.12.001_bib23) 2007; 54 Bremner (10.1016/j.jbiosc.2019.12.001_bib30) 1996 Machnikowska (10.1016/j.jbiosc.2019.12.001_bib58) 2002; 77 Llado (10.1016/j.jbiosc.2019.12.001_bib18) 2012; 435–436 Deshmukh (10.1016/j.jbiosc.2019.12.001_bib4) 2016; 56 Gardner (10.1016/j.jbiosc.2019.12.001_bib42) 1986; vol. 1 Saisriyoot (10.1016/j.jbiosc.2019.12.001_bib62) 2016; 8 Uzura (10.1016/j.jbiosc.2019.12.001_bib13) 2001; 91 Chung (10.1016/j.jbiosc.2019.12.001_bib29) 1998; 32 Liu (10.1016/j.jbiosc.2019.12.001_bib2) 2011; 65 Langenheim (10.1016/j.jbiosc.2019.12.001_bib48) 1994; 20 Dudasova (10.1016/j.jbiosc.2019.12.001_bib51) 2014; 54 Serrano (10.1016/j.jbiosc.2019.12.001_bib54) 2008; 151 Gallego (10.1016/j.jbiosc.2019.12.001_bib43) 2001; 12 Peck (10.1016/j.jbiosc.2019.12.001_bib68) 2010 Shintani (10.1016/j.jbiosc.2019.12.001_bib7) 2019; 127 Environmental Protection Agency (10.1016/j.jbiosc.2019.12.001_bib44) 1996 Hsiao (10.1016/j.jbiosc.2019.12.001_bib37) 2005; 43 Lee (10.1016/j.jbiosc.2019.12.001_bib12) 2005; 100 Lin (10.1016/j.jbiosc.2019.12.001_bib60) 2012; 167 Lin (10.1016/j.jbiosc.2019.12.001_bib33) 2005; 99 Reyes-Cesar (10.1016/j.jbiosc.2019.12.001_bib67) 2014; 30 Howard (10.1016/j.jbiosc.2019.12.001_bib32) 1990; 9 Whang (10.1016/j.jbiosc.2019.12.001_bib6) 2008; 151 Wittich (10.1016/j.jbiosc.2019.12.001_bib28) 1998 Wu (10.1016/j.jbiosc.2019.12.001_bib64) 2012; 12 Adamczyk (10.1016/j.jbiosc.2019.12.001_bib47) 2013; 67 Dudasova (10.1016/j.jbiosc.2019.12.001_bib50) 2012; 69 Xu (10.1016/j.jbiosc.2019.12.001_bib3) 2010; 183 Biache (10.1016/j.jbiosc.2019.12.001_bib57) 2013; 56 Liu (10.1016/j.jbiosc.2019.12.001_bib36) 2009; 84 Laorrattanasak (10.1016/j.jbiosc.2019.12.001_bib61) 2016; 227 Chen (10.1016/j.jbiosc.2019.12.001_bib27) 2019; 233 Liu (10.1016/j.jbiosc.2019.12.001_bib45) 2012; 33 Vinas (10.1016/j.jbiosc.2019.12.001_bib14) 2002; 28 Chaineau (10.1016/j.jbiosc.2019.12.001_bib17) 1999; 227 Kang (10.1016/j.jbiosc.2019.12.001_bib24) 2009; 19 Meyer (10.1016/j.jbiosc.2019.12.001_bib1) 2014; 95 Tachibana (10.1016/j.jbiosc.2019.12.001_bib20) 2012; 5 Ahmed (10.1016/j.jbiosc.2019.12.001_bib53) 2015; 508 (10.1016/j.jbiosc.2019.12.001_bib31) 2003 Oudot (10.1016/j.jbiosc.2019.12.001_bib25) 1998; 45 Tang (10.1016/j.jbiosc.2019.12.001_bib26) 2013; 116 Ghazali (10.1016/j.jbiosc.2019.12.001_bib55) 2004; 54 Marco-Urrea (10.1016/j.jbiosc.2019.12.001_bib66) 2015; 32 Chiou (10.1016/j.jbiosc.2019.12.001_bib38) 1984; 18 Lee (10.1016/j.jbiosc.2019.12.001_bib5) 2018; 28 Marchand (10.1016/j.jbiosc.2019.12.001_bib19) 2017; 116 Sharma (10.1016/j.jbiosc.2019.12.001_bib8) 2014; 2 Wang (10.1016/j.jbiosc.2019.12.001_bib16) 2012; 113 Young (10.1016/j.jbiosc.2019.12.001_bib35) 2005; 21 Chiou (10.1016/j.jbiosc.2019.12.001_bib41) 1985; 8 Kasel (10.1016/j.jbiosc.2019.12.001_bib46) 2008; 40 Chen (10.1016/j.jbiosc.2019.12.001_bib10) 2017; 124 Liu (10.1016/j.jbiosc.2019.12.001_bib39) 2014; 95 Mancera-Lopez (10.1016/j.jbiosc.2019.12.001_bib22) 2008; 61 Jung (10.1016/j.jbiosc.2019.12.001_bib56) 2008; 150 Chaineau (10.1016/j.jbiosc.2019.12.001_bib21) 2005; 37 Vila (10.1016/j.jbiosc.2019.12.001_bib52) 2010; 73 Kang (10.1016/j.jbiosc.2019.12.001_bib63) 1997; 18 Sugimori (10.1016/j.jbiosc.2019.12.001_bib65) 2012; 28 Liu (10.1016/j.jbiosc.2019.12.001_bib40) 2013; 85 Dong (10.1016/j.jbiosc.2019.12.001_bib49) 2014; 69 Wieczorek (10.1016/j.jbiosc.2019.12.001_bib9) 2015; 4 |
| References_xml | – volume: 20 start-page: 1223 year: 1994 end-page: 1280 ident: bib48 article-title: Higher-plant terpenoids - a phytocentric overview of their ecological roles publication-title: J. Chem. Ecol. – start-page: 84 year: 2010 end-page: 92 ident: bib68 article-title: Nonmetric multidimensional scaling (NMS) publication-title: Multivariate analysis for community ecologists: step-by-step using PC-ORD. MjM Software Design, Gleneden Beach – volume: 30 start-page: 1201 year: 2008 end-page: 1206 ident: bib34 article-title: Exopolysaccharides produced by publication-title: Biotechnol. Lett. – volume: 43 start-page: 3760 year: 2005 end-page: 3768 ident: bib37 article-title: Identification of medically important molds by an oligonucleotide array publication-title: J. Clin. Microbiol. – volume: 127 start-page: 197 year: 2019 end-page: 200 ident: bib7 article-title: Biodegradation of A-fuel oil in soil samples with bacterial mixtures of publication-title: J. Biosci. Bioeng. – volume: 67 start-page: 47 year: 2013 end-page: 52 ident: bib47 article-title: Potential response of soil processes to diterpenes, triterpenes and tannins: nitrification, growth of microorganisms and precipitation of proteins publication-title: Appl. Soil Ecol. – volume: 69 start-page: 275 year: 2014 end-page: 281 ident: bib49 article-title: Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem publication-title: Soil Biol. Biochem. – volume: 37 start-page: 1490 year: 2005 end-page: 1497 ident: bib21 article-title: Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil publication-title: Soil Biol. Biochem. – volume: 61 start-page: 151 year: 2008 end-page: 160 ident: bib22 article-title: Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi publication-title: Int. Biodeterior. Biodegradation – volume: 19 start-page: 1672 year: 2009 end-page: 1678 ident: bib24 article-title: Inhibitory effect of aged petroleum hydrocarbons on the survival of inoculated microorganism in a crude-oil-contaminated site publication-title: J. Microbiol. Biotechnol. – volume: 227 start-page: 325 year: 2016 ident: bib61 article-title: Production and application of publication-title: Water, Air, Soil Pollut. – volume: 28 start-page: 367 year: 2018 end-page: 373 ident: bib5 article-title: The enhanced thermolysis of heavy oil contaminated soil using CO publication-title: J. CO – volume: 18 start-page: 295 year: 1984 end-page: 297 ident: bib38 article-title: Partition equilibria of nonionic organic-compounds between soil organic-matter and water publication-title: Environ. Sci. Technol. – volume: 65 start-page: 1119 year: 2011 end-page: 1127 ident: bib2 article-title: Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift publication-title: Int. Biodeterior. Biodegradation – volume: 100 start-page: 429 year: 2005 end-page: 436 ident: bib12 article-title: Effect of the synthesized mycolic acid on the biodegradation of diesel oil by publication-title: J. Biosci. Bioeng. – volume: 33 start-page: 2661 year: 2012 end-page: 2672 ident: bib45 article-title: Effects of soil organic matter and ageing on remediation of diesel-contaminated soil publication-title: Environ. Technol. – volume: 84 start-page: 808 year: 2009 end-page: 819 ident: bib36 article-title: Verification of necessity for bioaugmentation — lessons from two batch case studies for bioremediation of diesel-contaminated soils publication-title: J. Chem. Technol. Biotechnol. – volume: 69 start-page: 23 year: 2012 end-page: 27 ident: bib50 article-title: Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs) publication-title: Int. Biodeterior. Biodegradation – volume: 167 start-page: 395 year: 2012 end-page: 404 ident: bib60 article-title: Characterization of publication-title: Microbiol. Res. – volume: 28 start-page: 841 year: 2012 end-page: 848 ident: bib65 article-title: A study of the efficiency of edible oils degraded in alkaline conditions by publication-title: World J. Microbiol. Biotechnol. – volume: 9 start-page: 306 year: 1990 end-page: 310 ident: bib32 article-title: Use of organic-carbon and loss-on-ignition to estimate soil organic-matter in different soil types and horizons publication-title: Biol. Fertil. Soils – volume: 124 start-page: 62 year: 2017 end-page: 72 ident: bib10 article-title: Immobilization of of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater publication-title: Int. Biodeterior. Biodegradation – volume: 99 start-page: 466 year: 2005 end-page: 472 ident: bib33 article-title: Characterization of floating activity of indigenous diesel-assimilating bacterial isolates publication-title: J. Biosci. Bioeng. – year: 1996 ident: bib44 article-title: Ultrasonic extraction publication-title: Test methods for evaluating solid waste physical/chemical methods. Method 3550 B, 2nd revision – volume: 61 start-page: 214 year: 2008 end-page: 222 ident: bib59 article-title: The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by publication-title: Int. Biodeterior. Biodegradation – volume: 12 start-page: 325 year: 2001 end-page: 335 ident: bib43 article-title: Bioremediation of diesel-contaminated soils: evaluation of potential publication-title: Biodegradation – volume: 73 start-page: 349 year: 2010 end-page: 362 ident: bib52 article-title: Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization publication-title: FEMS Microbiol. Ecol. – volume: 233 start-page: 843 year: 2019 end-page: 851 ident: bib27 article-title: Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments publication-title: Chemosphere – volume: 21 start-page: 1409 year: 2005 end-page: 1414 ident: bib35 article-title: Identification and kinetic characteristics of an indigenous diesel-degrading publication-title: World J. Microbiol. Biotechnol. – volume: 113 start-page: 624 year: 2012 end-page: 630 ident: bib16 article-title: Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation publication-title: J. Biosci. Bioeng. – volume: 32 start-page: 855 year: 1998 end-page: 860 ident: bib29 article-title: Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils publication-title: Environ. Sci. Technol. – volume: 151 start-page: 494 year: 2008 end-page: 502 ident: bib54 article-title: Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil publication-title: Environ. Pollut. – start-page: 249 year: 1998 ident: bib28 article-title: Biodegradation of dioxins and furans publication-title: Biodegradation of diaryl ether pesticides – start-page: 1085 year: 1996 end-page: 1122 ident: bib30 article-title: Nitrogen total publication-title: Nitrogen total – volume: 85 start-page: 661 year: 2013 end-page: 670 ident: bib40 article-title: Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil publication-title: Int. Biodeterior. Biodegradation – volume: 227 start-page: 237 year: 1999 end-page: 247 ident: bib17 article-title: Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil publication-title: Sci. Total Environ. – volume: 183 start-page: 395 year: 2010 end-page: 401 ident: bib3 article-title: Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments publication-title: J. Hazard. Mater. – volume: 56 start-page: 247 year: 2016 end-page: 264 ident: bib4 article-title: Diverse metabolic capacities of fungi for bioremediation publication-title: Indian J. Microbiol. – volume: 5 start-page: 64 year: 2012 end-page: 73 ident: bib20 article-title: Biodegradation of aliphatic hydrocarbon in three types of crude oil by publication-title: J. Environ. Sci. Technol. – volume: 116 start-page: 48 year: 2017 end-page: 57 ident: bib19 article-title: Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil publication-title: Int. Biodeterior. Biodegradation – volume: 2 start-page: 202 year: 2014 end-page: 212 ident: bib8 article-title: Biodegradation of diesel hydrocarbon in soil by bioaugmentation of publication-title: Int. J. Environ. Biorem. Biodegradation – volume: 176 start-page: 670 year: 2015 end-page: 699 ident: bib15 article-title: A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria publication-title: Appl. Biochem. Biotechnol. – volume: 150 start-page: 809 year: 2008 end-page: 817 ident: bib56 article-title: Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation publication-title: J. Hazard. Mater. – volume: 56 start-page: 10 year: 2013 end-page: 18 ident: bib57 article-title: Biodegradation of the organic matter in a coking plant soil and its main constituents publication-title: Org. Geochem. – volume: 116 start-page: 653 year: 2013 end-page: 659 ident: bib26 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. – volume: vol. 1 year: 1986 ident: bib42 article-title: Water content publication-title: Methods of soil analysis, pp. 503-507, part 1: physical and mineralogical methods – volume: 116 start-page: 80 year: 2012 end-page: 85 ident: bib11 article-title: Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal publication-title: Bioresour. Technol. – year: 2003 ident: bib31 article-title: Soil quality extraction of trace metals soluble in Aqua Regia – volume: 54 start-page: 201 year: 2007 end-page: 209 ident: bib23 article-title: Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation publication-title: Acta Chim. Slov. – volume: 40 start-page: 1724 year: 2008 end-page: 1732 ident: bib46 article-title: Land use influences soil fungal community composition across central Victoria, south-eastern Australia publication-title: Soil Biol. Biochem. – volume: 508 start-page: 276 year: 2015 end-page: 287 ident: bib53 article-title: Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation publication-title: Sci. Total Environ. – volume: 95 start-page: 356 year: 2014 end-page: 363 ident: bib1 article-title: Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil publication-title: Int. Biodeterior. Biodegradation – volume: 91 start-page: 217 year: 2001 end-page: 221 ident: bib13 article-title: Stereoselective oxidation of alkylbenzenes by fungi publication-title: J. Biosci. Bioeng. – volume: 28 start-page: 252 year: 2002 end-page: 260 ident: bib14 article-title: Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities publication-title: J. Ind. Microbiol. Biotechnol. – volume: 77 start-page: 17 year: 2002 end-page: 23 ident: bib58 article-title: Microbial degradation of low rank coals publication-title: Fuel Process. Technol. – volume: 18 start-page: 521 year: 1997 end-page: 534 ident: bib63 article-title: Determination of assimilable organic carbon (AOC) in ozonated water with Acinetobacter calcoaceticus publication-title: Ozone: Sci. Eng. – volume: 45 start-page: 113 year: 1998 end-page: 125 ident: bib25 article-title: Weathering rates of oil components in a bioremediation experiment in estuarine sediments publication-title: Mar. Environ. Res. – volume: 4 start-page: 293 year: 2015 end-page: 306 ident: bib9 article-title: Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil publication-title: Biotechnologia – volume: 435–436 start-page: 262 year: 2012 end-page: 269 ident: bib18 article-title: A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil publication-title: Sci. Total Environ. – volume: 30 start-page: 999 year: 2014 end-page: 1009 ident: bib67 article-title: Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil publication-title: World J. Microbiol. Biotechnol. – volume: 12 start-page: 143 year: 2012 end-page: 149 ident: bib64 article-title: Adsorption of publication-title: J. Soils Sediments – volume: 54 start-page: 61 year: 2004 end-page: 67 ident: bib55 article-title: Biodegradation of hydrocarbons in soil by microbial consortium publication-title: Int. Biodeterior. Biodegradation – volume: 8 year: 2016 ident: bib62 article-title: Production of potential fuel oils by publication-title: J. Renew. Sustain. Energy – volume: 151 start-page: 155 year: 2008 end-page: 163 ident: bib6 article-title: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil publication-title: J. Hazard. Mater. – volume: 8 start-page: 9 year: 1985 end-page: 14 ident: bib41 article-title: Mechanistic roles of soil humus and minerals in the sorption of nonionic organic-compounds from aqueous and organic solutions publication-title: Org. Geochem. – volume: 95 start-page: 276 year: 2014 end-page: 284 ident: bib39 article-title: Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils publication-title: Int. Biodeterior. Biodegradation – volume: 54 start-page: 253 year: 2014 end-page: 260 ident: bib51 article-title: Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms publication-title: J. Basic Microbiol. – volume: 32 start-page: 620 year: 2015 end-page: 628 ident: bib66 article-title: Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons publication-title: N. Biotech. – volume: 77 start-page: 17 year: 2002 ident: 10.1016/j.jbiosc.2019.12.001_bib58 article-title: Microbial degradation of low rank coals publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(02)00064-4 – volume: 69 start-page: 23 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib50 article-title: Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs) publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2012.01.003 – volume: 20 start-page: 1223 year: 1994 ident: 10.1016/j.jbiosc.2019.12.001_bib48 article-title: Higher-plant terpenoids - a phytocentric overview of their ecological roles publication-title: J. Chem. Ecol. doi: 10.1007/BF02059809 – volume: 100 start-page: 429 year: 2005 ident: 10.1016/j.jbiosc.2019.12.001_bib12 article-title: Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31 publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.100.429 – volume: 116 start-page: 48 year: 2017 ident: 10.1016/j.jbiosc.2019.12.001_bib19 article-title: Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2016.09.030 – volume: 56 start-page: 247 year: 2016 ident: 10.1016/j.jbiosc.2019.12.001_bib4 article-title: Diverse metabolic capacities of fungi for bioremediation publication-title: Indian J. Microbiol. doi: 10.1007/s12088-016-0584-6 – start-page: 1085 year: 1996 ident: 10.1016/j.jbiosc.2019.12.001_bib30 article-title: Nitrogen total – volume: 21 start-page: 1409 year: 2005 ident: 10.1016/j.jbiosc.2019.12.001_bib35 article-title: Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-005-5742-7 – volume: 28 start-page: 841 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib65 article-title: A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-011-0880-6 – volume: 233 start-page: 843 year: 2019 ident: 10.1016/j.jbiosc.2019.12.001_bib27 article-title: Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.202 – volume: vol. 1 year: 1986 ident: 10.1016/j.jbiosc.2019.12.001_bib42 article-title: Water content – volume: 99 start-page: 466 year: 2005 ident: 10.1016/j.jbiosc.2019.12.001_bib33 article-title: Characterization of floating activity of indigenous diesel-assimilating bacterial isolates publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.99.466 – volume: 8 year: 2016 ident: 10.1016/j.jbiosc.2019.12.001_bib62 article-title: Production of potential fuel oils by Rhodococcus opacus grown on petroleum processing wastewaters publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4971875 – volume: 116 start-page: 80 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib11 article-title: Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.021 – volume: 12 start-page: 325 year: 2001 ident: 10.1016/j.jbiosc.2019.12.001_bib43 article-title: Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation publication-title: Biodegradation doi: 10.1023/A:1014397732435 – volume: 113 start-page: 624 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib16 article-title: Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2012.01.005 – volume: 45 start-page: 113 year: 1998 ident: 10.1016/j.jbiosc.2019.12.001_bib25 article-title: Weathering rates of oil components in a bioremediation experiment in estuarine sediments publication-title: Mar. Environ. Res. doi: 10.1016/S0141-1136(97)00024-X – volume: 167 start-page: 395 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib60 article-title: Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation publication-title: Microbiol. Res. doi: 10.1016/j.micres.2011.12.002 – volume: 151 start-page: 155 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib6 article-title: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.05.063 – volume: 2 start-page: 202 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib8 article-title: Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: a laboratory scale study publication-title: Int. J. Environ. Biorem. Biodegradation – volume: 18 start-page: 295 year: 1984 ident: 10.1016/j.jbiosc.2019.12.001_bib38 article-title: Partition equilibria of nonionic organic-compounds between soil organic-matter and water publication-title: Environ. Sci. Technol. doi: 10.1021/es00122a018 – year: 1996 ident: 10.1016/j.jbiosc.2019.12.001_bib44 article-title: Ultrasonic extraction – volume: 176 start-page: 670 year: 2015 ident: 10.1016/j.jbiosc.2019.12.001_bib15 article-title: A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-015-1603-5 – volume: 227 start-page: 237 year: 1999 ident: 10.1016/j.jbiosc.2019.12.001_bib17 article-title: Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(99)00033-9 – volume: 54 start-page: 253 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib51 article-title: Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201200369 – volume: 18 start-page: 521 year: 1997 ident: 10.1016/j.jbiosc.2019.12.001_bib63 article-title: Determination of assimilable organic carbon (AOC) in ozonated water with Acinetobacter calcoaceticus publication-title: Ozone: Sci. Eng. doi: 10.1080/01919512.1997.10382861 – volume: 85 start-page: 661 year: 2013 ident: 10.1016/j.jbiosc.2019.12.001_bib40 article-title: Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2013.01.010 – volume: 150 start-page: 809 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib56 article-title: Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.05.032 – start-page: 84 year: 2010 ident: 10.1016/j.jbiosc.2019.12.001_bib68 article-title: Nonmetric multidimensional scaling (NMS) – volume: 54 start-page: 201 year: 2007 ident: 10.1016/j.jbiosc.2019.12.001_bib23 article-title: Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation publication-title: Acta Chim. Slov. – volume: 43 start-page: 3760 year: 2005 ident: 10.1016/j.jbiosc.2019.12.001_bib37 article-title: Identification of medically important molds by an oligonucleotide array publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.43.8.3760-3768.2005 – volume: 95 start-page: 276 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib39 article-title: Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2014.05.004 – volume: 84 start-page: 808 year: 2009 ident: 10.1016/j.jbiosc.2019.12.001_bib36 article-title: Verification of necessity for bioaugmentation — lessons from two batch case studies for bioremediation of diesel-contaminated soils publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2153 – volume: 5 start-page: 64 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib20 article-title: Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water publication-title: J. Environ. Sci. Technol. – volume: 28 start-page: 367 year: 2018 ident: 10.1016/j.jbiosc.2019.12.001_bib5 article-title: The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.10.017 – volume: 227 start-page: 325 year: 2016 ident: 10.1016/j.jbiosc.2019.12.001_bib61 article-title: Production and application of Gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-016-3031-8 – volume: 116 start-page: 653 year: 2013 ident: 10.1016/j.jbiosc.2019.12.001_bib26 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2013.05.035 – volume: 8 start-page: 9 year: 1985 ident: 10.1016/j.jbiosc.2019.12.001_bib41 article-title: Mechanistic roles of soil humus and minerals in the sorption of nonionic organic-compounds from aqueous and organic solutions publication-title: Org. Geochem. doi: 10.1016/0146-6380(85)90045-2 – volume: 40 start-page: 1724 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib46 article-title: Land use influences soil fungal community composition across central Victoria, south-eastern Australia publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.02.011 – volume: 91 start-page: 217 year: 2001 ident: 10.1016/j.jbiosc.2019.12.001_bib13 article-title: Stereoselective oxidation of alkylbenzenes by fungi publication-title: J. Biosci. Bioeng. doi: 10.1016/S1389-1723(01)80069-4 – volume: 435–436 start-page: 262 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib18 article-title: A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.07.032 – volume: 69 start-page: 275 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib49 article-title: Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.11.016 – volume: 32 start-page: 620 year: 2015 ident: 10.1016/j.jbiosc.2019.12.001_bib66 article-title: Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons publication-title: N. Biotech. doi: 10.1016/j.nbt.2015.01.005 – start-page: 249 year: 1998 ident: 10.1016/j.jbiosc.2019.12.001_bib28 article-title: Biodegradation of dioxins and furans – volume: 28 start-page: 252 year: 2002 ident: 10.1016/j.jbiosc.2019.12.001_bib14 article-title: Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1038/sj.jim.7000236 – volume: 65 start-page: 1119 year: 2011 ident: 10.1016/j.jbiosc.2019.12.001_bib2 article-title: Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2011.09.002 – volume: 73 start-page: 349 year: 2010 ident: 10.1016/j.jbiosc.2019.12.001_bib52 article-title: Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization publication-title: FEMS Microbiol. Ecol. – volume: 54 start-page: 61 year: 2004 ident: 10.1016/j.jbiosc.2019.12.001_bib55 article-title: Biodegradation of hydrocarbons in soil by microbial consortium publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2004.02.002 – volume: 127 start-page: 197 year: 2019 ident: 10.1016/j.jbiosc.2019.12.001_bib7 article-title: Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2018.07.018 – volume: 9 start-page: 306 year: 1990 ident: 10.1016/j.jbiosc.2019.12.001_bib32 article-title: Use of organic-carbon and loss-on-ignition to estimate soil organic-matter in different soil types and horizons publication-title: Biol. Fertil. Soils doi: 10.1007/BF00634106 – volume: 151 start-page: 494 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib54 article-title: Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.04.015 – volume: 33 start-page: 2661 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib45 article-title: Effects of soil organic matter and ageing on remediation of diesel-contaminated soil publication-title: Environ. Technol. doi: 10.1080/09593330.2012.673017 – volume: 37 start-page: 1490 year: 2005 ident: 10.1016/j.jbiosc.2019.12.001_bib21 article-title: Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.01.012 – volume: 56 start-page: 10 year: 2013 ident: 10.1016/j.jbiosc.2019.12.001_bib57 article-title: Biodegradation of the organic matter in a coking plant soil and its main constituents publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2012.12.002 – volume: 61 start-page: 214 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib59 article-title: The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7 publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2007.08.002 – volume: 12 start-page: 143 year: 2012 ident: 10.1016/j.jbiosc.2019.12.001_bib64 article-title: Adsorption of Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic matter publication-title: J. Soils Sediments doi: 10.1007/s11368-011-0441-5 – volume: 183 start-page: 395 year: 2010 ident: 10.1016/j.jbiosc.2019.12.001_bib3 article-title: Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.038 – year: 2003 ident: 10.1016/j.jbiosc.2019.12.001_bib31 – volume: 32 start-page: 855 year: 1998 ident: 10.1016/j.jbiosc.2019.12.001_bib29 article-title: Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils publication-title: Environ. Sci. Technol. doi: 10.1021/es970740g – volume: 67 start-page: 47 year: 2013 ident: 10.1016/j.jbiosc.2019.12.001_bib47 article-title: Potential response of soil processes to diterpenes, triterpenes and tannins: nitrification, growth of microorganisms and precipitation of proteins publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.02.009 – volume: 19 start-page: 1672 year: 2009 ident: 10.1016/j.jbiosc.2019.12.001_bib24 article-title: Inhibitory effect of aged petroleum hydrocarbons on the survival of inoculated microorganism in a crude-oil-contaminated site publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.0903.03001 – volume: 61 start-page: 151 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib22 article-title: Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2007.05.012 – volume: 508 start-page: 276 year: 2015 ident: 10.1016/j.jbiosc.2019.12.001_bib53 article-title: Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.087 – volume: 30 start-page: 999 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib67 article-title: Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-013-1518-7 – volume: 30 start-page: 1201 year: 2008 ident: 10.1016/j.jbiosc.2019.12.001_bib34 article-title: Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel publication-title: Biotechnol. Lett. doi: 10.1007/s10529-008-9667-8 – volume: 4 start-page: 293 year: 2015 ident: 10.1016/j.jbiosc.2019.12.001_bib9 article-title: Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil publication-title: Biotechnologia – volume: 95 start-page: 356 year: 2014 ident: 10.1016/j.jbiosc.2019.12.001_bib1 article-title: Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2014.01.026 – volume: 124 start-page: 62 year: 2017 ident: 10.1016/j.jbiosc.2019.12.001_bib10 article-title: Immobilization of of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2017.07.001 |
| SSID | ssj0017071 |
| Score | 2.457774 |
| Snippet | The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH).... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 603 |
| SubjectTerms | Aspergillus versicolor bacteria biodegradation Diesel DNA microarrays Fuel oil fuel oils fungi Fusarium oxysporum Hydrocarbon fractional analysis hydrocarbons Internal transcribed spacer microarray internal transcribed spacers microbial communities multidimensional scaling petroleum plate count polluted soils remediation restriction fragment length polymorphism Soil organic matter Soil total petroleum hydrocarbons contamination Terminal restriction fragment length polymorphism analysis |
| Title | Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil |
| URI | https://dx.doi.org/10.1016/j.jbiosc.2019.12.001 https://www.ncbi.nlm.nih.gov/pubmed/31992527 https://www.proquest.com/docview/2348221873 https://www.proquest.com/docview/2400526341 |
| Volume | 129 |
| WOSCitedRecordID | wos000614229200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1347-4421 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017071 issn: 1389-1723 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdJP2Mu2-7FJ50t4qbwQHbB6jqbtUXbWHTkmfEBg7JaJQJaFq_9d-4I4vENoq7fqwFxQQHCDn4_iz_Z1jhD6mLAiyUOnoRwMyUklCIsFT4vnCF0yFYSpMdf0DdnjIp9PoV6_3p8mFOS9YWfKLi-jsv7oajoGzdersPdzdGoUD8BucDltwO2z_yfGuHjGQwGWVF27ZJrF7agpp6rkB4MlaU1if7p5cZtB-JYu00pLY2SKxCywZhayuHlHop6glGMkLokXtiRbOaI6qTW_gtWleNblCelAeduW65uFaTWDD3XFdknGLz2-LRGcY5bXlthWZrBPVJs3I9gEAekZ-doxNzPnHOdmvu4MYvreWDLq4C7yJAJeiVwKzGwvJu3PfJsyGHu202KEVYt9oDOy4xPzT3Ly4lvFFZujX3fhK7e1rbWKrVGxEcPPYWom1lXjoay3gFtr2WRDxPtoe_9ib7rezV8xzHX33Uk3KptEV3nyaTZRoU5fHUJ-jJ-ix8y0eW6w9RT1ZPkMP7Sqml8_RzCIOVwprWGCHOGwRh6sSt4jDHcThDuJwDrsGcZ813vB1vBnDL9Dvr3tHX74Tt34HEdAsrEiqoDOkVMSCMFNJ6nHJIMgrRrnymApUyoRPR5mngGIOIykpG4Er_aHgQijOEvoS9cuqlK8RjuSQCS4VzYbpKFM8TZMo4zyROnE7pNkA0eYvjIUrbq_XWCni2xw4QKS96swWd7njfNZ4J3ZfkiWeMUDujis_NM6MIX7rSbmklFW9jH1dXQp4NqO3nDMyZZmAcA7QK4uE9nmp1o8HPntzz3d5ix6tP8R3qL9a1PI9eiDOV_lysYO22JTvOFz_Be_K2K8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+soil+organic+matter+on+petroleum+hydrocarbon+degradation+in+diesel%2Ffuel+oil-contaminated+soil&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Chen%2C+Yun-An&rft.au=Grace+Liu%2C+Pao-Wen&rft.au=Whang%2C+Liang-Ming&rft.au=Wu%2C+Yi-Ju&rft.date=2020-05-01&rft.issn=1389-1723&rft.volume=129&rft.issue=5&rft.spage=603&rft.epage=612&rft_id=info:doi/10.1016%2Fj.jbiosc.2019.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiosc_2019_12_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon |