Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil

The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering Vol. 129; no. 5; pp. 603 - 612
Main Authors: Chen, Yun-An, Grace Liu, Pao-Wen, Whang, Liang-Ming, Wu, Yi-Ju, Cheng, Sheng-Shung
Format: Journal Article
Language:English
Published: Japan Elsevier B.V 01.05.2020
Subjects:
ISSN:1389-1723, 1347-4421, 1347-4421
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
AbstractList The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 10  CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849–4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 10² CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
Author Whang, Liang-Ming
Wu, Yi-Ju
Grace Liu, Pao-Wen
Chen, Yun-An
Cheng, Sheng-Shung
Author_xml – sequence: 1
  givenname: Yun-An
  surname: Chen
  fullname: Chen, Yun-An
  organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
– sequence: 2
  givenname: Pao-Wen
  surname: Grace Liu
  fullname: Grace Liu, Pao-Wen
  organization: Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, No. 89 Wenhua 1st Street, Rende District, Tainan County 71703, Taiwan
– sequence: 3
  givenname: Liang-Ming
  surname: Whang
  fullname: Whang, Liang-Ming
  email: whang@mail.ncku.edu.tw
  organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
– sequence: 4
  givenname: Yi-Ju
  surname: Wu
  fullname: Wu, Yi-Ju
  organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
– sequence: 5
  givenname: Sheng-Shung
  surname: Cheng
  fullname: Cheng, Sheng-Shung
  organization: Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31992527$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vHCEQhlHkKP7KP4iiLdPsmgHuYF1YiiwnsWTJTVwjFoYLp93lDGwk__twPrtxEVcMo-d9inlPydEcZyTkC9AOKKwvtt12CDHbjlHoO2AdpfCBnAAXshWCwdF-Vn0LkvFjcprztgKSSvhEjjn0PVsxeUI2N96jLU30TY5hbGLamDnYZjKlYGri3OywpDjiMjV_nlyK1qShbh1uknGmhDqH-g2YcbzwC1ZFGFsb52KmMJuC7ll8Tj56M2b8_PKekYcfN7-vf7V39z9vr7_ftVYoVdrBK3De93K1dt4MVKEcKPWSK0-lX_lBWsaFo54JAT0il2INjIFV1nolDT8j3w7eXYqPC-aip5AtjqOZMS5ZM0Hpiq25gPdRLlRVK8kr-vUFXYYJnd6lMJn0pF_vWIHLA2BTzDmh1zaU5-uUZMKogep9aXqrD6XpfWkamK6d1LB4E371vxO7OsSw3vNvwKSzDThbdCHVSrWL4f-Cf26Ls7A
CitedBy_id crossref_primary_10_1016_j_marpolbul_2021_113288
crossref_primary_10_3390_su13169267
crossref_primary_10_1016_j_scitotenv_2021_147395
crossref_primary_10_1016_j_chemolab_2025_105444
crossref_primary_10_1007_s11270_024_07545_z
crossref_primary_10_3390_su17125535
crossref_primary_10_1016_j_chemosphere_2022_134804
crossref_primary_10_1016_j_jenvman_2022_115175
crossref_primary_10_2478_am_2023_0011
crossref_primary_10_1016_j_envres_2025_121085
crossref_primary_10_3390_su15043599
crossref_primary_10_1007_s11274_020_02956_6
crossref_primary_10_1007_s11270_025_07940_0
crossref_primary_10_1016_j_jhazmat_2024_134322
crossref_primary_10_4014_jmb_2210_10038
crossref_primary_10_1007_s00248_023_02245_3
crossref_primary_10_1016_j_jece_2025_116032
crossref_primary_10_2166_wst_2024_364
crossref_primary_10_1007_s10646_022_02585_9
crossref_primary_10_1016_j_jece_2024_113697
crossref_primary_10_1016_j_jenvman_2023_118475
crossref_primary_10_1080_01490451_2023_2243925
crossref_primary_10_1080_15320383_2022_2066627
crossref_primary_10_1007_s11356_021_17937_x
crossref_primary_10_1016_j_cej_2021_129600
crossref_primary_10_1007_s41742_024_00613_6
crossref_primary_10_1016_j_cej_2022_139372
crossref_primary_10_3390_microorganisms12122605
crossref_primary_10_1016_j_jhazmat_2025_139907
crossref_primary_10_3390_ijerph17196959
crossref_primary_10_1016_j_chemosphere_2022_137236
crossref_primary_10_1016_j_chemosphere_2021_133392
crossref_primary_10_1016_j_envpol_2020_115171
crossref_primary_10_1080_09593330_2024_2361171
Cites_doi 10.1016/S0378-3820(02)00064-4
10.1016/j.ibiod.2012.01.003
10.1007/BF02059809
10.1263/jbb.100.429
10.1016/j.ibiod.2016.09.030
10.1007/s12088-016-0584-6
10.1007/s11274-005-5742-7
10.1007/s11274-011-0880-6
10.1016/j.chemosphere.2019.05.202
10.1263/jbb.99.466
10.1063/1.4971875
10.1016/j.biortech.2012.04.021
10.1023/A:1014397732435
10.1016/j.jbiosc.2012.01.005
10.1016/S0141-1136(97)00024-X
10.1016/j.micres.2011.12.002
10.1016/j.jhazmat.2007.05.063
10.1021/es00122a018
10.1007/s12010-015-1603-5
10.1016/S0048-9697(99)00033-9
10.1002/jobm.201200369
10.1080/01919512.1997.10382861
10.1016/j.ibiod.2013.01.010
10.1016/j.jhazmat.2007.05.032
10.1128/JCM.43.8.3760-3768.2005
10.1016/j.ibiod.2014.05.004
10.1002/jctb.2153
10.1016/j.jcou.2018.10.017
10.1007/s11270-016-3031-8
10.1016/j.jbiosc.2013.05.035
10.1016/0146-6380(85)90045-2
10.1016/j.soilbio.2008.02.011
10.1016/S1389-1723(01)80069-4
10.1016/j.scitotenv.2012.07.032
10.1016/j.soilbio.2013.11.016
10.1016/j.nbt.2015.01.005
10.1038/sj.jim.7000236
10.1016/j.ibiod.2011.09.002
10.1016/j.ibiod.2004.02.002
10.1016/j.jbiosc.2018.07.018
10.1007/BF00634106
10.1016/j.envpol.2007.04.015
10.1080/09593330.2012.673017
10.1016/j.soilbio.2005.01.012
10.1016/j.orggeochem.2012.12.002
10.1016/j.ibiod.2007.08.002
10.1007/s11368-011-0441-5
10.1016/j.jhazmat.2010.07.038
10.1021/es970740g
10.1016/j.apsoil.2013.02.009
10.4014/jmb.0903.03001
10.1016/j.ibiod.2007.05.012
10.1016/j.scitotenv.2014.11.087
10.1007/s11274-013-1518-7
10.1007/s10529-008-9667-8
10.1016/j.ibiod.2014.01.026
10.1016/j.ibiod.2017.07.001
ContentType Journal Article
Copyright 2019 The Society for Biotechnology, Japan
Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 The Society for Biotechnology, Japan
– notice: Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jbiosc.2019.12.001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-4421
EndPage 612
ExternalDocumentID 31992527
10_1016_j_jbiosc_2019_12_001
S1389172319309521
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
2WC
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CS3
D-I
DU5
E3Z
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TKC
TR2
UNMZH
XFK
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c488t-bf81dff9756dfab08e7b00f738f07f5fb7c234d0f24419ee37461221c8ccf87a3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614229200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-1723
1347-4421
IngestDate Sat Sep 27 21:32:25 EDT 2025
Sun Nov 09 13:48:07 EST 2025
Wed Feb 19 02:30:14 EST 2025
Sat Nov 29 07:02:19 EST 2025
Tue Nov 18 22:08:47 EST 2025
Thu Jun 13 14:30:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Soil total petroleum hydrocarbons contamination
Internal transcribed spacer microarray
Soil organic matter
Diesel
Hydrocarbon fractional analysis
Fuel oil
Terminal restriction fragment length polymorphism analysis
Language English
License Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c488t-bf81dff9756dfab08e7b00f738f07f5fb7c234d0f24419ee37461221c8ccf87a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31992527
PQID 2348221873
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2400526341
proquest_miscellaneous_2348221873
pubmed_primary_31992527
crossref_citationtrail_10_1016_j_jbiosc_2019_12_001
crossref_primary_10_1016_j_jbiosc_2019_12_001
elsevier_sciencedirect_doi_10_1016_j_jbiosc_2019_12_001
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of bioscience and bioengineering
PublicationTitleAlternate J Biosci Bioeng
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vinas, Grifoll, Sabate, Solanas (bib14) 2002; 28
Lin, Shen, Tan, Huang, Chen, Arun, Young (bib60) 2012; 167
Chung, Alexander (bib29) 1998; 32
Laorrattanasak, Rongsayamanont, Khondee, Paorach, Soonglerdsongpha, Pinyakong, Luepromchai (bib61) 2016; 227
Adamczyk, Kiikkila, Kitunen, Smolander (bib47) 2013; 67
Langenheim (bib48) 1994; 20
Dudasova, Lukacova, Murinova, Puskarova, Pangallo, Dercova (bib51) 2014; 54
Chen, Whang, Pan, Yang, Liu (bib10) 2017; 124
Chen, Liu, Whang (bib27) 2019; 233
Mancera-Lopez, Rodriguez-Casasola, Rios-Leal, Esparza-Garcia, Chavez-Gomez, Rodriguez-Vazquez, Barrera-Cortes (bib23) 2007; 54
Young, Lin, Yeh, Shen, Chang (bib35) 2005; 21
Wang, Nomura, Nakajima, Uchiyama (bib16) 2012; 113
Meyer, Beker, Buecker, Peralba, Frazzon, Osti, Andreazza, Camargo, Bento (bib1) 2014; 95
Whang, Liu, Ma, Cheng (bib6) 2008; 151
Dong, Kong, Wang, Huang (bib49) 2014; 69
Liu, Chang, Chen, Wang, Hsu (bib40) 2013; 85
Liu, Wang, Huang, Wang (bib45) 2012; 33
Bremner (bib30) 1996
Howard, Howard (bib32) 1990; 9
Environmental Protection Agency (bib44) 1996
Wieczorek, Marchut-Mikołajczyk, Antczak (bib9) 2015; 4
Jung, Sohn, Neppolian, Choi (bib56) 2008; 150
Kasel, Bennett, Tibbits (bib46) 2008; 40
Gallego, Loredo, Llamas, Vazquez, Sanchez (bib43) 2001; 12
Liu, Chang, Chen, Wang, Hsu (bib39) 2014; 95
Tachibana (bib20) 2012; 5
Chaineau, Morel, Dupont, Bury, Oudot (bib17) 1999; 227
Lin, Chang, Young (bib34) 2008; 30
Mancera-Lopez, Esparza-Garcia, Chavez-Gomez, Rodriguez-Vazquez, Saucedo-Castaneda, Barrera-Cortes (bib22) 2008; 61
Oudot, Merlin, Pinvidic (bib25) 1998; 45
Chiou, Porter, Shoup (bib38) 1984; 18
Sharma, Kumar, Rehman (bib8) 2014; 2
Saisriyoot, Sahaya, Thanapimmetha, Chisti, Srinophakun (bib62) 2016; 8
Reyes-Cesar, Absalon, Fernandez, Gonzalez, Cortes-Espinosa (bib67) 2014; 30
Kang, Kim, Koga (bib63) 1997; 18
Marchand, St-Arnaud, Hogland, Bell, Hijri (bib19) 2017; 116
Ahmed, Thiele-Bruhn, Aziz, Hilal, Elroby, Al-Youbi, Leinweber, Kuhn (bib53) 2015; 508
Hsiao, Huang, Bouchara, Barton, Li, Chang (bib37) 2005; 43
Machnikowska, Pawelec, Podgorska (bib58) 2002; 77
Xu, Lu (bib3) 2010; 183
Peck (bib68) 2010
Shintani, Sugiyama, Sakurai, Yamada, Kimbara (bib7) 2019; 127
Wang, Liu, Lu, Zhao, Xu, Cui (bib11) 2012; 116
(bib31) 2003
Chiou, Shoup, Porter (bib41) 1985; 8
Vila, Nieto, Mertens, Springael, Grifoll (bib52) 2010; 73
Serrano, Gallego, Gonzalez, Tejada (bib54) 2008; 151
Abbasian, Lockington, Mallavarapu, Naidu (bib15) 2015; 176
Llado, Solanas, de Lapuente, Borras, Vinas (bib18) 2012; 435–436
Ghazali, Rahman, Salleh, Basri (bib55) 2004; 54
Biache, Faure, Mansuy-Huault, Cebron, Beguiristain, Leyval (bib57) 2013; 56
Wittich (bib28) 1998
Kwapisz, Wszelaka, Marchut, Bielecki (bib59) 2008; 61
Chaineau, Rougeux, Yepremian, Oudot (bib21) 2005; 37
Kang, Park, Jung, Park (bib24) 2009; 19
Uzura, Katsuragi, Tani (bib13) 2001; 91
Marco-Urrea, Garcia-Romera, Aranda (bib66) 2015; 32
Lee, Nam, Kim, Zhang, Jeong, Baek, Kwon (bib5) 2018; 28
Liu, Chang, Whang, Kao, Pan, Cheng (bib2) 2011; 65
Gardner (bib42) 1986; vol. 1
Deshmukh, Khardenavis, Purohit (bib4) 2016; 56
Lin, Young, Ho, Yeh, Chou, Wei, Chang (bib33) 2005; 99
Sugimori, Utsue (bib65) 2012; 28
Tang, Zhu, Kookana, Katayama (bib26) 2013; 116
Dudasova, Lukacova, Murinova, Dercova (bib50) 2012; 69
Wu, Jiang, Cai, Rong, Dai, Liang, Huang (bib64) 2012; 12
Liu, Whang, Chang, Tseng, Pan, Cheng (bib36) 2009; 84
Lee, Kim, Kwon, Park, Kim, Goodfellow, Lee (bib12) 2005; 100
Kwapisz (10.1016/j.jbiosc.2019.12.001_bib59) 2008; 61
Lin (10.1016/j.jbiosc.2019.12.001_bib34) 2008; 30
Wang (10.1016/j.jbiosc.2019.12.001_bib11) 2012; 116
Abbasian (10.1016/j.jbiosc.2019.12.001_bib15) 2015; 176
Mancera-Lopez (10.1016/j.jbiosc.2019.12.001_bib23) 2007; 54
Bremner (10.1016/j.jbiosc.2019.12.001_bib30) 1996
Machnikowska (10.1016/j.jbiosc.2019.12.001_bib58) 2002; 77
Llado (10.1016/j.jbiosc.2019.12.001_bib18) 2012; 435–436
Deshmukh (10.1016/j.jbiosc.2019.12.001_bib4) 2016; 56
Gardner (10.1016/j.jbiosc.2019.12.001_bib42) 1986; vol. 1
Saisriyoot (10.1016/j.jbiosc.2019.12.001_bib62) 2016; 8
Uzura (10.1016/j.jbiosc.2019.12.001_bib13) 2001; 91
Chung (10.1016/j.jbiosc.2019.12.001_bib29) 1998; 32
Liu (10.1016/j.jbiosc.2019.12.001_bib2) 2011; 65
Langenheim (10.1016/j.jbiosc.2019.12.001_bib48) 1994; 20
Dudasova (10.1016/j.jbiosc.2019.12.001_bib51) 2014; 54
Serrano (10.1016/j.jbiosc.2019.12.001_bib54) 2008; 151
Gallego (10.1016/j.jbiosc.2019.12.001_bib43) 2001; 12
Peck (10.1016/j.jbiosc.2019.12.001_bib68) 2010
Shintani (10.1016/j.jbiosc.2019.12.001_bib7) 2019; 127
Environmental Protection Agency (10.1016/j.jbiosc.2019.12.001_bib44) 1996
Hsiao (10.1016/j.jbiosc.2019.12.001_bib37) 2005; 43
Lee (10.1016/j.jbiosc.2019.12.001_bib12) 2005; 100
Lin (10.1016/j.jbiosc.2019.12.001_bib60) 2012; 167
Lin (10.1016/j.jbiosc.2019.12.001_bib33) 2005; 99
Reyes-Cesar (10.1016/j.jbiosc.2019.12.001_bib67) 2014; 30
Howard (10.1016/j.jbiosc.2019.12.001_bib32) 1990; 9
Whang (10.1016/j.jbiosc.2019.12.001_bib6) 2008; 151
Wittich (10.1016/j.jbiosc.2019.12.001_bib28) 1998
Wu (10.1016/j.jbiosc.2019.12.001_bib64) 2012; 12
Adamczyk (10.1016/j.jbiosc.2019.12.001_bib47) 2013; 67
Dudasova (10.1016/j.jbiosc.2019.12.001_bib50) 2012; 69
Xu (10.1016/j.jbiosc.2019.12.001_bib3) 2010; 183
Biache (10.1016/j.jbiosc.2019.12.001_bib57) 2013; 56
Liu (10.1016/j.jbiosc.2019.12.001_bib36) 2009; 84
Laorrattanasak (10.1016/j.jbiosc.2019.12.001_bib61) 2016; 227
Chen (10.1016/j.jbiosc.2019.12.001_bib27) 2019; 233
Liu (10.1016/j.jbiosc.2019.12.001_bib45) 2012; 33
Vinas (10.1016/j.jbiosc.2019.12.001_bib14) 2002; 28
Chaineau (10.1016/j.jbiosc.2019.12.001_bib17) 1999; 227
Kang (10.1016/j.jbiosc.2019.12.001_bib24) 2009; 19
Meyer (10.1016/j.jbiosc.2019.12.001_bib1) 2014; 95
Tachibana (10.1016/j.jbiosc.2019.12.001_bib20) 2012; 5
Ahmed (10.1016/j.jbiosc.2019.12.001_bib53) 2015; 508
(10.1016/j.jbiosc.2019.12.001_bib31) 2003
Oudot (10.1016/j.jbiosc.2019.12.001_bib25) 1998; 45
Tang (10.1016/j.jbiosc.2019.12.001_bib26) 2013; 116
Ghazali (10.1016/j.jbiosc.2019.12.001_bib55) 2004; 54
Marco-Urrea (10.1016/j.jbiosc.2019.12.001_bib66) 2015; 32
Chiou (10.1016/j.jbiosc.2019.12.001_bib38) 1984; 18
Lee (10.1016/j.jbiosc.2019.12.001_bib5) 2018; 28
Marchand (10.1016/j.jbiosc.2019.12.001_bib19) 2017; 116
Sharma (10.1016/j.jbiosc.2019.12.001_bib8) 2014; 2
Wang (10.1016/j.jbiosc.2019.12.001_bib16) 2012; 113
Young (10.1016/j.jbiosc.2019.12.001_bib35) 2005; 21
Chiou (10.1016/j.jbiosc.2019.12.001_bib41) 1985; 8
Kasel (10.1016/j.jbiosc.2019.12.001_bib46) 2008; 40
Chen (10.1016/j.jbiosc.2019.12.001_bib10) 2017; 124
Liu (10.1016/j.jbiosc.2019.12.001_bib39) 2014; 95
Mancera-Lopez (10.1016/j.jbiosc.2019.12.001_bib22) 2008; 61
Jung (10.1016/j.jbiosc.2019.12.001_bib56) 2008; 150
Chaineau (10.1016/j.jbiosc.2019.12.001_bib21) 2005; 37
Vila (10.1016/j.jbiosc.2019.12.001_bib52) 2010; 73
Kang (10.1016/j.jbiosc.2019.12.001_bib63) 1997; 18
Sugimori (10.1016/j.jbiosc.2019.12.001_bib65) 2012; 28
Liu (10.1016/j.jbiosc.2019.12.001_bib40) 2013; 85
Dong (10.1016/j.jbiosc.2019.12.001_bib49) 2014; 69
Wieczorek (10.1016/j.jbiosc.2019.12.001_bib9) 2015; 4
References_xml – volume: 20
  start-page: 1223
  year: 1994
  end-page: 1280
  ident: bib48
  article-title: Higher-plant terpenoids - a phytocentric overview of their ecological roles
  publication-title: J. Chem. Ecol.
– start-page: 84
  year: 2010
  end-page: 92
  ident: bib68
  article-title: Nonmetric multidimensional scaling (NMS)
  publication-title: Multivariate analysis for community ecologists: step-by-step using PC-ORD. MjM Software Design, Gleneden Beach
– volume: 30
  start-page: 1201
  year: 2008
  end-page: 1206
  ident: bib34
  article-title: Exopolysaccharides produced by
  publication-title: Biotechnol. Lett.
– volume: 43
  start-page: 3760
  year: 2005
  end-page: 3768
  ident: bib37
  article-title: Identification of medically important molds by an oligonucleotide array
  publication-title: J. Clin. Microbiol.
– volume: 127
  start-page: 197
  year: 2019
  end-page: 200
  ident: bib7
  article-title: Biodegradation of A-fuel oil in soil samples with bacterial mixtures of
  publication-title: J. Biosci. Bioeng.
– volume: 67
  start-page: 47
  year: 2013
  end-page: 52
  ident: bib47
  article-title: Potential response of soil processes to diterpenes, triterpenes and tannins: nitrification, growth of microorganisms and precipitation of proteins
  publication-title: Appl. Soil Ecol.
– volume: 69
  start-page: 275
  year: 2014
  end-page: 281
  ident: bib49
  article-title: Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem
  publication-title: Soil Biol. Biochem.
– volume: 37
  start-page: 1490
  year: 2005
  end-page: 1497
  ident: bib21
  article-title: Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil
  publication-title: Soil Biol. Biochem.
– volume: 61
  start-page: 151
  year: 2008
  end-page: 160
  ident: bib22
  article-title: Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi
  publication-title: Int. Biodeterior. Biodegradation
– volume: 19
  start-page: 1672
  year: 2009
  end-page: 1678
  ident: bib24
  article-title: Inhibitory effect of aged petroleum hydrocarbons on the survival of inoculated microorganism in a crude-oil-contaminated site
  publication-title: J. Microbiol. Biotechnol.
– volume: 227
  start-page: 325
  year: 2016
  ident: bib61
  article-title: Production and application of
  publication-title: Water, Air, Soil Pollut.
– volume: 28
  start-page: 367
  year: 2018
  end-page: 373
  ident: bib5
  article-title: The enhanced thermolysis of heavy oil contaminated soil using CO
  publication-title: J. CO
– volume: 18
  start-page: 295
  year: 1984
  end-page: 297
  ident: bib38
  article-title: Partition equilibria of nonionic organic-compounds between soil organic-matter and water
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 1119
  year: 2011
  end-page: 1127
  ident: bib2
  article-title: Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift
  publication-title: Int. Biodeterior. Biodegradation
– volume: 100
  start-page: 429
  year: 2005
  end-page: 436
  ident: bib12
  article-title: Effect of the synthesized mycolic acid on the biodegradation of diesel oil by
  publication-title: J. Biosci. Bioeng.
– volume: 33
  start-page: 2661
  year: 2012
  end-page: 2672
  ident: bib45
  article-title: Effects of soil organic matter and ageing on remediation of diesel-contaminated soil
  publication-title: Environ. Technol.
– volume: 84
  start-page: 808
  year: 2009
  end-page: 819
  ident: bib36
  article-title: Verification of necessity for bioaugmentation — lessons from two batch case studies for bioremediation of diesel-contaminated soils
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 69
  start-page: 23
  year: 2012
  end-page: 27
  ident: bib50
  article-title: Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs)
  publication-title: Int. Biodeterior. Biodegradation
– volume: 167
  start-page: 395
  year: 2012
  end-page: 404
  ident: bib60
  article-title: Characterization of
  publication-title: Microbiol. Res.
– volume: 28
  start-page: 841
  year: 2012
  end-page: 848
  ident: bib65
  article-title: A study of the efficiency of edible oils degraded in alkaline conditions by
  publication-title: World J. Microbiol. Biotechnol.
– volume: 9
  start-page: 306
  year: 1990
  end-page: 310
  ident: bib32
  article-title: Use of organic-carbon and loss-on-ignition to estimate soil organic-matter in different soil types and horizons
  publication-title: Biol. Fertil. Soils
– volume: 124
  start-page: 62
  year: 2017
  end-page: 72
  ident: bib10
  article-title: Immobilization of of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater
  publication-title: Int. Biodeterior. Biodegradation
– volume: 99
  start-page: 466
  year: 2005
  end-page: 472
  ident: bib33
  article-title: Characterization of floating activity of indigenous diesel-assimilating bacterial isolates
  publication-title: J. Biosci. Bioeng.
– year: 1996
  ident: bib44
  article-title: Ultrasonic extraction
  publication-title: Test methods for evaluating solid waste physical/chemical methods. Method 3550 B, 2nd revision
– volume: 61
  start-page: 214
  year: 2008
  end-page: 222
  ident: bib59
  article-title: The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by
  publication-title: Int. Biodeterior. Biodegradation
– volume: 12
  start-page: 325
  year: 2001
  end-page: 335
  ident: bib43
  article-title: Bioremediation of diesel-contaminated soils: evaluation of potential
  publication-title: Biodegradation
– volume: 73
  start-page: 349
  year: 2010
  end-page: 362
  ident: bib52
  article-title: Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization
  publication-title: FEMS Microbiol. Ecol.
– volume: 233
  start-page: 843
  year: 2019
  end-page: 851
  ident: bib27
  article-title: Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments
  publication-title: Chemosphere
– volume: 21
  start-page: 1409
  year: 2005
  end-page: 1414
  ident: bib35
  article-title: Identification and kinetic characteristics of an indigenous diesel-degrading
  publication-title: World J. Microbiol. Biotechnol.
– volume: 113
  start-page: 624
  year: 2012
  end-page: 630
  ident: bib16
  article-title: Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation
  publication-title: J. Biosci. Bioeng.
– volume: 32
  start-page: 855
  year: 1998
  end-page: 860
  ident: bib29
  article-title: Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils
  publication-title: Environ. Sci. Technol.
– volume: 151
  start-page: 494
  year: 2008
  end-page: 502
  ident: bib54
  article-title: Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil
  publication-title: Environ. Pollut.
– start-page: 249
  year: 1998
  ident: bib28
  article-title: Biodegradation of dioxins and furans
  publication-title: Biodegradation of diaryl ether pesticides
– start-page: 1085
  year: 1996
  end-page: 1122
  ident: bib30
  article-title: Nitrogen total
  publication-title: Nitrogen total
– volume: 85
  start-page: 661
  year: 2013
  end-page: 670
  ident: bib40
  article-title: Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil
  publication-title: Int. Biodeterior. Biodegradation
– volume: 227
  start-page: 237
  year: 1999
  end-page: 247
  ident: bib17
  article-title: Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil
  publication-title: Sci. Total Environ.
– volume: 183
  start-page: 395
  year: 2010
  end-page: 401
  ident: bib3
  article-title: Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 247
  year: 2016
  end-page: 264
  ident: bib4
  article-title: Diverse metabolic capacities of fungi for bioremediation
  publication-title: Indian J. Microbiol.
– volume: 5
  start-page: 64
  year: 2012
  end-page: 73
  ident: bib20
  article-title: Biodegradation of aliphatic hydrocarbon in three types of crude oil by
  publication-title: J. Environ. Sci. Technol.
– volume: 116
  start-page: 48
  year: 2017
  end-page: 57
  ident: bib19
  article-title: Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil
  publication-title: Int. Biodeterior. Biodegradation
– volume: 2
  start-page: 202
  year: 2014
  end-page: 212
  ident: bib8
  article-title: Biodegradation of diesel hydrocarbon in soil by bioaugmentation of
  publication-title: Int. J. Environ. Biorem. Biodegradation
– volume: 176
  start-page: 670
  year: 2015
  end-page: 699
  ident: bib15
  article-title: A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria
  publication-title: Appl. Biochem. Biotechnol.
– volume: 150
  start-page: 809
  year: 2008
  end-page: 817
  ident: bib56
  article-title: Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 10
  year: 2013
  end-page: 18
  ident: bib57
  article-title: Biodegradation of the organic matter in a coking plant soil and its main constituents
  publication-title: Org. Geochem.
– volume: 116
  start-page: 653
  year: 2013
  end-page: 659
  ident: bib26
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
– volume: vol. 1
  year: 1986
  ident: bib42
  article-title: Water content
  publication-title: Methods of soil analysis, pp. 503-507, part 1: physical and mineralogical methods
– volume: 116
  start-page: 80
  year: 2012
  end-page: 85
  ident: bib11
  article-title: Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal
  publication-title: Bioresour. Technol.
– year: 2003
  ident: bib31
  article-title: Soil quality extraction of trace metals soluble in Aqua Regia
– volume: 54
  start-page: 201
  year: 2007
  end-page: 209
  ident: bib23
  article-title: Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation
  publication-title: Acta Chim. Slov.
– volume: 40
  start-page: 1724
  year: 2008
  end-page: 1732
  ident: bib46
  article-title: Land use influences soil fungal community composition across central Victoria, south-eastern Australia
  publication-title: Soil Biol. Biochem.
– volume: 508
  start-page: 276
  year: 2015
  end-page: 287
  ident: bib53
  article-title: Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation
  publication-title: Sci. Total Environ.
– volume: 95
  start-page: 356
  year: 2014
  end-page: 363
  ident: bib1
  article-title: Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil
  publication-title: Int. Biodeterior. Biodegradation
– volume: 91
  start-page: 217
  year: 2001
  end-page: 221
  ident: bib13
  article-title: Stereoselective oxidation of alkylbenzenes by fungi
  publication-title: J. Biosci. Bioeng.
– volume: 28
  start-page: 252
  year: 2002
  end-page: 260
  ident: bib14
  article-title: Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 77
  start-page: 17
  year: 2002
  end-page: 23
  ident: bib58
  article-title: Microbial degradation of low rank coals
  publication-title: Fuel Process. Technol.
– volume: 18
  start-page: 521
  year: 1997
  end-page: 534
  ident: bib63
  article-title: Determination of assimilable organic carbon (AOC) in ozonated water with Acinetobacter calcoaceticus
  publication-title: Ozone: Sci. Eng.
– volume: 45
  start-page: 113
  year: 1998
  end-page: 125
  ident: bib25
  article-title: Weathering rates of oil components in a bioremediation experiment in estuarine sediments
  publication-title: Mar. Environ. Res.
– volume: 4
  start-page: 293
  year: 2015
  end-page: 306
  ident: bib9
  article-title: Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil
  publication-title: Biotechnologia
– volume: 435–436
  start-page: 262
  year: 2012
  end-page: 269
  ident: bib18
  article-title: A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 999
  year: 2014
  end-page: 1009
  ident: bib67
  article-title: Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil
  publication-title: World J. Microbiol. Biotechnol.
– volume: 12
  start-page: 143
  year: 2012
  end-page: 149
  ident: bib64
  article-title: Adsorption of
  publication-title: J. Soils Sediments
– volume: 54
  start-page: 61
  year: 2004
  end-page: 67
  ident: bib55
  article-title: Biodegradation of hydrocarbons in soil by microbial consortium
  publication-title: Int. Biodeterior. Biodegradation
– volume: 8
  year: 2016
  ident: bib62
  article-title: Production of potential fuel oils by
  publication-title: J. Renew. Sustain. Energy
– volume: 151
  start-page: 155
  year: 2008
  end-page: 163
  ident: bib6
  article-title: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 9
  year: 1985
  end-page: 14
  ident: bib41
  article-title: Mechanistic roles of soil humus and minerals in the sorption of nonionic organic-compounds from aqueous and organic solutions
  publication-title: Org. Geochem.
– volume: 95
  start-page: 276
  year: 2014
  end-page: 284
  ident: bib39
  article-title: Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils
  publication-title: Int. Biodeterior. Biodegradation
– volume: 54
  start-page: 253
  year: 2014
  end-page: 260
  ident: bib51
  article-title: Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms
  publication-title: J. Basic Microbiol.
– volume: 32
  start-page: 620
  year: 2015
  end-page: 628
  ident: bib66
  article-title: Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons
  publication-title: N. Biotech.
– volume: 77
  start-page: 17
  year: 2002
  ident: 10.1016/j.jbiosc.2019.12.001_bib58
  article-title: Microbial degradation of low rank coals
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(02)00064-4
– volume: 69
  start-page: 23
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib50
  article-title: Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs)
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2012.01.003
– volume: 20
  start-page: 1223
  year: 1994
  ident: 10.1016/j.jbiosc.2019.12.001_bib48
  article-title: Higher-plant terpenoids - a phytocentric overview of their ecological roles
  publication-title: J. Chem. Ecol.
  doi: 10.1007/BF02059809
– volume: 100
  start-page: 429
  year: 2005
  ident: 10.1016/j.jbiosc.2019.12.001_bib12
  article-title: Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.100.429
– volume: 116
  start-page: 48
  year: 2017
  ident: 10.1016/j.jbiosc.2019.12.001_bib19
  article-title: Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2016.09.030
– volume: 56
  start-page: 247
  year: 2016
  ident: 10.1016/j.jbiosc.2019.12.001_bib4
  article-title: Diverse metabolic capacities of fungi for bioremediation
  publication-title: Indian J. Microbiol.
  doi: 10.1007/s12088-016-0584-6
– start-page: 1085
  year: 1996
  ident: 10.1016/j.jbiosc.2019.12.001_bib30
  article-title: Nitrogen total
– volume: 21
  start-page: 1409
  year: 2005
  ident: 10.1016/j.jbiosc.2019.12.001_bib35
  article-title: Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-005-5742-7
– volume: 28
  start-page: 841
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib65
  article-title: A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-011-0880-6
– volume: 233
  start-page: 843
  year: 2019
  ident: 10.1016/j.jbiosc.2019.12.001_bib27
  article-title: Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.202
– volume: vol. 1
  year: 1986
  ident: 10.1016/j.jbiosc.2019.12.001_bib42
  article-title: Water content
– volume: 99
  start-page: 466
  year: 2005
  ident: 10.1016/j.jbiosc.2019.12.001_bib33
  article-title: Characterization of floating activity of indigenous diesel-assimilating bacterial isolates
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.99.466
– volume: 8
  year: 2016
  ident: 10.1016/j.jbiosc.2019.12.001_bib62
  article-title: Production of potential fuel oils by Rhodococcus opacus grown on petroleum processing wastewaters
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4971875
– volume: 116
  start-page: 80
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib11
  article-title: Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.021
– volume: 12
  start-page: 325
  year: 2001
  ident: 10.1016/j.jbiosc.2019.12.001_bib43
  article-title: Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation
  publication-title: Biodegradation
  doi: 10.1023/A:1014397732435
– volume: 113
  start-page: 624
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib16
  article-title: Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2012.01.005
– volume: 45
  start-page: 113
  year: 1998
  ident: 10.1016/j.jbiosc.2019.12.001_bib25
  article-title: Weathering rates of oil components in a bioremediation experiment in estuarine sediments
  publication-title: Mar. Environ. Res.
  doi: 10.1016/S0141-1136(97)00024-X
– volume: 167
  start-page: 395
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib60
  article-title: Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2011.12.002
– volume: 151
  start-page: 155
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib6
  article-title: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.05.063
– volume: 2
  start-page: 202
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib8
  article-title: Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: a laboratory scale study
  publication-title: Int. J. Environ. Biorem. Biodegradation
– volume: 18
  start-page: 295
  year: 1984
  ident: 10.1016/j.jbiosc.2019.12.001_bib38
  article-title: Partition equilibria of nonionic organic-compounds between soil organic-matter and water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00122a018
– year: 1996
  ident: 10.1016/j.jbiosc.2019.12.001_bib44
  article-title: Ultrasonic extraction
– volume: 176
  start-page: 670
  year: 2015
  ident: 10.1016/j.jbiosc.2019.12.001_bib15
  article-title: A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-015-1603-5
– volume: 227
  start-page: 237
  year: 1999
  ident: 10.1016/j.jbiosc.2019.12.001_bib17
  article-title: Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(99)00033-9
– volume: 54
  start-page: 253
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib51
  article-title: Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201200369
– volume: 18
  start-page: 521
  year: 1997
  ident: 10.1016/j.jbiosc.2019.12.001_bib63
  article-title: Determination of assimilable organic carbon (AOC) in ozonated water with Acinetobacter calcoaceticus
  publication-title: Ozone: Sci. Eng.
  doi: 10.1080/01919512.1997.10382861
– volume: 85
  start-page: 661
  year: 2013
  ident: 10.1016/j.jbiosc.2019.12.001_bib40
  article-title: Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2013.01.010
– volume: 150
  start-page: 809
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib56
  article-title: Effect of soil organic matter (SOM) and soil texture on the fatality of indigenous microorganisms in intergrated ozonation and biodegradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.05.032
– start-page: 84
  year: 2010
  ident: 10.1016/j.jbiosc.2019.12.001_bib68
  article-title: Nonmetric multidimensional scaling (NMS)
– volume: 54
  start-page: 201
  year: 2007
  ident: 10.1016/j.jbiosc.2019.12.001_bib23
  article-title: Fungi and bacteria isolated from two highly polluted soils for hydrocarbon degradation
  publication-title: Acta Chim. Slov.
– volume: 43
  start-page: 3760
  year: 2005
  ident: 10.1016/j.jbiosc.2019.12.001_bib37
  article-title: Identification of medically important molds by an oligonucleotide array
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.43.8.3760-3768.2005
– volume: 95
  start-page: 276
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib39
  article-title: Bioaugmentation efficiency investigation on soil organic matters and microbial community shift of diesel-contaminated soils
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2014.05.004
– volume: 84
  start-page: 808
  year: 2009
  ident: 10.1016/j.jbiosc.2019.12.001_bib36
  article-title: Verification of necessity for bioaugmentation — lessons from two batch case studies for bioremediation of diesel-contaminated soils
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.2153
– volume: 5
  start-page: 64
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib20
  article-title: Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water
  publication-title: J. Environ. Sci. Technol.
– volume: 28
  start-page: 367
  year: 2018
  ident: 10.1016/j.jbiosc.2019.12.001_bib5
  article-title: The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.10.017
– volume: 227
  start-page: 325
  year: 2016
  ident: 10.1016/j.jbiosc.2019.12.001_bib61
  article-title: Production and application of Gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-016-3031-8
– volume: 116
  start-page: 653
  year: 2013
  ident: 10.1016/j.jbiosc.2019.12.001_bib26
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2013.05.035
– volume: 8
  start-page: 9
  year: 1985
  ident: 10.1016/j.jbiosc.2019.12.001_bib41
  article-title: Mechanistic roles of soil humus and minerals in the sorption of nonionic organic-compounds from aqueous and organic solutions
  publication-title: Org. Geochem.
  doi: 10.1016/0146-6380(85)90045-2
– volume: 40
  start-page: 1724
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib46
  article-title: Land use influences soil fungal community composition across central Victoria, south-eastern Australia
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.02.011
– volume: 91
  start-page: 217
  year: 2001
  ident: 10.1016/j.jbiosc.2019.12.001_bib13
  article-title: Stereoselective oxidation of alkylbenzenes by fungi
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/S1389-1723(01)80069-4
– volume: 435–436
  start-page: 262
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib18
  article-title: A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.07.032
– volume: 69
  start-page: 275
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib49
  article-title: Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.11.016
– volume: 32
  start-page: 620
  year: 2015
  ident: 10.1016/j.jbiosc.2019.12.001_bib66
  article-title: Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons
  publication-title: N. Biotech.
  doi: 10.1016/j.nbt.2015.01.005
– start-page: 249
  year: 1998
  ident: 10.1016/j.jbiosc.2019.12.001_bib28
  article-title: Biodegradation of dioxins and furans
– volume: 28
  start-page: 252
  year: 2002
  ident: 10.1016/j.jbiosc.2019.12.001_bib14
  article-title: Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.7000236
– volume: 65
  start-page: 1119
  year: 2011
  ident: 10.1016/j.jbiosc.2019.12.001_bib2
  article-title: Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2011.09.002
– volume: 73
  start-page: 349
  year: 2010
  ident: 10.1016/j.jbiosc.2019.12.001_bib52
  article-title: Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization
  publication-title: FEMS Microbiol. Ecol.
– volume: 54
  start-page: 61
  year: 2004
  ident: 10.1016/j.jbiosc.2019.12.001_bib55
  article-title: Biodegradation of hydrocarbons in soil by microbial consortium
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2004.02.002
– volume: 127
  start-page: 197
  year: 2019
  ident: 10.1016/j.jbiosc.2019.12.001_bib7
  article-title: Biodegradation of A-fuel oil in soil samples with bacterial mixtures of Rhodococcus and Gordonia strains under low temperature conditions
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2018.07.018
– volume: 9
  start-page: 306
  year: 1990
  ident: 10.1016/j.jbiosc.2019.12.001_bib32
  article-title: Use of organic-carbon and loss-on-ignition to estimate soil organic-matter in different soil types and horizons
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00634106
– volume: 151
  start-page: 494
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib54
  article-title: Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.04.015
– volume: 33
  start-page: 2661
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib45
  article-title: Effects of soil organic matter and ageing on remediation of diesel-contaminated soil
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2012.673017
– volume: 37
  start-page: 1490
  year: 2005
  ident: 10.1016/j.jbiosc.2019.12.001_bib21
  article-title: Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.01.012
– volume: 56
  start-page: 10
  year: 2013
  ident: 10.1016/j.jbiosc.2019.12.001_bib57
  article-title: Biodegradation of the organic matter in a coking plant soil and its main constituents
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2012.12.002
– volume: 61
  start-page: 214
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib59
  article-title: The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2007.08.002
– volume: 12
  start-page: 143
  year: 2012
  ident: 10.1016/j.jbiosc.2019.12.001_bib64
  article-title: Adsorption of Pseudomonas putida on soil particle size fractions: effects of solution chemistry and organic matter
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-011-0441-5
– volume: 183
  start-page: 395
  year: 2010
  ident: 10.1016/j.jbiosc.2019.12.001_bib3
  article-title: Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.038
– year: 2003
  ident: 10.1016/j.jbiosc.2019.12.001_bib31
– volume: 32
  start-page: 855
  year: 1998
  ident: 10.1016/j.jbiosc.2019.12.001_bib29
  article-title: Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970740g
– volume: 67
  start-page: 47
  year: 2013
  ident: 10.1016/j.jbiosc.2019.12.001_bib47
  article-title: Potential response of soil processes to diterpenes, triterpenes and tannins: nitrification, growth of microorganisms and precipitation of proteins
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.02.009
– volume: 19
  start-page: 1672
  year: 2009
  ident: 10.1016/j.jbiosc.2019.12.001_bib24
  article-title: Inhibitory effect of aged petroleum hydrocarbons on the survival of inoculated microorganism in a crude-oil-contaminated site
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.0903.03001
– volume: 61
  start-page: 151
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib22
  article-title: Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2007.05.012
– volume: 508
  start-page: 276
  year: 2015
  ident: 10.1016/j.jbiosc.2019.12.001_bib53
  article-title: Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.087
– volume: 30
  start-page: 999
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib67
  article-title: Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-013-1518-7
– volume: 30
  start-page: 1201
  year: 2008
  ident: 10.1016/j.jbiosc.2019.12.001_bib34
  article-title: Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-008-9667-8
– volume: 4
  start-page: 293
  year: 2015
  ident: 10.1016/j.jbiosc.2019.12.001_bib9
  article-title: Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil
  publication-title: Biotechnologia
– volume: 95
  start-page: 356
  year: 2014
  ident: 10.1016/j.jbiosc.2019.12.001_bib1
  article-title: Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2014.01.026
– volume: 124
  start-page: 62
  year: 2017
  ident: 10.1016/j.jbiosc.2019.12.001_bib10
  article-title: Immobilization of of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2017.07.001
SSID ssj0017071
Score 2.457774
Snippet The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH)....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 603
SubjectTerms Aspergillus versicolor
bacteria
biodegradation
Diesel
DNA microarrays
Fuel oil
fuel oils
fungi
Fusarium oxysporum
Hydrocarbon fractional analysis
hydrocarbons
Internal transcribed spacer microarray
internal transcribed spacers
microbial communities
multidimensional scaling
petroleum
plate count
polluted soils
remediation
restriction fragment length polymorphism
Soil organic matter
Soil total petroleum hydrocarbons contamination
Terminal restriction fragment length polymorphism analysis
Title Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil
URI https://dx.doi.org/10.1016/j.jbiosc.2019.12.001
https://www.ncbi.nlm.nih.gov/pubmed/31992527
https://www.proquest.com/docview/2348221873
https://www.proquest.com/docview/2400526341
Volume 129
WOSCitedRecordID wos000614229200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1347-4421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017071
  issn: 1389-1723
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdJP2Mu2-7FJ50t4qbwQHbB6jqbtUXbWHTkmfEBg7JaJQJaFq_9d-4I4vENoq7fqwFxQQHCDn4_iz_Z1jhD6mLAiyUOnoRwMyUklCIsFT4vnCF0yFYSpMdf0DdnjIp9PoV6_3p8mFOS9YWfKLi-jsv7oajoGzdersPdzdGoUD8BucDltwO2z_yfGuHjGQwGWVF27ZJrF7agpp6rkB4MlaU1if7p5cZtB-JYu00pLY2SKxCywZhayuHlHop6glGMkLokXtiRbOaI6qTW_gtWleNblCelAeduW65uFaTWDD3XFdknGLz2-LRGcY5bXlthWZrBPVJs3I9gEAekZ-doxNzPnHOdmvu4MYvreWDLq4C7yJAJeiVwKzGwvJu3PfJsyGHu202KEVYt9oDOy4xPzT3Ly4lvFFZujX3fhK7e1rbWKrVGxEcPPYWom1lXjoay3gFtr2WRDxPtoe_9ib7rezV8xzHX33Uk3KptEV3nyaTZRoU5fHUJ-jJ-ix8y0eW6w9RT1ZPkMP7Sqml8_RzCIOVwprWGCHOGwRh6sSt4jDHcThDuJwDrsGcZ813vB1vBnDL9Dvr3tHX74Tt34HEdAsrEiqoDOkVMSCMFNJ6nHJIMgrRrnymApUyoRPR5mngGIOIykpG4Er_aHgQijOEvoS9cuqlK8RjuSQCS4VzYbpKFM8TZMo4zyROnE7pNkA0eYvjIUrbq_XWCni2xw4QKS96swWd7njfNZ4J3ZfkiWeMUDujis_NM6MIX7rSbmklFW9jH1dXQp4NqO3nDMyZZmAcA7QK4uE9nmp1o8HPntzz3d5ix6tP8R3qL9a1PI9eiDOV_lysYO22JTvOFz_Be_K2K8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+soil+organic+matter+on+petroleum+hydrocarbon+degradation+in+diesel%2Ffuel+oil-contaminated+soil&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Chen%2C+Yun-An&rft.au=Grace+Liu%2C+Pao-Wen&rft.au=Whang%2C+Liang-Ming&rft.au=Wu%2C+Yi-Ju&rft.date=2020-05-01&rft.issn=1389-1723&rft.volume=129&rft.issue=5&rft.spage=603&rft.epage=612&rft_id=info:doi/10.1016%2Fj.jbiosc.2019.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiosc_2019_12_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon