Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective

The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and...

Full description

Saved in:
Bibliographic Details
Published in:Cogent engineering Vol. 9; no. 1
Main Authors: Mohammed, Sarah J., Zubaidi, Salah L., Ortega-Martorell, Sandra, Al-Ansari, Nadhir, Ethaib, Saleem, Hashim, Khalid
Format: Journal Article
Language:English
Published: Abingdon Cogent 31.12.2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects:
ISSN:2331-1916, 2331-1916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models' concepts and historical uses would be beneficial in preventing researchers from overlooking models' potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the "state of the art" on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed.
AbstractList The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models' concepts and historical uses would be beneficial in preventing researchers from overlooking models' potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the "state of the art" on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed.
Author Ortega-Martorell, Sandra
Zubaidi, Salah L.
Mohammed, Sarah J.
Ethaib, Saleem
Hashim, Khalid
Al-Ansari, Nadhir
Author_xml – sequence: 1
  givenname: Sarah J.
  surname: Mohammed
  fullname: Mohammed, Sarah J.
  organization: Wasit University
– sequence: 2
  givenname: Salah L.
  surname: Zubaidi
  fullname: Zubaidi, Salah L.
  organization: University of Warith Al-Anbiyaa
– sequence: 3
  givenname: Sandra
  surname: Ortega-Martorell
  fullname: Ortega-Martorell, Sandra
  organization: Liverpool John Moores University
– sequence: 4
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
  email: nadhir.alansari@ltu.se
  organization: Lulea University of Technology
– sequence: 5
  givenname: Saleem
  surname: Ethaib
  fullname: Ethaib, Saleem
  organization: University of Thi-Qar
– sequence: 6
  givenname: Khalid
  surname: Hashim
  fullname: Hashim, Khalid
  organization: Babylon University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-94102$$DView record from Swedish Publication Index
BookMark eNqFkt-K1DAUxous4LruIwgBb-2YpG0m1RuH9d_CgiDqbThNTnYydJKapDvMW_jIttNdUC_0Ksk53_fjJPmeFmc-eCyK54yuGJX0Fa8qxlomVpxyvuKsrmjDHhXnc72cG2e_7Z8UlyntKKWsqhva0vPi52YYeqchu-BJsGR77KIzZA966zySHiF652_JPhjsEwFviIEMZIhYDjFoTGlu5zBXjNOZHCBjnIx32M_A0zFt0aTX5Atq9JnkiN4sLDvmMSIZJsmAOrs7fFY8ttAnvLxfL4pvH95_vfpU3nz-eH21uSl1LWUuOyYbWje2rTQK0VJTcWrrthKtRmilYVpSK5jmnaG2sw1vZ53UYt1xzaSuLorrhWsC7NQQ3R7iUQVw6lQI8VZBzE73qIQGaWvBEQTU0AmwXEjbddRKCp3EifVyYaUDDmP3B-2d-7450fo8qrZmlE_yF4t8esAfI6asdmGMfrqt4uumadeNqGfVm0WlY0gpolXa5dM_5QiuV4yqOQDqIQBqDoC6D8Dkbv5yPwz1P9_bxee8DXEPhxB7ozIc-xBtBK9dUtW_Eb8AdDrL7g
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105572
crossref_primary_10_1016_j_jenvman_2025_124829
crossref_primary_10_1080_19942060_2024_2449124
crossref_primary_10_3390_w17172623
crossref_primary_10_53759_7669_jmc202505196
crossref_primary_10_1007_s41939_024_00609_x
crossref_primary_10_3390_su151914222
crossref_primary_10_3390_w16213153
crossref_primary_10_1155_2023_9947603
crossref_primary_10_3390_w16091227
crossref_primary_10_1016_j_envsoft_2023_105788
crossref_primary_10_3390_w15183191
crossref_primary_10_3389_frwa_2025_1537868
crossref_primary_10_3390_su151813584
crossref_primary_10_3390_atmos14010077
crossref_primary_10_1038_s41598_024_73002_w
crossref_primary_10_3390_su151914320
crossref_primary_10_31185_ejuow_Vol11_Iss2_407
crossref_primary_10_1016_j_rineng_2025_105182
crossref_primary_10_1007_s41101_025_00413_9
crossref_primary_10_1016_j_hydres_2024_05_001
Cites_doi 10.3390/hydrology8020059
10.1088/1742-6596/2078/1/012032
10.1177/1475090217727135
10.1007/s10462-022-10199–0
10.1007/s12205-021-2223-y
10.1016/j.asej.2021.01.007
10.1080/02626667.2018.1469756
10.32604/iasc.2021.016246
10.1007/s11269-016-1347-1
10.1016/j.jher.2013.04.003
10.1016/j.envsoft.2021.105075
10.3846/16486897.2017.1303498
10.1007/s11269-020-02500-z
10.1007/s12145-021-00665-8
10.1007/s11269-015-1147-z
10.1007/s00477-018-1540-2
10.1109/ACCESS.2020.2982433
10.1016/j.cageo.2009.09.014
10.13189/eer.2021.090301
10.3390/hydrology9070115
10.1016/j.jhydrol.2018.03.047
10.1016/j.scs.2020.102562
10.1007/s11069-021-04939-8
10.1016/j.aej.2021.04.100
10.3390/w14030490
10.1080/02664763.2020.1867829
10.1016/j.jhydrol.2009.11.027
10.1016/j.psep.2021.05.026
10.1016/j.aej.2020.12.034
10.3390/environments9070085
10.3390/s21196504
10.1029/2021WR031215
10.1109/ACCESS.2021.3111287
10.1007/s10661-018-6768-2
10.1007/s11269-021-02971-8
10.5194/hess-10-1-2006
10.1007/s11069-020-04180-9
10.3390/hydrology8020067
10.2166/wcc.2019.236
10.1016/j.scitotenv.2020.139099
10.3390/atmos11060585
10.1016/S0925-2312(03)00388-6
10.1016/j.jhydrol.2021.126506
10.1166/jctn.2020.8781
10.1016/j.oceaneng.2019.06.002
10.1016/j.apor.2017.11.007
10.3390/w11091795
10.1080/10934529.2021.1933325
10.1007/s00477-018-1638-6
10.1007/s13131-020-1569-1
10.3390/w14010080
10.1007/s11269-021-02937-w
10.1016/j.jhydrol.2021.126477
10.1109/ACCESS.2020.2964584
10.1016/j.jhydrol.2009.09.029
10.1007/s11356-020-10917-7
10.2166/nh.2016.264
10.1007/s11269-019-02255-2
10.3390/hydrology6010024
10.1016/j.pce.2021.103027
10.1007/s12145-021-00664-9
10.1016/j.matpr.2021.02.256
10.1007/s12517-020-06034-x
10.3390/w12071885
10.1016/j.jhydrol.2021.127415
10.1016/S1364-8152(99)00007-9
10.1016/j.apor.2015.09.008
10.1016/j.cageo.2011.08.027
10.1016/j.jhydrol.2020.125380
10.1016/j.jhydrol.2014.11.050
10.1007/s11269-016-1556-7
10.3390/w11050910
10.3390/w12113015
10.13189/cea.2019.071403
10.1007/s11269-021-02934-z
10.1023/A:1010933404324
10.5194/hess-24-3899-2020
10.1007/s00477-021-02111-z
10.1016/j.jhydrol.2008.12.006
10.1007/s00477-018-1630-1
10.1007/s00477-017-1474-0
10.3390/e19090437
10.1016/j.jksues.2020.09.011
10.1061/(ASCE)HE.1943-5584.0001804
10.1016/j.procs.2017.11.212
10.1080/23311916.2022.2075301
10.15748/jasse.8.40
10.1016/j.amc.2015.08.085
10.1007/s00704-019-02904-x
10.2166/ws.2019.122
10.1007/s00500-019-04386-5
10.1029/2010WR009945
10.1016/j.engappai.2009.09.015
10.3390/w12102692
10.1016/j.knosys.2021.107379
10.1504/IJBIC.2010.032124
10.1016/j.jhydrol.2010.04.005
10.1007/s00521-020-05194-x
10.1016/j.jhydrol.2020.124783
10.1080/02626667.2015.1083650
10.1007/s40899-021-00584-y
10.1007/s10661-017-6030-3
10.1016/j.jhydrol.2008.03.017
10.5004/dwt.2021.26813
ContentType Journal Article
Copyright 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2022
2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2022
– notice: 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1080/23311916.2022.2143051
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2331-1916
ExternalDocumentID oai_doaj_org_article_6ca8f462ea6a4ab6af268fbb0f80ab8e
oai_DiVA_org_ltu_94102
10_1080_23311916_2022_2143051
2143051
Genre Review Article
GroupedDBID 0YH
5VS
8FE
8FG
AAFWJ
ABDBF
ABJCF
ACUHS
ADBBV
ADCVX
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AQTUD
BCNDV
BENPR
BGLVJ
CCPQU
EAP
EBS
ESX
GROUPED_DOAJ
H13
HCIFZ
HZ~
KQ8
L6V
M4Z
M7S
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TDBHL
TFW
AAYXX
AFFHD
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
D8T
EJD
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c488t-b185045f93ce6690d320f49369cea98d1c80f61c2bd0fbf529ce668c67b2c18c3
IEDL.DBID M7S
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882805900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2331-1916
IngestDate Fri Oct 03 12:52:37 EDT 2025
Tue Nov 04 15:42:32 EST 2025
Fri Jul 25 12:08:54 EDT 2025
Sat Nov 29 06:08:34 EST 2025
Tue Nov 18 22:21:36 EST 2025
Mon Oct 20 23:48:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: You are free to: Share - copy and redistribute the material in any medium or format. Adapt - remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-b185045f93ce6690d320f49369cea98d1c80f61c2bd0fbf529ce668c67b2c18c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6790-2653
OpenAccessLink https://www.proquest.com/docview/2755975642?pq-origsite=%requestingapplication%
PQID 2755975642
PQPubID 2043312
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_94102
proquest_journals_2755975642
informaworld_taylorfrancis_310_1080_23311916_2022_2143051
doaj_primary_oai_doaj_org_article_6ca8f462ea6a4ab6af268fbb0f80ab8e
crossref_citationtrail_10_1080_23311916_2022_2143051
crossref_primary_10_1080_23311916_2022_2143051
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Cogent engineering
PublicationYear 2022
Publisher Cogent
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Cogent
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References cit0077
cit0110
cit0078
cit0075
cit0073
cit0074
cit0071
cit0072
cit0070
Loh E. C. (cit0061) 2019; 11
cit0118
cit0119
cit0116
cit0114
cit0115
cit0112
cit0113
cit0066
cit0067
cit0100
cit0064
cit0065
cit0062
cit0063
cit0060
Kucukkoc I. (cit0053) 2013
cit0105
cit0104
cit0068
cit0101
cit0069
cit0102
cit0011
cit0099
cit0012
cit0097
cit0010
cit0098
cit0095
cit0096
cit0093
cit0091
Young -C.-C. (cit0106) 2015; 2015
cit0092
cit0090
Zubaidi S. L. (cit0117)
cit0019
cit0017
cit0018
cit0016
cit0013
cit0014
cit0088
cit0001
cit0089
cit0086
cit0087
cit0084
cit0085
cit0083
Zhang J. (cit0109)
cit0080
cit0081
Zhang J. (cit0108) 2022; 14
cit0008
cit0009
cit0006
cit0007
cit0004
cit0005
cit0002
cit0003
cit0033
cit0031
cit0032
cit0030
Tabachnick B. G. (cit0094) 2013
cit0039
cit0037
cit0038
cit0035
Xu G. (cit0103)
cit0036
cit0022
cit0023
cit0020
cit0021
Chen X. (cit0015) 2022; 14
Zhang Y.-F. (cit0107) 2020; 12
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
Phitakwinai S. (cit0079)
cit0055
cit0056
cit0054
cit0051
cit0052
cit0050
cit0059
Panyadee P. (cit0076)
cit0057
cit0058
cit0044
cit0045
cit0042
cit0043
cit0040
Gunathilake M. B. (cit0034) 2021; 9
cit0041
Zhong C. (cit0111)
Rakshitha M. R. (cit0082) 2020; 8
cit0048
cit0049
cit0046
cit0047
References_xml – volume-title: Proceedings of 2017 4th international conference on transportation information and safety(ICTIS)
  ident: cit0111
– ident: cit0023
  doi: 10.3390/hydrology8020059
– ident: cit0070
  doi: 10.1088/1742-6596/2078/1/012032
– ident: cit0112
  doi: 10.1177/1475090217727135
– ident: cit0035
  doi: 10.1007/s10462-022-10199–0
– ident: cit0085
  doi: 10.1007/s12205-021-2223-y
– ident: cit0086
  doi: 10.1016/j.asej.2021.01.007
– ident: cit0110
  doi: 10.1080/02626667.2018.1469756
– volume-title: Proceedings of IEEE
  ident: cit0109
– ident: cit0102
  doi: 10.32604/iasc.2021.016246
– ident: cit0092
  doi: 10.1007/s11269-016-1347-1
– ident: cit0067
  doi: 10.1016/j.jher.2013.04.003
– ident: cit0058
  doi: 10.1016/j.envsoft.2021.105075
– ident: cit0080
  doi: 10.3846/16486897.2017.1303498
– ident: cit0119
  doi: 10.1007/s11269-020-02500-z
– ident: cit0019
  doi: 10.1007/s12145-021-00665-8
– ident: cit0089
  doi: 10.1007/s11269-015-1147-z
– ident: cit0022
  doi: 10.1007/s00477-018-1540-2
– ident: cit0077
  doi: 10.1109/ACCESS.2020.2982433
– ident: cit0007
  doi: 10.1016/j.cageo.2009.09.014
– ident: cit0073
  doi: 10.13189/eer.2021.090301
– ident: cit0006
  doi: 10.3390/hydrology9070115
– ident: cit0115
  doi: 10.1016/j.jhydrol.2018.03.047
– ident: cit0071
  doi: 10.1016/j.scs.2020.102562
– ident: cit0097
  doi: 10.1007/s11069-021-04939-8
– ident: cit0040
  doi: 10.1016/j.aej.2021.04.100
– ident: cit0046
  doi: 10.3390/w14030490
– ident: cit0075
  doi: 10.1080/02664763.2020.1867829
– ident: cit0018
  doi: 10.1016/j.jhydrol.2009.11.027
– ident: cit0090
  doi: 10.1016/j.psep.2021.05.026
– ident: cit0024
  doi: 10.1016/j.aej.2020.12.034
– ident: cit0045
  doi: 10.3390/environments9070085
– ident: cit0057
  doi: 10.3390/s21196504
– ident: cit0052
  doi: 10.1029/2021WR031215
– ident: cit0069
  doi: 10.1109/ACCESS.2021.3111287
– ident: cit0088
  doi: 10.1007/s10661-018-6768-2
– ident: cit0055
  doi: 10.1007/s11269-021-02971-8
– ident: cit0011
  doi: 10.5194/hess-10-1-2006
– ident: cit0064
  doi: 10.1007/s11069-020-04180-9
– ident: cit0084
  doi: 10.3390/hydrology8020067
– ident: cit0029
  doi: 10.2166/wcc.2019.236
– ident: cit0056
  doi: 10.1016/j.scitotenv.2020.139099
– ident: cit0021
  doi: 10.3390/atmos11060585
– ident: cit0013
  doi: 10.1016/S0925-2312(03)00388-6
– ident: cit0012
  doi: 10.1016/j.jhydrol.2021.126506
– ident: cit0039
  doi: 10.1166/jctn.2020.8781
– ident: cit0010
  doi: 10.1016/j.oceaneng.2019.06.002
– start-page: 1
  volume-title: Proceedings of Fifth International Conference on Information and Communication Technology
  ident: cit0076
– ident: cit0026
  doi: 10.1016/j.apor.2017.11.007
– ident: cit0016
  doi: 10.3390/w11091795
– ident: cit0093
  doi: 10.1080/10934529.2021.1933325
– volume-title: Proceedings of International Joint Conference on Neural Networks (IJCNN)
  ident: cit0079
– ident: cit0078
  doi: 10.1007/s00477-018-1638-6
– ident: cit0100
  doi: 10.1007/s13131-020-1569-1
– ident: cit0047
  doi: 10.3390/w14010080
– ident: cit0081
  doi: 10.1007/s11269-021-02937-w
– ident: cit0096
  doi: 10.1016/j.jhydrol.2021.126477
– ident: cit0068
  doi: 10.1109/ACCESS.2020.2964584
– ident: cit0017
  doi: 10.1016/j.jhydrol.2009.09.029
– volume: 12
  year: 2020
  ident: cit0107
  publication-title: Water
– ident: cit0113
  doi: 10.1007/s11356-020-10917-7
– volume: 8
  year: 2020
  ident: cit0082
  publication-title: International Journal of Engineering Research & Technology (IJERT)
– volume: 2015
  start-page: 1
  year: 2015
  ident: cit0106
  publication-title: Artificial Neural Network, and Time Series Forecasting Models. Mathematical Problems in Engineering
– ident: cit0059
  doi: 10.2166/nh.2016.264
– ident: cit0037
  doi: 10.1007/s11269-019-02255-2
– ident: cit0008
  doi: 10.3390/hydrology6010024
– ident: cit0038
  doi: 10.1016/j.pce.2021.103027
– ident: cit0101
  doi: 10.1007/s12145-021-00664-9
– volume: 11
  year: 2019
  ident: cit0061
  publication-title: Jour of Adv Research in Dynamical & Control Systems
– ident: cit0041
  doi: 10.1016/j.matpr.2021.02.256
– ident: cit0063
  doi: 10.1007/s12517-020-06034-x
– ident: cit0118
  doi: 10.3390/w12071885
– ident: cit0048
  doi: 10.1016/j.jhydrol.2021.127415
– volume: 14
  year: 2022
  ident: cit0015
  publication-title: Water
– ident: cit0062
  doi: 10.1016/S1364-8152(99)00007-9
– start-page: 31
  volume-title: Proceedings of 2018 11th International Conference on Developments in eSystems Engineering (DeSE)
  ident: cit0117
– ident: cit0025
  doi: 10.1016/j.apor.2015.09.008
– ident: cit0050
  doi: 10.1016/j.cageo.2011.08.027
– ident: cit0044
  doi: 10.1016/j.jhydrol.2020.125380
– volume: 14
  year: 2022
  ident: cit0108
  publication-title: Water
– ident: cit0087
  doi: 10.1016/j.jhydrol.2014.11.050
– ident: cit0028
  doi: 10.1007/s11269-016-1556-7
– ident: cit0099
  doi: 10.3390/w11050910
– start-page: 221
  volume-title: Proceedings of 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService)
  ident: cit0103
– ident: cit0066
  doi: 10.3390/w12113015
– ident: cit0060
  doi: 10.13189/cea.2019.071403
– volume: 9
  year: 2021
  ident: cit0034
  publication-title: Applied Computational Intelligence and Soft Computing
– ident: cit0005
  doi: 10.1007/s11269-021-02934-z
– ident: cit0014
  doi: 10.1023/A:1010933404324
– ident: cit0051
  doi: 10.5194/hess-24-3899-2020
– start-page: 45
  volume-title: Proceedings of OR55 Annual Conference - Keynote Papers and Extended abstracts
  year: 2013
  ident: cit0053
– ident: cit0003
  doi: 10.1007/s00477-021-02111-z
– ident: cit0105
  doi: 10.1016/j.jhydrol.2008.12.006
– ident: cit0031
  doi: 10.1007/s00477-018-1630-1
– ident: cit0032
  doi: 10.1007/s00477-017-1474-0
– ident: cit0033
  doi: 10.3390/e19090437
– ident: cit0116
  doi: 10.1016/j.jksues.2020.09.011
– ident: cit0009
  doi: 10.1061/(ASCE)HE.1943-5584.0001804
– ident: cit0001
  doi: 10.1016/j.procs.2017.11.212
– ident: cit0027
  doi: 10.1080/23311916.2022.2075301
– ident: cit0091
  doi: 10.15748/jasse.8.40
– ident: cit0049
  doi: 10.1016/j.amc.2015.08.085
– ident: cit0072
  doi: 10.1007/s00704-019-02904-x
– ident: cit0020
  doi: 10.2166/ws.2019.122
– ident: cit0042
  doi: 10.1007/s00500-019-04386-5
– ident: cit0002
  doi: 10.1029/2010WR009945
– ident: cit0074
  doi: 10.1016/j.engappai.2009.09.015
– ident: cit0114
  doi: 10.3390/w12102692
– ident: cit0004
  doi: 10.1016/j.knosys.2021.107379
– ident: cit0104
  doi: 10.1504/IJBIC.2010.032124
– ident: cit0036
  doi: 10.1016/j.jhydrol.2010.04.005
– ident: cit0098
  doi: 10.1007/s00521-020-05194-x
– ident: cit0083
  doi: 10.1016/j.jhydrol.2020.124783
– ident: cit0043
  doi: 10.1080/02626667.2015.1083650
– ident: cit0065
  doi: 10.1007/s40899-021-00584-y
– volume-title: Using multivariate statistics
  year: 2013
  ident: cit0094
– ident: cit0030
  doi: 10.1007/s10661-017-6030-3
– ident: cit0054
  doi: 10.1016/j.jhydrol.2008.03.017
– ident: cit0095
  doi: 10.5004/dwt.2021.26813
SSID ssj0001345090
Score 2.3627322
SecondaryResourceType review_article
Snippet The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the...
The community’s well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the...
SourceID doaj
swepub
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
data pre-processing
Environment models
Geoteknik
hybrid model
Lakes
Machine learning
meta-heuristic algorithms
Monitoring
Optimization
Parameters
Research methodology
Soil Mechanics
Water circulation
Water level fluctuations
Water level forecasting
Water levels
Water quality
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiKdYKMgHOKZNbK9jc1seFQdUcYCqN8tPutKyu9qkRf0X_cnM2Nk2y2UvHOPY1sQz9sw4M98Q8k4Fp0UU4J145SsRm1i51jYVg72UGma5y_kVZ9_a01N1fq6_j0p9YUxYgQcuC3csvVVJSBattMI6aROTKjlXJ1VbpyKevnWrR85Uvl3hAjRhvU3ZUfUx4xyxzDAqgbEj1iDUVbOjjDJm_z-Ipbt25xhLNOufk8fk0WA40lkh-Am5F5dPycMRnOAzcjO7-xtNV4leXGM6Fv2d4yUjHQpE_KK5-k1H7TJQDBClGAmyLgkD-LpfYUuY-57-AUt0AwOv4gInzI_dRQzdBwr2Jugr2ueY2jxXgSeh67v0zefk58mXH5--VkPFhcrDRu4rB9obbLykuY8S_ObAWZ0E1vzz0WoVgKF1ko1nLtTJpSnT2E952TrmG-X5C3KwXC3jS0Itj9w6EcBg5ELKBHZmSFOtuBVJtjJMiNguvfEDHDlWxViYZkAt3XLMIMfMwLEJObodti54HPsGfES-3nZGOO3cAEJmBiEz-4RsQvRYKkyfb1NSKX1i-B4CDrciZIbzoTOsRU9uCs7fhLwvYrVD4ef52SxTuOgvjRZgBb76H9_xmjxA0gpQ5SE56DeX8Q2576_6ebd5m7fQX-DuIJc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QCH8hZLC_IBjimJ7XWc3pZH1QOqOEBVTpaf7UrL7mqTtuJf8JOZcZzuLhLqAY52bGvijO1vnJlvCHmjvG1EEGCdOOUKEapQ2NpUBYO1FCtmuE3xFaef65MTdXbWfMnehG12q0QbOvZEEWmvxsVtbDt4xL1jnCMtGToYMHbAKmStAgPoLgPTBO2v8vvx-pqFCzgSyyF252-9t06lRN7_B3XpNgDdJBVNB9HRw__wCo_IbkahdNKrzWNyJ8yfkAcb3IRPya_J-tc2XUR68RNju-iP5HwZaM42cU5TKp2WgiQUvU0pupUs--gDfNwtsMZPXUevAdauoONVmOGAqdheBN8eUgCvcPjRLjnoprF6rhO6XMeCPiPfjj59_XBc5PQNhYNdoSssQAEAjLHhLkgwwj1nZRSYQNAF0ygP2lFGWTlmfRltHLMG2ykna8tcpRx_Tnbmi3l4QajhgRsrPKBPLqSMAFp9HDeKGxFlLf2IiOHzaZe5zTHFxkxXmQJ1mHCNE67zhI_IwU23ZU_ucVuH96gbN42RmztVLFbnOi91LZ1RUUgWjDTCWGkikypaW0ZVGqvCiDSbmqW7dDUT-zwqmt8iwP6ghjpvNq1mNZqFY7AkR-Rtr5pbEn6cnk6ShLPuUjcCIOXLfxBhj9zHYk92uU92utVleEXuuatu2q5ep9X3G33eLqg
  priority: 102
  providerName: Taylor & Francis
Title Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective
URI https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2143051
https://www.proquest.com/docview/2755975642
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-94102
https://doaj.org/article/6ca8f462ea6a4ab6af268fbb0f80ab8e
Volume 9
WOSCitedRecordID wos000882805900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: M7S
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: TFW
  dateStart: 20141231
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 2331-1916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001345090
  issn: 2331-1916
  databaseCode: 0YH
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoywEOvBGBEvkAx213bcfxckEpNCoSRBGU0p4sP9tIIRuy2yL-BT8Zj9dpEg70wNFe2zuSx_bn8cw3CL0SVpfMsXA7McJkzBUu031VZCSsJV8QRXWMrzj52B-NxOlpOU4Gtzq5VS73xLhR28qAjXyf9AH79gJcfjv_kUHWKHhdTSk0ttAOsCQU0XXvy8rGQlk4D_Nl4I7I9wmlwGgGvgmE7JECCK-KjSMpMvf_xVu6iT7XGUXjKTS8_7_yP0D3Ev7Eg1ZhHqJbbvYI3V1jJXyMfg9Wj9q48vjiF0R14e_R7dLhlGfiHMckOjVWM4vBzxSDQ8m8jTuAz00FNXZiGvwzANpF6HjlpjBgLNYXztZvcICt4djDTXTNjWO1LCd4vooCfYK-Dg-P3x1lKXFDZsJ-0GQ6gIAAFX1JjePh-m0pyT2D1IHGqVLYoBe554Uh2uZe-x4poZ0wvK-JKYShT9H2rJq5Zwgr6qjSzAbcSRnnPsBV63uloIp53ue2g9hy7qRJrOaQXGMqi0R-upxyCVMu05R30N51t3lL63FThwNQjOvGwModK6rFuUyLXHKjhGecOMUVU5orT7jwWude5EoL10HlulrJJhplfJtBRdIbBNhd6pVM20wtV0rVQa9bvdyQ8P3kZBAlnDaXsmQBTD7_9zAv0B34actkuYu2m8Wle4lum6tmUi-6aCs_O-qinYPD0fhzN5ovunHFhbrxh0_js1A6Hn77AzgnMyE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxELVKQQIOfKMGCvhAj9vu2o7jRUIoUKpWDRESperN-LONlGZDdtuq_4Jfwm_E491tEg701APHbNbWaPeN59k78waht8LqnDkWdidGmIS5zCW6p7KEBF_yGVFUx_qKw0FvOBRHR_nXFfS7rYWBtMp2TYwLtS0MnJFvkR5w326gyx-mPxPoGgVfV9sWGjUs9t3lRdiyle_3tsP73SBk5_PBp92k6SqQmADWKtEhQgUe43NqHA97Q0tJ6hn0tTNO5cIGo1PPM0O0Tb32XZLDfcLwniYmE4aGeW-h24FGkDymCn6bn-lQFuJv2hYKiXSLUAoKapALQcgmyUBgK1sKgbFTwF86qctsd1HBNEa9nYf_2_N6hB40_Br3a4d4jFbc5Am6v6C6-BT96s8_2uPC45NLqFrDpzGt1OGmj8Yxjk2CSqwmFkMeLYaEmWldVwF_VwVcsSNT4YtA2Gdh4Lkbw4TxZ3nibPkOB1oewjquYupxnKtWccHTeZXrM_T9Rh7Jc7Q6KSZuDWFFHVWa2cCrKePcBzpufTcXVDHPe9x2EGuxIk2j2g7NQ8Yya8RdW4hJgJhsINZBm1fDprVsyXUDPgIQr24G1fF4oZgdy2YRk9wo4RknTnHFlObKEy681qkXqdLCdVC-CGNZxUMnX3eIkfQaA9ZbHMtmGS3lHMQdtFH7wZKF26PDfrRwXJ3JnAWy_OLf07xBd3cPvgzkYG-4_xLdAwNq1c51tFrNztwrdMecV6Ny9jp6NkY_bto1_gAoHInH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQQgOvCsWCvgAx5TE9joOt4WyAlGteiilN8vPdqVld7VJi_gX_GRmnKS7i4R6gGP80sQZ2984M98Q8lp5W4kgwDpxymUiFCGzpSkyBmspFsxwm-IrTg7LyUSdnlZHnTdh3blVog0dW6KItFfj4l762HvEvWWcIy0ZOhgwts8KZK0CA-gmQGeJSn48_ra-ZuECjsS8j935W--tUymR9_9BXboNQDdJRdNBNL7_H17hAbnXoVA6atXmIbkR5o_I3Q1uwsfk12j9a5suIj3_ibFd9Htyvgy0yzZxRlMqnZqCJBS9TSm6lSzb6AOsbhZY4qeuoT8A1q6g42WY4YDpsT4Pvn5HAbzC4Ueb5KCbxmq5TuhyHQv6hHwdfzz-8Cnr0jdkDnaFJrMABQAwxoq7IMEI95zlUWACQRdMpTxoRx5l4Zj1ebRxyCpsp5wsLXOFcnyX7MwX8_CUUMMDN1Z4QJ9cSBkBtPo4rBQ3IspS-gER_efTruM2xxQbM110FKj9hGuccN1N-IDsX3VbtuQe13V4j7px1Ri5uVPBYnWmu6WupTMqCsmCkUYYK01kUkVr86hyY1UYkGpTs3STrmZim0dF82sE2OvVUHebTa1ZiWbhECzJAXnTquaWhAfTk1GScNZc6EoApHz2DyK8IrePDsb68PPky3NyB2ta3ss9stOsLsILcstdNtN69TItxN8zhjGE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+hybrid+machine+learning+models+and+data+pre-processing+to+predict+water+level+of+watersheds%3A+Recent+trends+and+future+perspective&rft.jtitle=Cogent+engineering&rft.au=Mohammed%2C+Sarah+J.&rft.au=Zubaidi%2C+Salah+L.&rft.au=Ortega-Martorell%2C+Sandra&rft.au=Al-Ansari%2C+Nadhir&rft.date=2022-12-31&rft.issn=2331-1916&rft.eissn=2331-1916&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2022.2143051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23311916_2022_2143051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon