Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective
The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and...
Uloženo v:
| Vydáno v: | Cogent engineering Ročník 9; číslo 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Cogent
31.12.2022
Taylor & Francis Ltd Taylor & Francis Group |
| Témata: | |
| ISSN: | 2331-1916, 2331-1916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models' concepts and historical uses would be beneficial in preventing researchers from overlooking models' potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the "state of the art" on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed. |
|---|---|
| AbstractList | The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models' concepts and historical uses would be beneficial in preventing researchers from overlooking models' potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the "state of the art" on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed. |
| Author | Ortega-Martorell, Sandra Zubaidi, Salah L. Mohammed, Sarah J. Ethaib, Saleem Hashim, Khalid Al-Ansari, Nadhir |
| Author_xml | – sequence: 1 givenname: Sarah J. surname: Mohammed fullname: Mohammed, Sarah J. organization: Wasit University – sequence: 2 givenname: Salah L. surname: Zubaidi fullname: Zubaidi, Salah L. organization: University of Warith Al-Anbiyaa – sequence: 3 givenname: Sandra surname: Ortega-Martorell fullname: Ortega-Martorell, Sandra organization: Liverpool John Moores University – sequence: 4 givenname: Nadhir orcidid: 0000-0002-6790-2653 surname: Al-Ansari fullname: Al-Ansari, Nadhir email: nadhir.alansari@ltu.se organization: Lulea University of Technology – sequence: 5 givenname: Saleem surname: Ethaib fullname: Ethaib, Saleem organization: University of Thi-Qar – sequence: 6 givenname: Khalid surname: Hashim fullname: Hashim, Khalid organization: Babylon University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-94102$$DView record from Swedish Publication Index |
| BookMark | eNqFkt-K1DAUxous4LruIwgBb-2YpG0m1RuH9d_CgiDqbThNTnYydJKapDvMW_jIttNdUC_0Ksk53_fjJPmeFmc-eCyK54yuGJX0Fa8qxlomVpxyvuKsrmjDHhXnc72cG2e_7Z8UlyntKKWsqhva0vPi52YYeqchu-BJsGR77KIzZA966zySHiF652_JPhjsEwFviIEMZIhYDjFoTGlu5zBXjNOZHCBjnIx32M_A0zFt0aTX5Atq9JnkiN4sLDvmMSIZJsmAOrs7fFY8ttAnvLxfL4pvH95_vfpU3nz-eH21uSl1LWUuOyYbWje2rTQK0VJTcWrrthKtRmilYVpSK5jmnaG2sw1vZ53UYt1xzaSuLorrhWsC7NQQ3R7iUQVw6lQI8VZBzE73qIQGaWvBEQTU0AmwXEjbddRKCp3EifVyYaUDDmP3B-2d-7450fo8qrZmlE_yF4t8esAfI6asdmGMfrqt4uumadeNqGfVm0WlY0gpolXa5dM_5QiuV4yqOQDqIQBqDoC6D8Dkbv5yPwz1P9_bxee8DXEPhxB7ozIc-xBtBK9dUtW_Eb8AdDrL7g |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2024_105572 crossref_primary_10_1016_j_jenvman_2025_124829 crossref_primary_10_1080_19942060_2024_2449124 crossref_primary_10_3390_w17172623 crossref_primary_10_53759_7669_jmc202505196 crossref_primary_10_1007_s41939_024_00609_x crossref_primary_10_3390_su151914222 crossref_primary_10_3390_w16213153 crossref_primary_10_1155_2023_9947603 crossref_primary_10_3390_w16091227 crossref_primary_10_1016_j_envsoft_2023_105788 crossref_primary_10_3390_w15183191 crossref_primary_10_3389_frwa_2025_1537868 crossref_primary_10_3390_su151813584 crossref_primary_10_3390_atmos14010077 crossref_primary_10_1038_s41598_024_73002_w crossref_primary_10_3390_su151914320 crossref_primary_10_31185_ejuow_Vol11_Iss2_407 crossref_primary_10_1016_j_rineng_2025_105182 crossref_primary_10_1007_s41101_025_00413_9 crossref_primary_10_1016_j_hydres_2024_05_001 |
| Cites_doi | 10.3390/hydrology8020059 10.1088/1742-6596/2078/1/012032 10.1177/1475090217727135 10.1007/s10462-022-10199–0 10.1007/s12205-021-2223-y 10.1016/j.asej.2021.01.007 10.1080/02626667.2018.1469756 10.32604/iasc.2021.016246 10.1007/s11269-016-1347-1 10.1016/j.jher.2013.04.003 10.1016/j.envsoft.2021.105075 10.3846/16486897.2017.1303498 10.1007/s11269-020-02500-z 10.1007/s12145-021-00665-8 10.1007/s11269-015-1147-z 10.1007/s00477-018-1540-2 10.1109/ACCESS.2020.2982433 10.1016/j.cageo.2009.09.014 10.13189/eer.2021.090301 10.3390/hydrology9070115 10.1016/j.jhydrol.2018.03.047 10.1016/j.scs.2020.102562 10.1007/s11069-021-04939-8 10.1016/j.aej.2021.04.100 10.3390/w14030490 10.1080/02664763.2020.1867829 10.1016/j.jhydrol.2009.11.027 10.1016/j.psep.2021.05.026 10.1016/j.aej.2020.12.034 10.3390/environments9070085 10.3390/s21196504 10.1029/2021WR031215 10.1109/ACCESS.2021.3111287 10.1007/s10661-018-6768-2 10.1007/s11269-021-02971-8 10.5194/hess-10-1-2006 10.1007/s11069-020-04180-9 10.3390/hydrology8020067 10.2166/wcc.2019.236 10.1016/j.scitotenv.2020.139099 10.3390/atmos11060585 10.1016/S0925-2312(03)00388-6 10.1016/j.jhydrol.2021.126506 10.1166/jctn.2020.8781 10.1016/j.oceaneng.2019.06.002 10.1016/j.apor.2017.11.007 10.3390/w11091795 10.1080/10934529.2021.1933325 10.1007/s00477-018-1638-6 10.1007/s13131-020-1569-1 10.3390/w14010080 10.1007/s11269-021-02937-w 10.1016/j.jhydrol.2021.126477 10.1109/ACCESS.2020.2964584 10.1016/j.jhydrol.2009.09.029 10.1007/s11356-020-10917-7 10.2166/nh.2016.264 10.1007/s11269-019-02255-2 10.3390/hydrology6010024 10.1016/j.pce.2021.103027 10.1007/s12145-021-00664-9 10.1016/j.matpr.2021.02.256 10.1007/s12517-020-06034-x 10.3390/w12071885 10.1016/j.jhydrol.2021.127415 10.1016/S1364-8152(99)00007-9 10.1016/j.apor.2015.09.008 10.1016/j.cageo.2011.08.027 10.1016/j.jhydrol.2020.125380 10.1016/j.jhydrol.2014.11.050 10.1007/s11269-016-1556-7 10.3390/w11050910 10.3390/w12113015 10.13189/cea.2019.071403 10.1007/s11269-021-02934-z 10.1023/A:1010933404324 10.5194/hess-24-3899-2020 10.1007/s00477-021-02111-z 10.1016/j.jhydrol.2008.12.006 10.1007/s00477-018-1630-1 10.1007/s00477-017-1474-0 10.3390/e19090437 10.1016/j.jksues.2020.09.011 10.1061/(ASCE)HE.1943-5584.0001804 10.1016/j.procs.2017.11.212 10.1080/23311916.2022.2075301 10.15748/jasse.8.40 10.1016/j.amc.2015.08.085 10.1007/s00704-019-02904-x 10.2166/ws.2019.122 10.1007/s00500-019-04386-5 10.1029/2010WR009945 10.1016/j.engappai.2009.09.015 10.3390/w12102692 10.1016/j.knosys.2021.107379 10.1504/IJBIC.2010.032124 10.1016/j.jhydrol.2010.04.005 10.1007/s00521-020-05194-x 10.1016/j.jhydrol.2020.124783 10.1080/02626667.2015.1083650 10.1007/s40899-021-00584-y 10.1007/s10661-017-6030-3 10.1016/j.jhydrol.2008.03.017 10.5004/dwt.2021.26813 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2022 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. 2022 – notice: 2022 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTPV AOWAS D8T ZZAVC DOA |
| DOI | 10.1080/23311916.2022.2143051 |
| DatabaseName | Taylor & Francis Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2331-1916 |
| ExternalDocumentID | oai_doaj_org_article_6ca8f462ea6a4ab6af268fbb0f80ab8e oai_DiVA_org_ltu_94102 10_1080_23311916_2022_2143051 2143051 |
| Genre | Review Article |
| GroupedDBID | 0YH 5VS 8FE 8FG AAFWJ ABDBF ABJCF ACUHS ADBBV ADCVX ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AQTUD BCNDV BENPR BGLVJ CCPQU EAP EBS ESX GROUPED_DOAJ H13 HCIFZ HZ~ KQ8 L6V M4Z M7S M~E O9- OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TDBHL TFW AAYXX AFFHD CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTPV AOWAS D8T EJD IPNFZ RIG ZZAVC |
| ID | FETCH-LOGICAL-c488t-b185045f93ce6690d320f49369cea98d1c80f61c2bd0fbf529ce668c67b2c18c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882805900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2331-1916 |
| IngestDate | Fri Oct 03 12:52:37 EDT 2025 Tue Nov 04 15:42:32 EST 2025 Fri Jul 25 12:08:54 EDT 2025 Sat Nov 29 06:08:34 EST 2025 Tue Nov 18 22:21:36 EST 2025 Mon Oct 20 23:48:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: You are free to: Share - copy and redistribute the material in any medium or format. Adapt - remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-b185045f93ce6690d320f49369cea98d1c80f61c2bd0fbf529ce668c67b2c18c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6790-2653 |
| OpenAccessLink | https://doaj.org/article/6ca8f462ea6a4ab6af268fbb0f80ab8e |
| PQID | 2755975642 |
| PQPubID | 2043312 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_94102 proquest_journals_2755975642 informaworld_taylorfrancis_310_1080_23311916_2022_2143051 doaj_primary_oai_doaj_org_article_6ca8f462ea6a4ab6af268fbb0f80ab8e crossref_citationtrail_10_1080_23311916_2022_2143051 crossref_primary_10_1080_23311916_2022_2143051 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-31 |
| PublicationDateYYYYMMDD | 2022-12-31 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Cogent engineering |
| PublicationYear | 2022 |
| Publisher | Cogent Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Cogent – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | cit0077 cit0110 cit0078 cit0075 cit0073 cit0074 cit0071 cit0072 cit0070 Loh E. C. (cit0061) 2019; 11 cit0118 cit0119 cit0116 cit0114 cit0115 cit0112 cit0113 cit0066 cit0067 cit0100 cit0064 cit0065 cit0062 cit0063 cit0060 Kucukkoc I. (cit0053) 2013 cit0105 cit0104 cit0068 cit0101 cit0069 cit0102 cit0011 cit0099 cit0012 cit0097 cit0010 cit0098 cit0095 cit0096 cit0093 cit0091 Young -C.-C. (cit0106) 2015; 2015 cit0092 cit0090 Zubaidi S. L. (cit0117) cit0019 cit0017 cit0018 cit0016 cit0013 cit0014 cit0088 cit0001 cit0089 cit0086 cit0087 cit0084 cit0085 cit0083 Zhang J. (cit0109) cit0080 cit0081 Zhang J. (cit0108) 2022; 14 cit0008 cit0009 cit0006 cit0007 cit0004 cit0005 cit0002 cit0003 cit0033 cit0031 cit0032 cit0030 Tabachnick B. G. (cit0094) 2013 cit0039 cit0037 cit0038 cit0035 Xu G. (cit0103) cit0036 cit0022 cit0023 cit0020 cit0021 Chen X. (cit0015) 2022; 14 Zhang Y.-F. (cit0107) 2020; 12 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 Phitakwinai S. (cit0079) cit0055 cit0056 cit0054 cit0051 cit0052 cit0050 cit0059 Panyadee P. (cit0076) cit0057 cit0058 cit0044 cit0045 cit0042 cit0043 cit0040 Gunathilake M. B. (cit0034) 2021; 9 cit0041 Zhong C. (cit0111) Rakshitha M. R. (cit0082) 2020; 8 cit0048 cit0049 cit0046 cit0047 |
| References_xml | – volume-title: Proceedings of 2017 4th international conference on transportation information and safety(ICTIS) ident: cit0111 – ident: cit0023 doi: 10.3390/hydrology8020059 – ident: cit0070 doi: 10.1088/1742-6596/2078/1/012032 – ident: cit0112 doi: 10.1177/1475090217727135 – ident: cit0035 doi: 10.1007/s10462-022-10199–0 – ident: cit0085 doi: 10.1007/s12205-021-2223-y – ident: cit0086 doi: 10.1016/j.asej.2021.01.007 – ident: cit0110 doi: 10.1080/02626667.2018.1469756 – volume-title: Proceedings of IEEE ident: cit0109 – ident: cit0102 doi: 10.32604/iasc.2021.016246 – ident: cit0092 doi: 10.1007/s11269-016-1347-1 – ident: cit0067 doi: 10.1016/j.jher.2013.04.003 – ident: cit0058 doi: 10.1016/j.envsoft.2021.105075 – ident: cit0080 doi: 10.3846/16486897.2017.1303498 – ident: cit0119 doi: 10.1007/s11269-020-02500-z – ident: cit0019 doi: 10.1007/s12145-021-00665-8 – ident: cit0089 doi: 10.1007/s11269-015-1147-z – ident: cit0022 doi: 10.1007/s00477-018-1540-2 – ident: cit0077 doi: 10.1109/ACCESS.2020.2982433 – ident: cit0007 doi: 10.1016/j.cageo.2009.09.014 – ident: cit0073 doi: 10.13189/eer.2021.090301 – ident: cit0006 doi: 10.3390/hydrology9070115 – ident: cit0115 doi: 10.1016/j.jhydrol.2018.03.047 – ident: cit0071 doi: 10.1016/j.scs.2020.102562 – ident: cit0097 doi: 10.1007/s11069-021-04939-8 – ident: cit0040 doi: 10.1016/j.aej.2021.04.100 – ident: cit0046 doi: 10.3390/w14030490 – ident: cit0075 doi: 10.1080/02664763.2020.1867829 – ident: cit0018 doi: 10.1016/j.jhydrol.2009.11.027 – ident: cit0090 doi: 10.1016/j.psep.2021.05.026 – ident: cit0024 doi: 10.1016/j.aej.2020.12.034 – ident: cit0045 doi: 10.3390/environments9070085 – ident: cit0057 doi: 10.3390/s21196504 – ident: cit0052 doi: 10.1029/2021WR031215 – ident: cit0069 doi: 10.1109/ACCESS.2021.3111287 – ident: cit0088 doi: 10.1007/s10661-018-6768-2 – ident: cit0055 doi: 10.1007/s11269-021-02971-8 – ident: cit0011 doi: 10.5194/hess-10-1-2006 – ident: cit0064 doi: 10.1007/s11069-020-04180-9 – ident: cit0084 doi: 10.3390/hydrology8020067 – ident: cit0029 doi: 10.2166/wcc.2019.236 – ident: cit0056 doi: 10.1016/j.scitotenv.2020.139099 – ident: cit0021 doi: 10.3390/atmos11060585 – ident: cit0013 doi: 10.1016/S0925-2312(03)00388-6 – ident: cit0012 doi: 10.1016/j.jhydrol.2021.126506 – ident: cit0039 doi: 10.1166/jctn.2020.8781 – ident: cit0010 doi: 10.1016/j.oceaneng.2019.06.002 – start-page: 1 volume-title: Proceedings of Fifth International Conference on Information and Communication Technology ident: cit0076 – ident: cit0026 doi: 10.1016/j.apor.2017.11.007 – ident: cit0016 doi: 10.3390/w11091795 – ident: cit0093 doi: 10.1080/10934529.2021.1933325 – volume-title: Proceedings of International Joint Conference on Neural Networks (IJCNN) ident: cit0079 – ident: cit0078 doi: 10.1007/s00477-018-1638-6 – ident: cit0100 doi: 10.1007/s13131-020-1569-1 – ident: cit0047 doi: 10.3390/w14010080 – ident: cit0081 doi: 10.1007/s11269-021-02937-w – ident: cit0096 doi: 10.1016/j.jhydrol.2021.126477 – ident: cit0068 doi: 10.1109/ACCESS.2020.2964584 – ident: cit0017 doi: 10.1016/j.jhydrol.2009.09.029 – volume: 12 year: 2020 ident: cit0107 publication-title: Water – ident: cit0113 doi: 10.1007/s11356-020-10917-7 – volume: 8 year: 2020 ident: cit0082 publication-title: International Journal of Engineering Research & Technology (IJERT) – volume: 2015 start-page: 1 year: 2015 ident: cit0106 publication-title: Artificial Neural Network, and Time Series Forecasting Models. Mathematical Problems in Engineering – ident: cit0059 doi: 10.2166/nh.2016.264 – ident: cit0037 doi: 10.1007/s11269-019-02255-2 – ident: cit0008 doi: 10.3390/hydrology6010024 – ident: cit0038 doi: 10.1016/j.pce.2021.103027 – ident: cit0101 doi: 10.1007/s12145-021-00664-9 – volume: 11 year: 2019 ident: cit0061 publication-title: Jour of Adv Research in Dynamical & Control Systems – ident: cit0041 doi: 10.1016/j.matpr.2021.02.256 – ident: cit0063 doi: 10.1007/s12517-020-06034-x – ident: cit0118 doi: 10.3390/w12071885 – ident: cit0048 doi: 10.1016/j.jhydrol.2021.127415 – volume: 14 year: 2022 ident: cit0015 publication-title: Water – ident: cit0062 doi: 10.1016/S1364-8152(99)00007-9 – start-page: 31 volume-title: Proceedings of 2018 11th International Conference on Developments in eSystems Engineering (DeSE) ident: cit0117 – ident: cit0025 doi: 10.1016/j.apor.2015.09.008 – ident: cit0050 doi: 10.1016/j.cageo.2011.08.027 – ident: cit0044 doi: 10.1016/j.jhydrol.2020.125380 – volume: 14 year: 2022 ident: cit0108 publication-title: Water – ident: cit0087 doi: 10.1016/j.jhydrol.2014.11.050 – ident: cit0028 doi: 10.1007/s11269-016-1556-7 – ident: cit0099 doi: 10.3390/w11050910 – start-page: 221 volume-title: Proceedings of 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService) ident: cit0103 – ident: cit0066 doi: 10.3390/w12113015 – ident: cit0060 doi: 10.13189/cea.2019.071403 – volume: 9 year: 2021 ident: cit0034 publication-title: Applied Computational Intelligence and Soft Computing – ident: cit0005 doi: 10.1007/s11269-021-02934-z – ident: cit0014 doi: 10.1023/A:1010933404324 – ident: cit0051 doi: 10.5194/hess-24-3899-2020 – start-page: 45 volume-title: Proceedings of OR55 Annual Conference - Keynote Papers and Extended abstracts year: 2013 ident: cit0053 – ident: cit0003 doi: 10.1007/s00477-021-02111-z – ident: cit0105 doi: 10.1016/j.jhydrol.2008.12.006 – ident: cit0031 doi: 10.1007/s00477-018-1630-1 – ident: cit0032 doi: 10.1007/s00477-017-1474-0 – ident: cit0033 doi: 10.3390/e19090437 – ident: cit0116 doi: 10.1016/j.jksues.2020.09.011 – ident: cit0009 doi: 10.1061/(ASCE)HE.1943-5584.0001804 – ident: cit0001 doi: 10.1016/j.procs.2017.11.212 – ident: cit0027 doi: 10.1080/23311916.2022.2075301 – ident: cit0091 doi: 10.15748/jasse.8.40 – ident: cit0049 doi: 10.1016/j.amc.2015.08.085 – ident: cit0072 doi: 10.1007/s00704-019-02904-x – ident: cit0020 doi: 10.2166/ws.2019.122 – ident: cit0042 doi: 10.1007/s00500-019-04386-5 – ident: cit0002 doi: 10.1029/2010WR009945 – ident: cit0074 doi: 10.1016/j.engappai.2009.09.015 – ident: cit0114 doi: 10.3390/w12102692 – ident: cit0004 doi: 10.1016/j.knosys.2021.107379 – ident: cit0104 doi: 10.1504/IJBIC.2010.032124 – ident: cit0036 doi: 10.1016/j.jhydrol.2010.04.005 – ident: cit0098 doi: 10.1007/s00521-020-05194-x – ident: cit0083 doi: 10.1016/j.jhydrol.2020.124783 – ident: cit0043 doi: 10.1080/02626667.2015.1083650 – ident: cit0065 doi: 10.1007/s40899-021-00584-y – volume-title: Using multivariate statistics year: 2013 ident: cit0094 – ident: cit0030 doi: 10.1007/s10661-017-6030-3 – ident: cit0054 doi: 10.1016/j.jhydrol.2008.03.017 – ident: cit0095 doi: 10.5004/dwt.2021.26813 |
| SSID | ssj0001345090 |
| Score | 2.3627322 |
| SecondaryResourceType | review_article |
| Snippet | The community's well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the... The community’s well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the... |
| SourceID | doaj swepub proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms data pre-processing Environment models Geoteknik hybrid model Lakes Machine learning meta-heuristic algorithms Monitoring Optimization Parameters Research methodology Soil Mechanics Water circulation Water level fluctuations Water level forecasting Water levels Water quality Watersheds |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIBDeVZsH8gHOKZ1HMfrcEFbSsUBVUg81JvljO12pWWzbNIi_gU_GY_jdHc50APHOLZjyeOZL-OZbwh5JWUwE4KLTIKXmZDMZBUIDHbwRYC3hWIyJgp_HJ-dqfPz6lNyuLUprHLQiVFR2wbQR37Ex4h9ywCX3y5-ZFg1Cm9XUwmNu-QesiTkMXTv88rHUohgD9mQuKPYES8KZDTD2ATOD3mOhFf5hkmKzP1_8ZZuos91RtFohU4f_e_6H5PthD_ppBeYJ-SOmz8lD9dYCZ-R35PVpTZtPL38hVld9HsMu3Q01Zm4oLGITkvN3FKMM6UYULLo8w7wdddgi51CR38GQLsMA6_dDCeMj-2ls-0bGmBrMHu0i6G5ca6e5YQuVlmgz8nX0_df3n3IUuGGDII-6LI6gIAAFX1VgJPh99sWnHmBpQPBmUrZHBTzMgdeW-ZrX_IK-ymQ45pDrqDYIVvzZu5eEGoUKF-WHEoI2JJ7JU1VgqqNsjYvjRgRMeydhsRqjsU1ZjpP5KfDlmvccp22fEQOb4YtelqP2wYco2DcdEZW7tjQLC90OuRaglFeSO6MNMLU0ngula9r5hUztXIjUq2Lle6iU8b3FVR0ccsC9ge50knNtHolVCPyupfLjRWeTL9N4gpn3ZWuRACTu_-eZo88wI_2TJb7ZKtbXrkDch-uu2m7fBlP1x8ZbCuH priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELVQ4QAHyqcILcgHOG7x2l7Hyy20VD2gigOgcrLsWbuNlCZRdlvEv-An4_F6mwQJ9QDH_fBq4h173mzevCHkjVIxTEguCwVBFVIxW9QgkewQRIS3QjOVCoU_jU9P9dlZ_TmzCdtMq8QcOvRCEWmvxsVtXTsw4t5xIVCWDAkGnB_wElWrYgJ0l8fUBPMv9v1k_ZlFyBgS2VC787fRW1Epiff_IV26DUA3RUVTIDre_Q8_4RF5mFEonfRu85jc8fMn5MGGNuFT8muy_mubLgK9-Im1XfQykS89zd0mzmlqpdPSaAlFtilFWsmyrz7Ay90CzzRT6OiPCGtXceC1n-ED02F74Zv2PY3gNQY_2iWCbnpWr3VCl-ta0Gfk6_HHL4cnRW7fUEDcFbrCRSgQAWOoBXgVk_BGcBYkNhAEb2vdlKBZUCVw17DgQsVrvE-DGjsOpQbxnOzMF3P_glCrQYeq4lBBRJg8aGXrCrSzumnKysoRkcPrM5C1zbHFxsyUWQJ1mHCDE27yhI_Iwc2wZS_ucduAD-gbNzejNnc6sVidm7zUjQKrg1TcW2WldcoGrnRwjgXNrNN-ROpNzzJd-jQT-j4qRtxiwP7ghiZvNq3hY0wLq5hJjsjb3jW3LDyafpskC2fdlallhJQv_8GEPXIfD3uxy32y062u_CtyD667abt6nVbfb4pELVM priority: 102 providerName: Taylor & Francis |
| Title | Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective |
| URI | https://www.tandfonline.com/doi/abs/10.1080/23311916.2022.2143051 https://www.proquest.com/docview/2755975642 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-94102 https://doaj.org/article/6ca8f462ea6a4ab6af268fbb0f80ab8e |
| Volume | 9 |
| WOSCitedRecordID | wos000882805900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: M7S dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: TFW dateStart: 20141231 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 2331-1916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001345090 issn: 2331-1916 databaseCode: 0YH dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagcIADKi8RaCMf4Lit1_Y6Nrf0ERUJoggKtCfL67VppJBE2W0R_4KfjMfetBsuuXBcr23NesaeGe_MNwi9FSKoCU55JqwXGRfEZMpyCHbwLJi3TBIRE4U_DsZjeXGhJp1SXxATluCB08IdCmuk54I6Iww3pTCeCunLknhJTCkdnL5koDrOVLxdYTxoQrJO2ZHkkDIGWGYQlUDpAc0B6irfUEYRs_8fxNJNu7OLJRr1z2gXPWkNRzxMBD9F99z8GXrcgRN8jv4M7_5G44XHV78hHQv_jPGSDrcFIn7gWP2mxmZeYQgQxRAJskwJA_C6WUBLNbUN_hUs0VUYeONmMGF8rK9cVb_Hwd4M-go3MaY2zpXgSfDyLn3zBfo6Oj0_PsvaiguZDRu5ycqgvYON5xWzTgS_uWKUeA41_6wzSla5lcSL3NKyIr70BVXQT1oxKKnNpWUv0c58MXevEDbSSl8U1BY2GIXUS2FUYWVpZFXlheE9xNdLr20LRw5VMWY6b1FL1xzTwDHdcqyHDm6HLRMex7YBR8DX284Apx0bgpDpVsj0NiHrIdWVCt3E2xSfSp9otoWAvbUI6fZ8qDUdgCdXBOevh94lsdqg8GT6bRgpnDXXWvFgBb7-H9_xBj0C0hJQ5R7aaVbXbh89tDfNtF710X1yedZHD45Ox5PP_bih-hAL-yW0TT58mlyGp_PR97_sLCWK |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2itFLbBfQppoXWi7IMJI7jcSpV1bQUgZiOKpVW7Izj2DDSdDJMAoi_6JfwjfV1Emami7Ji0WUetqzk2PfEufccgHecuzDBKAu4tjxgPFRBqhkmO9jY0dtYhNwXCve7g4E4Okq_LcF1WwuDaZXtmugX6rzQuEe-TbvIfRNHlz9OzgJ0jcK_q62FRg2LA3N16T7Zyg_7O-79blK6--Xw817QuAoE2oG1CjIXoRyPsWmsDXffhnlMQ8vQ104blYo80iK0PNI0y0Ob2YSmeJ_QvJtRHQkdu37vwX1HI2jqUwW_z_Z0Yubib9gWColwm8YxKqhhLgSlWzRCga1oIQR6p4C_dFIX2e68gqmPerur_9vzegIrDb8mvXpCPIUlM34Gj-dUF5_D797spz0pLDm9wqo18sunlRrS-GicEG8SVBI1zgnm0RJMmJnUdRV4uSrwTD7UFbl0hH3qGl6YEXboD8tTk5fviaPlLqyTyqce-75qFRcymVW5voAfd_JIXsLyuBibNSBKaGGThOpEO-5MreAqTbTIlMjzKFGsA6zFitSNajuah4xk1Ii7thCTCDHZQKwDWzfNJrVsyW0NPiEQb25G1XF_opieyGYRk1wrYRmnRnHFVMaVpVzYLAutCFUmTAfSeRjLym862dohRsa3DGC9xbFsltFSzkDcgc16HiyMcGf4s-dHOKrOZcocWX71727ewsO9w6992d8fHLyGRziAWrVzHZar6bnZgAf6ohqW0zd-ZhM4vuup8QdkEIhy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELVQQQgOfCNSCvgAxy27ttfxcguUCEQV9VCgN8uetdtIIYmy21b8C34yHq-3SZBQD3DM7tqaOGPPm82bN4S8ljKECcFEJsHLTMjcZBUIJDt4HuAtV7mMhcKHw8lEnZxUR4lN2CRaJebQvhOKiGc1bu5l7XtG3FvGOcqSIcGAsX1WoGpVSIBuhrklOvnx-Pv6NQsXISTmfe3O30ZvRaUo3v-HdOk2AN0UFY2BaHz_P3yFB-ReQqF01LnNQ3LDzR-RuxvahI_Jr9H6r2268PTsJ9Z20R-RfOlo6jZxSmMrnYYGSyiyTSnSSpZd9QHebhd4pZ5CSy8DrF2FgRduhhPGj82Zq5t3NIDXEPxoGwm6ca5O64Qu17WgT8jX8cfjD5-y1L4hg3AqtJkNUCAARl9xcDIk4TVnuRfYQBCcqVRdgMq9LIDZOvfWl6zC5xTIoWVQKOBPyc58MXfPCDUKlC9LBiUEhMm8kqYqQVmj6roojRgQ0f98GpK2ObbYmOkiSaD2C65xwXVa8AHZvxq27MQ9rhvwHn3j6mHU5o4XFqtTnba6lmCUF5I5I40wVhrPpPLW5l7lxio3INWmZ-k2vprxXR8Vza8xYK93Q50Om0azIaaFZcgkB-RN55pbFh5Mv42ihbP2XFciQMrdfzDhFbl9dDDWh58nX56TO3in073cIzvt6ty9ILfgop02q5dxI_4GMUUwLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+hybrid+machine+learning+models+and+data+pre-processing+to+predict+water+level+of+watersheds%3A+Recent+trends+and+future+perspective&rft.jtitle=Cogent+engineering&rft.au=Sarah+J.+Mohammed&rft.au=Salah+L.+Zubaidi&rft.au=Sandra+Ortega-Martorell&rft.au=Nadhir+Al-Ansari&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2331-1916&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1080%2F23311916.2022.2143051&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ca8f462ea6a4ab6af268fbb0f80ab8e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2331-1916&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2331-1916&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2331-1916&client=summon |