Gradient-enhanced neural network and extreme gradient boosting modeling for the prediction of the 3D bone mineral density distribution from 2D-DXA scans

This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for...

Full description

Saved in:
Bibliographic Details
Published in:Osteoporosis and Sarcopenia Vol. 11; no. 3; pp. 98 - 106
Main Authors: Seo, Jiin, Quagliato, Luca, Chung, Yoon-Sok, Lee, Taeyong
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.09.2025
Elsevier
대한골다공증학회
Subjects:
ISSN:2405-5255, 2405-5263, 2405-5263
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan. Data from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure. Both models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets. The proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.
AbstractList Objectives: This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a twodimensional (2D) scan. Methods: Data from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure. Results: Both models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB’s errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets. Conclusions: The proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis. KCI Citation Count: 0
Objectives: This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan. Methods: Data from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure. Results: Both models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets. Conclusions: The proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.
AbstractObjectivesThis study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan. MethodsData from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure. ResultsBoth models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets. ConclusionsThe proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.
This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan. Data from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure. Both models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets. The proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.
This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan.ObjectivesThis study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine learning, this study bridges the gap between DXA and computed tomography (CT) in terms of volumetric bone assessment, suggesting an approach for a cost-effective and low-radiation alternative for bone health evaluation in a three-dimensional (3D) fashion from a two-dimensional (2D) scan.Data from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure.MethodsData from 34 participants included aligned DXA and CT scans for the proximal femur. Intensity values were extracted in Hounsfield units, with 3D information mapped as target variables and 2D information as features. Two machine learning models, Extreme Gradient Boosting (XGB) and Gradient-Enhanced Neural Network (GENN), were trained using 5-fold cross-validation strategy and show an average registration accuracy of 0.89 ± 0.04, assessed thorough structural similarity index measure.Both models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets.ResultsBoth models were built to predict the statistics of the 3D structure of the bone from a 2D image. The GENN model outperformed XGB, achieving mean absolute percentage errors (MAPE) of 12.98 ± 1.70%, 13.28 ± 2.01%, and 9.63 ± 1.66% for minimum, maximum, and the number of nonzero pixel intensities, respectively. In contrast, XGB's errors exceeded 16% across these metrics. The loss stabilized within 100 epochs, indicating model robustness and reliability across diverse test sets.The proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.ConclusionsThe proposed GENN framework offers a method for predicting 3D BMD distributions from a 2D-DXA scan, rivaling CT-based assessments. This approach reduces costs and radiation exposure, presenting a viable solution for personalized bone health evaluation and early osteoporosis diagnosis.
Author Seo, Jiin
Quagliato, Luca
Lee, Taeyong
Chung, Yoon-Sok
Author_xml – sequence: 1
  givenname: Jiin
  orcidid: 0009-0008-8647-6427
  surname: Seo
  fullname: Seo, Jiin
  organization: Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
– sequence: 2
  givenname: Luca
  orcidid: 0000-0002-5379-8306
  surname: Quagliato
  fullname: Quagliato, Luca
  organization: Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
– sequence: 3
  givenname: Yoon-Sok
  orcidid: 0000-0003-0179-4386
  surname: Chung
  fullname: Chung, Yoon-Sok
  organization: Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, South Korea
– sequence: 4
  givenname: Taeyong
  orcidid: 0000-0002-0176-0525
  surname: Lee
  fullname: Lee, Taeyong
  email: tlee@ewha.ac.kr
  organization: Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41127348$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003246206$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFklGL1DAQx4uceOd5X8AHyaMIXZM0absiwnKr58KBoCf4FtJkspfdNlmTVt1v4sc17a77IKgQmDD8_pPMzP9xdua8gyx7SvCMYFK-3Myk8XFGMeUzPJ9hTB9kF5RhnnNaFmenO-fn2VWMtsGMVZzTqnyUnTNCaFWw-iL7eROktuD6HNy9dAo0cjAE2abQf_dhi6TTCH70ATpA6yOMGu9jb90adV5DO16MD6i_B7QLoK3qrXfImylTLBPuAHXWwVhYg4u23yNtYx9sM0ysCb5DdJkvvyxQVNLFJ9lDI9sIV8d4mX1-9_bu-n1---Fmdb24zRWr6z6XynBeU6WhkLosmWkazlTqLh1OC9pUdQmMMGAyjY2Veo5TnhBFdV1Vcl5cZi8OdV0wYqus8NJOce3FNojFx7uVIElTp0kneHWAtZcbsQu2k2E_KaaED2shQ29VCwKrgjNQhVRQM1XruqZzzg0HXZjSmCLVen6otQv-6wCxF52NCtpWOvBDFAUtWZE6oHVCnx3RoelAnx7-vcYE0AOggo8xgDkhBIvRLmIjRruI0S4CzwWemnl9EEEa7zcLQUSVlpssYAOoPrVk_y1_84dcJSNYJdst7CFu_BBcWpwgIlKBxafRj6MdKceY0HL89Ku_F_jf678ACGXwKQ
Cites_doi 10.1002/mp.14835
10.1016/j.afos.2018.11.082
10.1016/j.wneu.2023.07.146
10.3389/fbioe.2023.1111020
10.1109/TIP.2005.854501
10.1016/j.bone.2016.12.016
10.1007/s00198-004-1782-3
10.1016/j.afos.2019.06.003
10.1080/10255842.2012.670855
10.3340/jkns.2013.54.5.384
10.1016/j.ijmecsci.2023.108898
10.1109/83.887976
10.2147/CIA.S150067
10.1016/j.jocd.2022.01.004
10.1007/s10994-016-5585-5
10.1016/j.gsf.2020.03.007
10.5312/wjo.v5.i4.402
10.1016/j.heliyon.2023.e19253
10.1016/j.bone.2017.05.020
10.1118/1.4944501
10.1109/TIP.2003.819861
10.1097/BOT.0000000000001078
10.2106/JBJS.J.00160
10.1016/j.afos.2020.05.004
10.1007/s00198-020-05319-x
10.3928/01477447-20150701-56
10.1016/bs.adcom.2020.11.005
10.1007/s00256-021-03801-z
10.1111/joim.12586
10.1109/MM.2010.41
10.1002/mp.13627
10.1016/j.afos.2021.05.004
10.1109/TMI.2016.2593346
10.1007/s40846-018-0394-x
10.1016/j.matdes.2023.111625
ContentType Journal Article
Copyright 2025 The Korean Society of Osteoporosis
The Korean Society of Osteoporosis
2025 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V.
Copyright_xml – notice: 2025 The Korean Society of Osteoporosis
– notice: The Korean Society of Osteoporosis
– notice: 2025 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOA
ACYCR
DOI 10.1016/j.afos.2025.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList




MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-5263
EndPage 106
ExternalDocumentID oai_kci_go_kr_ARTI_10758202
oai_doaj_org_article_0c354ec3ace84c8d882955f5ed3f6ff3
41127348
10_1016_j_afos_2025_09_002
S2405525525001268
1_s2_0_S2405525525001268
Genre Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
M~E
6I.
AAFTH
AAYXX
CITATION
.1-
.FO
0R~
457
5VS
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
NPM
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
7X8
ACYCR
ID FETCH-LOGICAL-c488t-acf5582cde3ad664fbb54c1271275232b786e414e4a10146d9075211c2d877a93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-5255
2405-5263
IngestDate Wed Oct 01 06:59:02 EDT 2025
Tue Oct 07 09:29:18 EDT 2025
Sat Oct 25 07:05:05 EDT 2025
Sun Oct 26 04:17:34 EDT 2025
Thu Nov 13 04:22:13 EST 2025
Sat Nov 01 17:05:16 EDT 2025
Sat Oct 25 09:08:13 EDT 2025
Sat Nov 08 08:05:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 2D-3D mapping
Bone mineral density (BMD) prediction
Extreme gradient boosting (XGB)
Gradient-enhanced neural network (GENN)
Dual-energy X-Ray absorptiometry (DXA)
Language English
License This is an open access article under the CC BY-NC-ND license.
2025 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-acf5582cde3ad664fbb54c1271275232b786e414e4a10146d9075211c2d877a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-8647-6427
0000-0002-0176-0525
0000-0002-5379-8306
0000-0003-0179-4386
OpenAccessLink https://doaj.org/article/0c354ec3ace84c8d882955f5ed3f6ff3
PMID 41127348
PQID 3264323228
PQPubID 23479
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10758202
doaj_primary_oai_doaj_org_article_0c354ec3ace84c8d882955f5ed3f6ff3
proquest_miscellaneous_3264323228
pubmed_primary_41127348
crossref_primary_10_1016_j_afos_2025_09_002
elsevier_sciencedirect_doi_10_1016_j_afos_2025_09_002
elsevier_clinicalkeyesjournals_1_s2_0_S2405525525001268
elsevier_clinicalkey_doi_10_1016_j_afos_2025_09_002
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Osteoporosis and Sarcopenia
PublicationTitleAlternate Osteoporos Sarcopenia
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
대한골다공증학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 대한골다공증학회
References Ruiz-Adame, Correa (bib7) 2020; 31
Dimai (bib11) 2017; 104
Inci, Isgenc, Marculescu (bib21) 2023
Lee, Lim, Galdos, Lee, Quagliato (bib26) 2024; 265
Tang, Jing, Jiang, Yang, Huang, Wu (bib28) 2023; 9
Schreiber, Anderson, Rosas, Buchholz, Au (bib39) 2011; 93
Lee, Chung, Oh, Park (bib42) 2013; 54
Glüer (bib12) 2017; 104
Lee, Park, Kim, Lee, Quagliato (bib25) 2023; 226
Humbert, Martelli, Fonolla, Steghöfer, Di Gregorio, Malouf (bib19) 2016; 36
Hong, Han (bib4) 2019; 5
Ho, Wong (bib6) 2020; 6
Humbert, Hazrati Marangalou, del Río Barquero, van Lenthe, van Rietbergen (bib17) 2016; 43
Almeida, Astudillo, Vandermeulen (bib18) 2021; 48
Kurkure, Sivaraman, Vu (bib23) 2017 Jun
Nickolls, Dally (bib24) 2010; 30
Cortez, Lai, Tabu (bib8) 2021; 7
Zhang, Wu, Zhong, Li, Wang (bib34) 2021; 12
Ibrahim, Pal, Pesant (bib37) 2017; 106
Amphansap, Sujarekul (bib10) 2018; 4
Park, Kim (bib20) 2021; 122
Thévenaz, Unser (bib30) 2000; 9
Cano (bib22) 2018; vol. 8
Whitmarsh, Fritscher, Humbert, Del Rio Barquero, Roth, Kammerlander (bib15) 2011
Wu, Kim, Li (bib27) 2019; 46
Alexiou, Roushias, Varitimidis, Malizos (bib1) 2018
Borchardt, Nickel, Andersen (bib14) 2022; 25
Oliveira, Tavares (bib29) 2014; 17
Luo (bib13) 2019; 39
Pu, Zhang, Zhu, Zhong, Shen, Zhang (bib40) 2023; 180
Lane, Nahm, Vallier (bib3) 2015; 38
Rathore, Dadich, Jha, Pradhan (bib35) 2018; 6
Kolta, Le Bras, Mitton, Bousson, de Guise, Fechtenbaum (bib16) 2005; 16
Zokai, Wolberg (bib31) 2005; 14
Dudle, Gugler, Pretterklieber, Ferrari, Lippuner, Zysset (bib38) 2023; 11
Katsoulis, Benetou, Karapetyan (bib2) 2017; 281
Wang, Bovik, Sheikh, Simoncelli (bib32) 2004; 13
Chen, Guestrin (bib33) 2016 Aug
Carpintero, Caeiro, Carpintero, Morales, Silva, Mesa (bib9) 2014; 5
Myers, Laboe, Johnson, Fredericks, Crichlow, Maar (bib5) 2018; 32
Dechter (bib36) 2022
Amin, Zakaria, Yahya (bib41) 2021; 50
Amphansap (10.1016/j.afos.2025.09.002_bib10) 2018; 4
Lee (10.1016/j.afos.2025.09.002_bib26) 2024; 265
Kolta (10.1016/j.afos.2025.09.002_bib16) 2005; 16
Rathore (10.1016/j.afos.2025.09.002_bib35) 2018; 6
Dudle (10.1016/j.afos.2025.09.002_bib38) 2023; 11
Amin (10.1016/j.afos.2025.09.002_bib41) 2021; 50
Zokai (10.1016/j.afos.2025.09.002_bib31) 2005; 14
Lane (10.1016/j.afos.2025.09.002_bib3) 2015; 38
Wang (10.1016/j.afos.2025.09.002_bib32) 2004; 13
Wu (10.1016/j.afos.2025.09.002_bib27) 2019; 46
Pu (10.1016/j.afos.2025.09.002_bib40) 2023; 180
Lee (10.1016/j.afos.2025.09.002_bib42) 2013; 54
Humbert (10.1016/j.afos.2025.09.002_bib19) 2016; 36
Oliveira (10.1016/j.afos.2025.09.002_bib29) 2014; 17
Carpintero (10.1016/j.afos.2025.09.002_bib9) 2014; 5
Cano (10.1016/j.afos.2025.09.002_bib22) 2018; vol. 8
Dechter (10.1016/j.afos.2025.09.002_bib36) 2022
Ruiz-Adame (10.1016/j.afos.2025.09.002_bib7) 2020; 31
Chen (10.1016/j.afos.2025.09.002_bib33) 2016
Glüer (10.1016/j.afos.2025.09.002_bib12) 2017; 104
Borchardt (10.1016/j.afos.2025.09.002_bib14) 2022; 25
Inci (10.1016/j.afos.2025.09.002_bib21) 2023
Ho (10.1016/j.afos.2025.09.002_bib6) 2020; 6
Luo (10.1016/j.afos.2025.09.002_bib13) 2019; 39
Zhang (10.1016/j.afos.2025.09.002_bib34) 2021; 12
Alexiou (10.1016/j.afos.2025.09.002_bib1) 2018
Whitmarsh (10.1016/j.afos.2025.09.002_bib15) 2011
Hong (10.1016/j.afos.2025.09.002_bib4) 2019; 5
Tang (10.1016/j.afos.2025.09.002_bib28) 2023; 9
Ibrahim (10.1016/j.afos.2025.09.002_bib37) 2017; 106
Myers (10.1016/j.afos.2025.09.002_bib5) 2018; 32
Schreiber (10.1016/j.afos.2025.09.002_bib39) 2011; 93
Cortez (10.1016/j.afos.2025.09.002_bib8) 2021; 7
Park (10.1016/j.afos.2025.09.002_bib20) 2021; 122
Dimai (10.1016/j.afos.2025.09.002_bib11) 2017; 104
Almeida (10.1016/j.afos.2025.09.002_bib18) 2021; 48
Lee (10.1016/j.afos.2025.09.002_bib25) 2023; 226
Humbert (10.1016/j.afos.2025.09.002_bib17) 2016; 43
Thévenaz (10.1016/j.afos.2025.09.002_bib30) 2000; 9
Katsoulis (10.1016/j.afos.2025.09.002_bib2) 2017; 281
Kurkure (10.1016/j.afos.2025.09.002_bib23) 2017
Nickolls (10.1016/j.afos.2025.09.002_bib24) 2010; 30
References_xml – volume: 281
  start-page: 300
  year: 2017
  end-page: 310
  ident: bib2
  article-title: Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project
  publication-title: J Intern Med
– volume: 5
  start-page: 38
  year: 2019
  end-page: 43
  ident: bib4
  article-title: The incidence of hip fracture and mortality rate after hip fracture in Korea: a nationwide population-based cohort study
  publication-title: Osteoporos Sarcopenia
– volume: 36
  start-page: 27
  year: 2016
  end-page: 39
  ident: bib19
  article-title: 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images
  publication-title: IEEE Trans Med Imaging
– volume: 50
  start-page: 2525
  year: 2021
  end-page: 2535
  ident: bib41
  article-title: Correlation between Hounsfield unit derived from head, thorax, abdomen, spine and pelvis CT and T-scores from DXA
  publication-title: Skelet Radiol
– volume: 6
  start-page: 71
  year: 2020
  end-page: 74
  ident: bib6
  article-title: Second hip fracture in Hong Kong–Incidence, demographics, and mortality
  publication-title: Osteoporos Sarcopenia
– volume: 48
  start-page: 2448
  year: 2021
  end-page: 2457
  ident: bib18
  article-title: Three-dimensional image volumes from two-dimensional digitally reconstructed radiographs: a deep learning approach in lower limb CT scans
  publication-title: Med Phys
– volume: 6
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib35
  article-title: Effect of learning rate on neural network and convolutional neural network
  publication-title: Int J Eng Res Technol
– start-page: 225
  year: 2023
  end-page: 252
  ident: bib21
  article-title: Efficient deep learning using non-volatile memory technology in GPU architectures
  publication-title: Embedded machine Learning for Cyber-Physical, IoT, and Edge Computing: Hardware Architectures
– volume: 32
  start-page: 111
  year: 2018
  end-page: 115
  ident: bib5
  article-title: Patient mortality in geriatric distal femur fractures
  publication-title: J Orthop Trauma
– start-page: 393
  year: 2011
  end-page: 400
  ident: bib15
  article-title: A statistical model of shape and bone mineral density distribution of the proximal femur for fracture risk assessment
  publication-title: Medical image computing and Computer-Assisted intervention – MICCAI 2011
– volume: vol. 8
  year: 2018
  ident: bib22
  publication-title: A survey on graphic processing unit computing for large‐scale data mining
– start-page: 785
  year: 2016 Aug
  end-page: 794
  ident: bib33
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on knowledge Discovery and Data Mining
– volume: 180
  start-page: e56
  year: 2023
  end-page: e68
  ident: bib40
  article-title: Hounsfield unit for evaluating bone mineral density and strength: variations in measurement methods
  publication-title: World Neurosurg
– volume: 39
  start-page: 287
  year: 2019
  end-page: 293
  ident: bib13
  article-title: Empirical functions for conversion of femur areal and volumetric bone mineral density
  publication-title: J Med Biol Eng
– volume: 9
  year: 2023
  ident: bib28
  article-title: The effect of image resolution on convolutional neural networks in breast ultrasound
  publication-title: Heliyon
– volume: 17
  start-page: 73
  year: 2014
  end-page: 93
  ident: bib29
  article-title: Medical image registration: a review
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 93
  start-page: 1057
  year: 2011
  end-page: 1063
  ident: bib39
  article-title: Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management
  publication-title: JBJS
– volume: 31
  start-page: 1205
  year: 2020
  end-page: 1216
  ident: bib7
  article-title: A systematic review of the indirect and social costs studies in fragility fractures
  publication-title: Osteoporos Int
– start-page: 591
  year: 2017 Jun
  end-page: 604
  ident: bib23
  article-title: Machine learning using virtualized GPUs in cloud environments
  publication-title: International Conference on High Performance Computing
– volume: 106
  start-page: 1
  year: 2017
  end-page: 54
  ident: bib37
  article-title: Improving probabilistic inference in graphical models with determinism and cycles
  publication-title: Mach Learn
– volume: 104
  start-page: 7
  year: 2017
  end-page: 12
  ident: bib12
  article-title: 30 years of DXA technology innovations
  publication-title: Bone
– volume: 265
  year: 2024
  ident: bib26
  article-title: Gaussian process regression-driven deep drawing blank design method
  publication-title: Int J Mech Sci
– volume: 11
  year: 2023
  ident: bib38
  article-title: 2D-3D reconstruction of the proximal femur from DXA scans: Evaluation of the 3D-Shaper software
  publication-title: Front Bioeng Biotechnol
– volume: 4
  start-page: 140
  year: 2018
  end-page: 144
  ident: bib10
  article-title: Quality of life and factors that affect osteoporotic hip fracture patients in Thailand
  publication-title: Osteoporos Sarcopenia
– volume: 104
  start-page: 39
  year: 2017
  end-page: 43
  ident: bib11
  article-title: Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases
  publication-title: Bone
– volume: 43
  start-page: 1945
  year: 2016
  end-page: 1954
  ident: bib17
  article-title: Cortical thickness and density estimation from clinical CT using a prior thickness‐density relationship
  publication-title: Med Phys
– volume: 54
  start-page: 384
  year: 2013
  end-page: 389
  ident: bib42
  article-title: Correlation between bone mineral density measured by dual-energy X-ray absorptiometry and Hounsfield units measured by diagnostic CT in lumbar spine
  publication-title: J Korean Neurosurg Soc
– volume: 5
  start-page: 402
  year: 2014
  end-page: 411
  ident: bib9
  article-title: Complications of hip fractures: a review
  publication-title: World J Orthop
– volume: 122
  start-page: 51
  year: 2021
  end-page: 95
  ident: bib20
  article-title: Hardware accelerator systems for artificial intelligence and machine learning
  publication-title: Adv Comput
– volume: 7
  start-page: 63
  year: 2021
  end-page: 68
  ident: bib8
  article-title: Economic burden and the effects of early versus delayed hospitalization on the treatment cost of patients with acute fragility hip fractures under the UPM-PGH Orthogeriatric Multidisciplinary Fracture Management Model and Fracture Liaison Service
  publication-title: Osteoporos Sarcopenia
– volume: 25
  start-page: 319
  year: 2022
  end-page: 327
  ident: bib14
  article-title: Femur and tibia BMD measurement in elective total knee arthroplasty candidates
  publication-title: J Clin Densitom
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib32
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 30
  start-page: 56
  year: 2010
  end-page: 69
  ident: bib24
  article-title: The GPU computing era
  publication-title: IEEE Micro
– volume: 46
  start-page: 4763
  year: 2019
  end-page: 4776
  ident: bib27
  article-title: Computationally efficient deep neural network for computed tomography image reconstruction
  publication-title: Med Phys
– volume: 9
  start-page: 2083
  year: 2000
  end-page: 2099
  ident: bib30
  article-title: Optimization of mutual information for multiresolution image registration
  publication-title: IEEE Trans Image Process
– volume: 226
  year: 2023
  ident: bib25
  article-title: Extreme gradient boosting-inspired process optimization algorithm for manufacturing engineering applications
  publication-title: Mater Des
– volume: 14
  start-page: 1422
  year: 2005
  end-page: 1434
  ident: bib31
  article-title: Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations
  publication-title: IEEE Trans Image Process
– year: 2022
  ident: bib36
  article-title: Reasoning with probabilistic and deterministic graphical models: Exact algorithms
– volume: 38
  start-page: e588
  year: 2015
  end-page: e592
  ident: bib3
  article-title: Morbidity and mortality of bilateral femur fractures
  publication-title: Orthopedics
– start-page: 143
  year: 2018
  end-page: 150
  ident: bib1
  article-title: Quality of life and psychological consequences in elderly patients after a hip fracture: a review
  publication-title: Clin Interv Aging
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: bib34
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci Front
– volume: 16
  start-page: 969
  year: 2005
  end-page: 976
  ident: bib16
  article-title: Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device
  publication-title: Osteoporos Int
– volume: 48
  start-page: 2448
  year: 2021
  ident: 10.1016/j.afos.2025.09.002_bib18
  article-title: Three-dimensional image volumes from two-dimensional digitally reconstructed radiographs: a deep learning approach in lower limb CT scans
  publication-title: Med Phys
  doi: 10.1002/mp.14835
– volume: 4
  start-page: 140
  year: 2018
  ident: 10.1016/j.afos.2025.09.002_bib10
  article-title: Quality of life and factors that affect osteoporotic hip fracture patients in Thailand
  publication-title: Osteoporos Sarcopenia
  doi: 10.1016/j.afos.2018.11.082
– volume: 180
  start-page: e56
  year: 2023
  ident: 10.1016/j.afos.2025.09.002_bib40
  article-title: Hounsfield unit for evaluating bone mineral density and strength: variations in measurement methods
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2023.07.146
– volume: 11
  year: 2023
  ident: 10.1016/j.afos.2025.09.002_bib38
  article-title: 2D-3D reconstruction of the proximal femur from DXA scans: Evaluation of the 3D-Shaper software
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1111020
– start-page: 393
  year: 2011
  ident: 10.1016/j.afos.2025.09.002_bib15
  article-title: A statistical model of shape and bone mineral density distribution of the proximal femur for fracture risk assessment
– volume: 14
  start-page: 1422
  year: 2005
  ident: 10.1016/j.afos.2025.09.002_bib31
  article-title: Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2005.854501
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.afos.2025.09.002_bib35
  article-title: Effect of learning rate on neural network and convolutional neural network
  publication-title: Int J Eng Res Technol
– volume: 104
  start-page: 39
  year: 2017
  ident: 10.1016/j.afos.2025.09.002_bib11
  article-title: Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases
  publication-title: Bone
  doi: 10.1016/j.bone.2016.12.016
– volume: 16
  start-page: 969
  year: 2005
  ident: 10.1016/j.afos.2025.09.002_bib16
  article-title: Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-004-1782-3
– volume: 5
  start-page: 38
  year: 2019
  ident: 10.1016/j.afos.2025.09.002_bib4
  article-title: The incidence of hip fracture and mortality rate after hip fracture in Korea: a nationwide population-based cohort study
  publication-title: Osteoporos Sarcopenia
  doi: 10.1016/j.afos.2019.06.003
– volume: 17
  start-page: 73
  year: 2014
  ident: 10.1016/j.afos.2025.09.002_bib29
  article-title: Medical image registration: a review
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2012.670855
– volume: 54
  start-page: 384
  year: 2013
  ident: 10.1016/j.afos.2025.09.002_bib42
  article-title: Correlation between bone mineral density measured by dual-energy X-ray absorptiometry and Hounsfield units measured by diagnostic CT in lumbar spine
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2013.54.5.384
– volume: vol. 8
  year: 2018
  ident: 10.1016/j.afos.2025.09.002_bib22
– volume: 265
  year: 2024
  ident: 10.1016/j.afos.2025.09.002_bib26
  article-title: Gaussian process regression-driven deep drawing blank design method
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2023.108898
– volume: 9
  start-page: 2083
  year: 2000
  ident: 10.1016/j.afos.2025.09.002_bib30
  article-title: Optimization of mutual information for multiresolution image registration
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.887976
– start-page: 143
  year: 2018
  ident: 10.1016/j.afos.2025.09.002_bib1
  article-title: Quality of life and psychological consequences in elderly patients after a hip fracture: a review
  publication-title: Clin Interv Aging
  doi: 10.2147/CIA.S150067
– volume: 25
  start-page: 319
  year: 2022
  ident: 10.1016/j.afos.2025.09.002_bib14
  article-title: Femur and tibia BMD measurement in elective total knee arthroplasty candidates
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2022.01.004
– volume: 106
  start-page: 1
  year: 2017
  ident: 10.1016/j.afos.2025.09.002_bib37
  article-title: Improving probabilistic inference in graphical models with determinism and cycles
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5585-5
– volume: 12
  start-page: 469
  year: 2021
  ident: 10.1016/j.afos.2025.09.002_bib34
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.007
– volume: 5
  start-page: 402
  year: 2014
  ident: 10.1016/j.afos.2025.09.002_bib9
  article-title: Complications of hip fractures: a review
  publication-title: World J Orthop
  doi: 10.5312/wjo.v5.i4.402
– volume: 9
  year: 2023
  ident: 10.1016/j.afos.2025.09.002_bib28
  article-title: The effect of image resolution on convolutional neural networks in breast ultrasound
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e19253
– volume: 104
  start-page: 7
  year: 2017
  ident: 10.1016/j.afos.2025.09.002_bib12
  article-title: 30 years of DXA technology innovations
  publication-title: Bone
  doi: 10.1016/j.bone.2017.05.020
– volume: 43
  start-page: 1945
  year: 2016
  ident: 10.1016/j.afos.2025.09.002_bib17
  article-title: Cortical thickness and density estimation from clinical CT using a prior thickness‐density relationship
  publication-title: Med Phys
  doi: 10.1118/1.4944501
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.afos.2025.09.002_bib32
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– year: 2022
  ident: 10.1016/j.afos.2025.09.002_bib36
– volume: 32
  start-page: 111
  year: 2018
  ident: 10.1016/j.afos.2025.09.002_bib5
  article-title: Patient mortality in geriatric distal femur fractures
  publication-title: J Orthop Trauma
  doi: 10.1097/BOT.0000000000001078
– volume: 93
  start-page: 1057
  year: 2011
  ident: 10.1016/j.afos.2025.09.002_bib39
  article-title: Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management
  publication-title: JBJS
  doi: 10.2106/JBJS.J.00160
– start-page: 225
  year: 2023
  ident: 10.1016/j.afos.2025.09.002_bib21
  article-title: Efficient deep learning using non-volatile memory technology in GPU architectures
– volume: 6
  start-page: 71
  year: 2020
  ident: 10.1016/j.afos.2025.09.002_bib6
  article-title: Second hip fracture in Hong Kong–Incidence, demographics, and mortality
  publication-title: Osteoporos Sarcopenia
  doi: 10.1016/j.afos.2020.05.004
– volume: 31
  start-page: 1205
  year: 2020
  ident: 10.1016/j.afos.2025.09.002_bib7
  article-title: A systematic review of the indirect and social costs studies in fragility fractures
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-020-05319-x
– volume: 38
  start-page: e588
  year: 2015
  ident: 10.1016/j.afos.2025.09.002_bib3
  article-title: Morbidity and mortality of bilateral femur fractures
  publication-title: Orthopedics
  doi: 10.3928/01477447-20150701-56
– volume: 122
  start-page: 51
  year: 2021
  ident: 10.1016/j.afos.2025.09.002_bib20
  article-title: Hardware accelerator systems for artificial intelligence and machine learning
  publication-title: Adv Comput
  doi: 10.1016/bs.adcom.2020.11.005
– start-page: 591
  year: 2017
  ident: 10.1016/j.afos.2025.09.002_bib23
  article-title: Machine learning using virtualized GPUs in cloud environments
– volume: 50
  start-page: 2525
  year: 2021
  ident: 10.1016/j.afos.2025.09.002_bib41
  article-title: Correlation between Hounsfield unit derived from head, thorax, abdomen, spine and pelvis CT and T-scores from DXA
  publication-title: Skelet Radiol
  doi: 10.1007/s00256-021-03801-z
– volume: 281
  start-page: 300
  year: 2017
  ident: 10.1016/j.afos.2025.09.002_bib2
  article-title: Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project
  publication-title: J Intern Med
  doi: 10.1111/joim.12586
– volume: 30
  start-page: 56
  year: 2010
  ident: 10.1016/j.afos.2025.09.002_bib24
  article-title: The GPU computing era
  publication-title: IEEE Micro
  doi: 10.1109/MM.2010.41
– volume: 46
  start-page: 4763
  year: 2019
  ident: 10.1016/j.afos.2025.09.002_bib27
  article-title: Computationally efficient deep neural network for computed tomography image reconstruction
  publication-title: Med Phys
  doi: 10.1002/mp.13627
– volume: 7
  start-page: 63
  year: 2021
  ident: 10.1016/j.afos.2025.09.002_bib8
  article-title: Economic burden and the effects of early versus delayed hospitalization on the treatment cost of patients with acute fragility hip fractures under the UPM-PGH Orthogeriatric Multidisciplinary Fracture Management Model and Fracture Liaison Service
  publication-title: Osteoporos Sarcopenia
  doi: 10.1016/j.afos.2021.05.004
– volume: 36
  start-page: 27
  year: 2016
  ident: 10.1016/j.afos.2025.09.002_bib19
  article-title: 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2593346
– volume: 39
  start-page: 287
  year: 2019
  ident: 10.1016/j.afos.2025.09.002_bib13
  article-title: Empirical functions for conversion of femur areal and volumetric bone mineral density
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-018-0394-x
– volume: 226
  year: 2023
  ident: 10.1016/j.afos.2025.09.002_bib25
  article-title: Extreme gradient boosting-inspired process optimization algorithm for manufacturing engineering applications
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2023.111625
– start-page: 785
  year: 2016
  ident: 10.1016/j.afos.2025.09.002_bib33
  article-title: XGBoost: a scalable tree boosting system
SSID ssib044755276
ssj0001562622
Score 2.301933
Snippet This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing machine...
AbstractObjectivesThis study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By...
Objectives: This study aims to predict the volumetric bone mineral density (BMD) distribution from a dual-energy X-ray absorptiometry (DXA) scan. By employing...
SourceID nrf
doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 98
SubjectTerms 2D-3D mapping
Bone mineral density (BMD) prediction
Dual-energy X-Ray absorptiometry (DXA)
Endocrinology and Metabolism
Extreme gradient boosting (XGB)
Gradient-enhanced neural network (GENN)
정형외과학
Title Gradient-enhanced neural network and extreme gradient boosting modeling for the prediction of the 3D bone mineral density distribution from 2D-DXA scans
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405525525001268
https://www.clinicalkey.es/playcontent/1-s2.0-S2405525525001268
https://dx.doi.org/10.1016/j.afos.2025.09.002
https://www.ncbi.nlm.nih.gov/pubmed/41127348
https://www.proquest.com/docview/3264323228
https://doaj.org/article/0c354ec3ace84c8d882955f5ed3f6ff3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003246206
Volume 11
WOSCitedRecordID wos001589019500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Osteoporosis and Sarcopenia, 2025, 11(3), , pp.98-106
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-5263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001562622
  issn: 2405-5255
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-5263
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044755276
  issn: 2405-5255
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoxYELAvFaHpUR3FBE4kfsHAvbAgcqJEDam-X4UbYV2SpJK_XC7-DnMmMnqyIBvXBJomicOJ6x_U08_oaQl3XA3ZQsFL6M4KAI7gqrrS2Y1coCgA5KxZRsQh0d6dWq-XQl1RfGhGV64Nxwr0vHpQiOWxe0cNoDImykjDJ4HusYE89nqZorzhRYErLYSZYzywEiAW9LymnHTA7usnGDXN1MJpLT6Z_KPCsl8v7fJqedro9_h6BpKjq8Q25PGJLu57rfJTdCd4_8fNen6K2xCN23tKxPkasS5Loc6U1t5ykMxfhDkB5PwhRA9oCRzzSlxMELQLEUUCE963ENB_VGNzHd4UsQ7wL9vk5U1dRj8Pt4ST2S7055syjuV6FsWSxX-3QAvQ33ydfDgy9v3xdT2oXCQW8eC-uilJo5H7j1dS1i20rhKqaQCx4AWKt0HUQlgrCY6Lf24F8DCKgc81op2_AHZLeD2jwitBVSgUvGgiitsEG1rS9txSxDmj-Algvyam52c5bZNcwcdnZiUEkGlWTKxoCSFuQNamYriczY6QbYi5nsxVxnLwvCZ72aefMpDJfwoPU_X63-VCoMU48fTGUGZkrzGe0NzQ2gJcz9tV4QuS05gZoMVq594wswOnPq1uk78Xy8Mae9AT_nAxQCP4-h1PPZKA2MC7jYY7uwOR8MwHLBQVsMavAwW-u24QSAbGQ1evw_GvQJuYXVznF3T8nu2J-HZ-SmuxjXQ79HdtRK76XOCcePPw5-ARR1PMs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-enhanced+neural+network+and+extreme+gradient+boosting+modeling+for+the+prediction+of+the+3D+bone+mineral+density+distribution+from+2D-DXA+scans&rft.jtitle=Osteoporosis+and+Sarcopenia&rft.au=Seo%2C+Jiin&rft.au=Quagliato%2C+Luca&rft.au=Chung%2C+Yoon-Sok&rft.au=Lee%2C+Taeyong&rft.date=2025-09-01&rft.issn=2405-5255&rft.volume=11&rft.issue=3&rft.spage=98&rft.epage=106&rft_id=info:doi/10.1016%2Fj.afos.2025.09.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_afos_2025_09_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-5255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-5255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-5255&client=summon