Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework

The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This pape...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Diagnostics (Basel) Ročník 13; číslo 22; s. 3439
Hlavní autoři: Elshewey, Ahmed M., Shams, Mahmoud Y., Tawfeek, Sayed M., Alharbi, Amal H., Ibrahim, Abdelhameed, Abdelhamid, Abdelaziz A., Eid, Marwa M., Khodadadi, Nima, Abualigah, Laith, Khafaga, Doaa Sami, Tarek, Zahraa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2023
Témata:
ISSN:2075-4418, 2075-4418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model’s accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system’s efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.
AbstractList The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model’s accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system’s efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.
The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.
Audience Academic
Author Tarek, Zahraa
Alharbi, Amal H.
Ibrahim, Abdelhameed
Eid, Marwa M.
Shams, Mahmoud Y.
Abdelhamid, Abdelaziz A.
Abualigah, Laith
Khafaga, Doaa Sami
Elshewey, Ahmed M.
Khodadadi, Nima
Tawfeek, Sayed M.
Author_xml – sequence: 1
  givenname: Ahmed M.
  orcidid: 0000-0002-3048-1920
  surname: Elshewey
  fullname: Elshewey, Ahmed M.
– sequence: 2
  givenname: Mahmoud Y.
  orcidid: 0000-0003-3021-5902
  surname: Shams
  fullname: Shams, Mahmoud Y.
– sequence: 3
  givenname: Sayed M.
  surname: Tawfeek
  fullname: Tawfeek, Sayed M.
– sequence: 4
  givenname: Amal H.
  surname: Alharbi
  fullname: Alharbi, Amal H.
– sequence: 5
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 6
  givenname: Abdelaziz A.
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
– sequence: 7
  givenname: Marwa M.
  surname: Eid
  fullname: Eid, Marwa M.
– sequence: 8
  givenname: Nima
  orcidid: 0000-0002-8348-6530
  surname: Khodadadi
  fullname: Khodadadi, Nima
– sequence: 9
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
– sequence: 10
  givenname: Doaa Sami
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
– sequence: 11
  givenname: Zahraa
  orcidid: 0000-0001-9389-2850
  surname: Tarek
  fullname: Tarek, Zahraa
BookMark eNp9kktvEzEUhUeoSJTSX8BmJDZsUvwc2-xC-pQqpYvA1rrjx9RhZhzsiVD49ThNK6CqsBe2js53LN9731ZHYxxdVb3H6IxShT7ZAN0Y8xRMxpQQyqh6VR0TJPiMMSyP_rq_qU5zXqOyFKaS8ONqvtxMYQi_wtjV14tv9XnIDrKr75KzwUwhjnUY64tut5k-16t7V9_vlnerqy_1ZYLB_Yzp-7vqtYc-u9PH86T6enmxWlzPbpdXN4v57cwwKacZYEMIMoIz33qvjGiMbaVkqmkQWGodgOSOcqeokahtkG2JtS0ijWRCGkFPqptDro2w1psUBkg7HSHoByGmTkMqReidhtaCVAp7ySnDnisPxuK95rjHXJWsj4esTYo_ti5PegjZuL6H0cVt1kQqKqnADS3WD8-s67hNY_npgwshKrn44-qgvB9GH6cEZh-q50IwihURTXGdveAq27ohmNJVH4r-D6AOgEkx5-S8NmGCfVcKGHqNkd6PgH5hBApLn7FPNfsf9RvUxLdz
CitedBy_id crossref_primary_10_1007_s11468_025_02932_6
crossref_primary_10_1038_s41598_024_74475_5
crossref_primary_10_1038_s41598_025_02355_7
crossref_primary_10_1007_s44196_025_00956_8
crossref_primary_10_1007_s44196_025_00957_7
crossref_primary_10_1038_s41598_025_00153_9
crossref_primary_10_1007_s10916_025_02185_0
crossref_primary_10_1038_s41598_025_00509_1
crossref_primary_10_1038_s41598_025_95983_y
crossref_primary_10_1038_s41598_024_73559_6
crossref_primary_10_1186_s12872_025_04739_z
crossref_primary_10_1371_journal_pone_0317554
crossref_primary_10_1186_s40537_025_01191_w
crossref_primary_10_1007_s10115_025_02489_0
crossref_primary_10_1038_s41598_025_00607_0
crossref_primary_10_1038_s41598_025_04171_5
crossref_primary_10_1002_for_3258
crossref_primary_10_1016_j_bspc_2024_107417
crossref_primary_10_1038_s41598_025_98703_8
crossref_primary_10_1038_s41598_024_83592_0
crossref_primary_10_1038_s41598_025_98721_6
crossref_primary_10_1007_s11760_025_04545_2
crossref_primary_10_1016_j_virol_2024_110307
crossref_primary_10_1016_j_imu_2025_101651
crossref_primary_10_1038_s41598_025_07104_4
crossref_primary_10_1186_s12911_025_03014_7
crossref_primary_10_1186_s12911_025_03018_3
crossref_primary_10_1038_s41598_025_99167_6
crossref_primary_10_1186_s12911_025_03094_5
Cites_doi 10.1007/978-1-4842-6579-6
10.1016/j.imu.2019.100267
10.3390/mi14020265
10.1214/aos/1013203451
10.1186/1756-0500-7-565
10.1007/s10620-019-05886-y
10.3390/math10193614
10.1101/2020.11.02.20224840
10.3390/diagnostics13122038
10.1016/j.patrec.2019.05.021
10.1016/j.cmpb.2011.08.003
10.3390/s23042085
10.1016/j.cmpb.2020.105551
10.1109/IJCNN.2018.8489307
10.1109/ICCV.2015.350
10.1136/oemed-2015-102879
10.1109/CCAA.2016.7813704
10.1016/j.ecolmodel.2019.06.002
10.1093/infdis/jiy401
10.20944/preprints202102.0488.v1
10.1109/TNNLS.2020.3006877
10.1016/j.neucom.2020.07.061
10.1023/A:1009887311454
10.1186/1471-2334-12-86
10.1109/TKDE.2019.2912815
10.1007/s10462-011-9230-1
10.1016/j.csda.2016.07.016
10.1145/3292500.3330701
10.1371/journal.pone.0034460
10.1016/j.neucom.2019.10.118
10.1109/ICITACEE50144.2020.9239164
10.1007/978-3-642-35326-0_6
10.1016/j.patcog.2020.107245
10.1016/j.neucom.2017.11.077
10.3390/electronics11111750
10.1016/j.rser.2018.04.008
10.1016/j.datak.2022.102087
10.1109/TCYB.2022.3228301
10.4254/wjh.v7.i26.2676
10.3390/math10203845
10.1016/j.procs.2015.04.201
10.1007/978-981-10-7512-4_91
10.1007/s007050050479
10.3390/diagnostics12112892
10.1002/hep.26744
10.1016/j.bspc.2023.104908
10.3390/biomimetics8060457
10.1002/hep.20819
10.1016/j.envsoft.2017.12.001
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3390/diagnostics13223439
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_abda8991f85341f59facd1da89e5f159
A774319276
10_3390_diagnostics13223439
GeographicLocations Egypt
Taiwan
GeographicLocations_xml – name: Taiwan
– name: Egypt
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c488t-a1c220c754fbff9c76cdb8849660ad3deaa85e35e93c80b60db2ddb0268478c73
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4418
IngestDate Fri Oct 03 12:50:44 EDT 2025
Wed Oct 01 13:00:50 EDT 2025
Mon Jun 30 04:39:32 EDT 2025
Tue Nov 11 11:10:01 EST 2025
Tue Nov 04 18:32:55 EST 2025
Sat Nov 29 07:15:49 EST 2025
Tue Nov 18 20:54:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-a1c220c754fbff9c76cdb8849660ad3deaa85e35e93c80b60db2ddb0268478c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9843-6392
0000-0002-8348-6530
0000-0003-3021-5902
0000-0002-8352-6731
0000-0002-3048-1920
0000-0001-7080-1979
0000-0002-2203-4549
0000-0001-9389-2850
OpenAccessLink https://doaj.org/article/abda8991f85341f59facd1da89e5f159
PQID 2893003857
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_abda8991f85341f59facd1da89e5f159
proquest_miscellaneous_2893837163
proquest_journals_2893003857
gale_infotracmisc_A774319276
gale_infotracacademiconefile_A774319276
crossref_citationtrail_10_3390_diagnostics13223439
crossref_primary_10_3390_diagnostics13223439
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Cervantes (ref_53) 2020; 408
Westermann (ref_9) 2015; 72
Wong (ref_44) 2019; 32
ref_14
ref_57
Robertson (ref_1) 1998; 143
ref_55
ref_54
Prieto (ref_23) 2018; 90
ref_18
ref_16
ref_15
Zareapoor (ref_59) 2015; 48
ref_61
ref_25
ref_24
Tran (ref_28) 2020; 103
ref_20
Simmonds (ref_5) 2005; 42
ref_29
ref_27
Lusa (ref_48) 2017; 113
Ezz (ref_32) 2019; 17
Dong (ref_60) 2006; 24
Schratz (ref_12) 2019; 406
Priyanka (ref_52) 2020; 12
Peng (ref_58) 2020; 32
Sartakhti (ref_34) 2012; 108
Huang (ref_8) 2020; 65
Peter (ref_47) 2017; 30
ref_36
Fouad (ref_62) 2023; 14
ref_35
ref_33
Kashif (ref_11) 2021; 1
Meyer (ref_41) 2018; 101
Kotsiantis (ref_22) 2011; 42
(ref_10) 2022; 142
ref_39
ref_38
ref_37
Liu (ref_56) 2022; 53
Nandipati (ref_31) 2020; 4
Borgia (ref_3) 2018; 218
Yang (ref_13) 2020; 415
Khafaga (ref_17) 2022; 73
Friedman (ref_26) 2001; 29
ref_46
ref_45
ref_43
ref_42
ref_40
Cai (ref_21) 2018; 300
Smith (ref_2) 2014; 59
ref_49
Mohamed (ref_7) 2015; 7
ref_4
Cai (ref_30) 2019; 125
Samee (ref_19) 2022; 73
Rastogi (ref_51) 2000; 4
ref_6
References_xml – ident: ref_45
  doi: 10.1007/978-1-4842-6579-6
– volume: 17
  start-page: 100267
  year: 2019
  ident: ref_32
  article-title: Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100267
– ident: ref_38
  doi: 10.3390/mi14020265
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_26
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_37
  doi: 10.1186/1756-0500-7-565
– volume: 65
  start-page: 1491
  year: 2020
  ident: ref_8
  article-title: Noninvasive measurements predict liver fibrosis well in hepatitis C virus patients after direct-acting antiviral therapy
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-019-05886-y
– ident: ref_14
  doi: 10.3390/math10193614
– ident: ref_39
– volume: 1
  start-page: 79
  year: 2021
  ident: ref_11
  article-title: Treatment response prediction in hepatitis C patients using machine learning techniques
  publication-title: Int. J. Technol. Innov. Manag.
– ident: ref_25
  doi: 10.1101/2020.11.02.20224840
– ident: ref_18
  doi: 10.3390/diagnostics13122038
– ident: ref_42
– volume: 125
  start-page: 396
  year: 2019
  ident: ref_30
  article-title: Classification complexity assessment for hyper-parameter optimization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.05.021
– volume: 108
  start-page: 570
  year: 2012
  ident: ref_34
  article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.08.003
– ident: ref_40
  doi: 10.3390/s23042085
– ident: ref_33
  doi: 10.1016/j.cmpb.2020.105551
– ident: ref_55
  doi: 10.1109/IJCNN.2018.8489307
– ident: ref_49
  doi: 10.1109/ICCV.2015.350
– volume: 72
  start-page: 880
  year: 2015
  ident: ref_9
  article-title: The prevalence of hepatitis C among healthcare workers: A systematic review and meta-analysis
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oemed-2015-102879
– ident: ref_57
  doi: 10.1109/CCAA.2016.7813704
– volume: 406
  start-page: 109
  year: 2019
  ident: ref_12
  article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.06.002
– volume: 218
  start-page: 1722
  year: 2018
  ident: ref_3
  article-title: Identification of a novel hepatitis C virus genotype from Punjab, India: Expanding classification of hepatitis C virus into 8 genotypes
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy401
– ident: ref_24
  doi: 10.20944/preprints202102.0488.v1
– ident: ref_27
– volume: 32
  start-page: 2595
  year: 2020
  ident: ref_58
  article-title: Discriminative ridge machine: A classifier for high-dimensional data or imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3006877
– volume: 415
  start-page: 295
  year: 2020
  ident: ref_13
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 4
  start-page: 315
  year: 2000
  ident: ref_51
  article-title: PUBLIC: A decision tree classifier that integrates building and pruning
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009887311454
– ident: ref_4
  doi: 10.1186/1471-2334-12-86
– volume: 32
  start-page: 1586
  year: 2019
  ident: ref_44
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– ident: ref_20
– volume: 42
  start-page: 157
  year: 2011
  ident: ref_22
  article-title: Feature selection for machine learning classification problems: A recent overview
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9230-1
– volume: 113
  start-page: 19
  year: 2017
  ident: ref_48
  article-title: Gradient boosting for high-dimensional prediction of rare events
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.07.016
– ident: ref_46
  doi: 10.1145/3292500.3330701
– ident: ref_6
  doi: 10.1371/journal.pone.0034460
– volume: 408
  start-page: 189
  year: 2020
  ident: ref_53
  article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– ident: ref_29
  doi: 10.1109/ICITACEE50144.2020.9239164
– volume: 73
  start-page: 749
  year: 2022
  ident: ref_17
  article-title: Meta-heuristics for feature selection and classification in diagnostic breast cancer
  publication-title: Comput. Mater. Contin.
– ident: ref_36
  doi: 10.1007/978-3-642-35326-0_6
– volume: 103
  start-page: 107245
  year: 2020
  ident: ref_28
  article-title: Hyper-parameter optimization in classification: To-do or not-to-do
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107245
– volume: 300
  start-page: 70
  year: 2018
  ident: ref_21
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 14
  start-page: 252
  year: 2023
  ident: ref_62
  article-title: Adaptive Visual Sentiment Prediction Model Based on Event Concepts and Object Detection Techniques in Social Media
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_43
  doi: 10.3390/electronics11111750
– volume: 24
  start-page: 239
  year: 2006
  ident: ref_60
  article-title: Using Bagging classifier to predict protein domain structural class
  publication-title: J. Biomol. Struct. Dyn.
– volume: 4
  start-page: 89
  year: 2020
  ident: ref_31
  article-title: Hepatitis C virus (HCV) prediction by machine learning techniques
  publication-title: Appl. Model. Simul.
– volume: 90
  start-page: 728
  year: 2018
  ident: ref_23
  article-title: Feature selection in machine learning prediction systems for renewable energy applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.008
– volume: 142
  start-page: 102087
  year: 2022
  ident: ref_10
  article-title: Hepatitis C virus data analysis and prediction using machine learning
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2022.102087
– ident: ref_50
– volume: 53
  start-page: 7353
  year: 2022
  ident: ref_56
  article-title: PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3228301
– volume: 12
  start-page: 246
  year: 2020
  ident: ref_52
  article-title: Decision tree classifier: A detailed survey
  publication-title: Int. J. Inf. Decis. Sci.
– volume: 7
  start-page: 2676
  year: 2015
  ident: ref_7
  article-title: Hepatitis C virus: A global view
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v7.i26.2676
– ident: ref_15
  doi: 10.3390/math10203845
– volume: 48
  start-page: 679
  year: 2015
  ident: ref_59
  article-title: Application of credit card fraud detection: Based on bagging ensemble classifier
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.04.201
– ident: ref_35
  doi: 10.1007/978-981-10-7512-4_91
– volume: 143
  start-page: 2493
  year: 1998
  ident: ref_1
  article-title: Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: Proposals for standardization
  publication-title: Arch. Virol.
  doi: 10.1007/s007050050479
– ident: ref_16
  doi: 10.3390/diagnostics12112892
– volume: 59
  start-page: 318
  year: 2014
  ident: ref_2
  article-title: Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource
  publication-title: Hepatology
  doi: 10.1002/hep.26744
– ident: ref_54
  doi: 10.1016/j.bspc.2023.104908
– ident: ref_61
  doi: 10.3390/biomimetics8060457
– volume: 42
  start-page: 962
  year: 2005
  ident: ref_5
  article-title: Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes
  publication-title: Hepatology
  doi: 10.1002/hep.20819
– volume: 73
  start-page: 4193
  year: 2022
  ident: ref_19
  article-title: Metaheuristic optimization through deep learning classification of COVID-19 in chest X-ray images
  publication-title: Comput. Mater. Contin.
– volume: 101
  start-page: 1
  year: 2018
  ident: ref_41
  article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.12.001
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_47
  article-title: Cost efficient gradient boosting
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0000913825
Score 2.4155695
Snippet The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3439
SubjectTerms Accuracy
Algorithms
Biopsy
Blood
Classification
Datasets
Disease
Feature selection
Forecasts and trends
Genotype & phenotype
gradient boosting (GB)
Hepatitis C
Hepatitis C virus
hepatitis C virus (HCV)
hyperparameters
Infection
Infections
Inflammation
Liver cancer
Liver cirrhosis
Machine learning
Medical research
Medicine, Experimental
Optimization
OPTUNA
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhxAvjE8RGMhISLwQLbGd2OFlakfLXugqNNDeLMd2oBKko-0mjb-eu8QtTIK98GqfLSd3vg-f_TuAV4IrFcpSporAKqXXZaqD5WlWozXKyw4Spis2oaZTfXpazeKB2ypeq9zoxE5R-4WjM_J9DAxEl8ZSB2c_UqoaRdnVWELjJuwQUpkcwM5oPJ193J6yEOolxkA93JDA-H7f9zfYCAOZAjEhqUz4HyapQ-7_l37ujM5k93-Xew_uRneTDXv5uA83QvsAbn-ICfWHMDxGlfF9_hMNGDs6_Mze9fkaNlsSCTGNzVs2plplbxmKFPt6eTw7eT9ik82lrkfwaTI-OTxKY1WF1OFmXac2d5xnThWyqZumcqp0vtZaEkyn9cIHa3URRBEq4XRWl5mvufd1RrAwSjslHsOgXbThCTCcAald3tQukJGzZcCJZeW4dBz90AT45scaFyHHqfLFN4OhB3HD_IUbCbzZDjrrETeuJx8Rx7akBJfdNSyWX0zcfcbW3mJgmTfonMi8KarGOp9TWygadOgSeE38NrSpcYHOxrcJ-JkEj2WGihytiqsygb0rlLgZ3dXujTiYqAxW5rcsJPBy200j6YJbGxbnPY0WGLyKp9dP8QzuUMX7_jnkHgzWy_PwHG65i_V8tXwR5f8XbvEPDA
  priority: 102
  providerName: ProQuest
Title Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework
URI https://www.proquest.com/docview/2893003857
https://www.proquest.com/docview/2893837163
https://doaj.org/article/abda8991f85341f59facd1da89e5f159
Volume 13
WOSCitedRecordID wos001108144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2boy-jO6LeW2DBoO9zNSWPyT3LWmTdQ9JzOhG9iRkSWaB1i1pOuj--t5ZTkih61764gf5JKQ7ne7OOv8O4FPChXB5noaCwCpTK_NQOs3DqEJrFOctJExbbEJMJnI2K8qNUl-UE-bhgT3jDnRlNcYEcY12JY3rrKi1sTG1uaxGW0ynL3o9G8FUewYXhK2XeZihBOP6A-sz1wj7mAKwJKXy4BumqEXs_9e53Bqb0Q687LxE1vezewVPXPMaXoy7e_A30J-ipp_P_6LdYSdHP9mxv2Zh5YJIiNds3rAhlRg7ZLgT2O-baXn6dcBGq1yst_BjNDw9Ogm7YgihQR1bhjo2nEdGZGld1XVhRG5sJWVK6JraJtZpLTOXZK5IjIyqPLIVt7aKCM1FSCOSd7DVXDTuPTAcAalNXFfGkW3SucOB08Lw1HB0HwPgK74o0yGFU8GKM4URAzFT3cPMAL6sO116oIyHyQfE8DUpoVy3DSh71cle_U_2AXwmcSnSRZyg0d0vBbhMQrVSfUH-UcFFHsDeHUrUIXP39UrgqtPhK4WhaNJenIoAPq5fU0_KS2vcxbWnwRAfndoPj7GgXdj20LD0iWcPtpaLa7cPz82f5fxq0YOnYiZ78GwwnJTfe-2Gx-eYT7Gt_DYuf90CF-cFvg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3ohAgUUCccGqvWt710gIpY-QqE3qQ6jKyax31xAJnJKkoPKj-I3M-BGoBL31wNU7Xnk9n-fhnf0G4JngUro4Dj1JZJWhVbGnnOaen6M3CuKKEqZqNiHHY3V0lKRr8LM9C0Nlla1NrAy1nRn6R76JiYGotrHkm-OvHnWNot3VtoVGDYs9d_odU7bF6-EO6vc55_3dyfbAa7oKeAbBuvR0YDj3jYzCIi-KxMjY2FypkGgqtRXWaa0iJyKXCKP8PPZtzq3NfaJFkcpIgfNegvUQwa46sJ4OR-n71V8dYtnEnKumNxIi8TdtXTFHnMuU-ImQ2pL_4QKrTgH_8geVk-vf-N9ez0243oTTrFfj_xasufI2XBk1BQN3oHeAJvHL9Ac6aDbYPmQ79X4US-ckQqBk05LtUi-2Vww_Gfbp9CCdvN1i_bZo7S68u5AF3INOOSvdfWA4A0qboMiNIyeuY4cTh4nhoeEYZ3eBt4rMTEOpTp09PmeYWpH2s79ovwsvVzcd14wi54tvEUJWokQHXl2YzT9mjXXJdG41Js5BgcFXGBRRUmhjA7rmogID1i68IHxlZLTwAY1uzl7gMon-K-tJCiQTLuMubJyRRGNjzg638MsaY7fIfmOvC09Xw3QnFfCVbnZSyyiBybl4cP4UT-DqYDLaz_aH472HcA1fs6iPfm5AZzk_cY_gsvm2nC7mj5tvj8GHi8bzLyadbbU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvBGBAkYCcSHaxHbiBAmhbbdLq8LuHgrqzXVsB1aCbNndgspP49cxk8dCJeitB67xZBQnn-cRj78BeCq4Uj5NZaiIrFK6LA0zb3gYFeiN4rSmhKmbTajRKDs8zCdr8LM7C0NllZ1NrA21m1n6R97DxEDU21iqV7ZlEZPB8PXx15A6SNFOa9dOo4HIvj_9junb4tXeAL_1M86HOwfbu2HbYSC0CNxlaGLLeWRVIsuiLHOrUuuKLJNEWWmccN6YLPEi8bmwWVSkkSu4c0VEFCkqs0qg3ktwWUl0ylQ2yMer_zvEt4nZV0N0JEQe9VxTO0fsy5QCCkkNyv9whnXPgH95htrdDa__zy_qBlxrg2zWb1bFTVjz1S3YeNeWEdyG_hgN5ZfpD3TbbHf7Axs0u1RsMicRgiqbVmyHOrS9ZLiQ2KfT8eTgzRYbdqVsd-D9hUzgLqxXs8rfA4YaUNrGZWE9uXaTelQsc8ul5Rh9B8C7j6ptS7RO_T4-a0y4CAn6L0gI4MXqpuOGZ-R88S1Cy0qUSMLrC7P5R93aHG0KZzCdjksMyWRcJnlprIvpmk9KDGMDeE5Y02TK8AGtaU9k4DSJFEz3FYWXOVdpAJtnJNEE2bPDHRR1awIX-jcOA3iyGqY7qayv8rOTRiYTmLKL--ereAwbCGL9dm-0_wCu4lsWzXnQTVhfzk_8Q7hivy2ni_mjehEyOLpoMP8CLt907w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+HCV+Disease+Prediction+in+Egypt%3A+The+hyOPTGB+Framework&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Elshewey%2C+Ahmed+M&rft.au=Shams%2C+Mahmoud+Y&rft.au=Tawfeek%2C+Sayed+M&rft.au=Alharbi%2C+Amal+H&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=22&rft_id=info:doi/10.3390%2Fdiagnostics13223439&rft.externalDocID=A774319276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon