Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework
The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This pape...
Uloženo v:
| Vydáno v: | Diagnostics (Basel) Ročník 13; číslo 22; s. 3439 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2023
|
| Témata: | |
| ISSN: | 2075-4418, 2075-4418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model’s accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system’s efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset. |
|---|---|
| AbstractList | The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model’s accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system’s efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset. The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset. |
| Audience | Academic |
| Author | Tarek, Zahraa Alharbi, Amal H. Ibrahim, Abdelhameed Eid, Marwa M. Shams, Mahmoud Y. Abdelhamid, Abdelaziz A. Abualigah, Laith Khafaga, Doaa Sami Elshewey, Ahmed M. Khodadadi, Nima Tawfeek, Sayed M. |
| Author_xml | – sequence: 1 givenname: Ahmed M. orcidid: 0000-0002-3048-1920 surname: Elshewey fullname: Elshewey, Ahmed M. – sequence: 2 givenname: Mahmoud Y. orcidid: 0000-0003-3021-5902 surname: Shams fullname: Shams, Mahmoud Y. – sequence: 3 givenname: Sayed M. surname: Tawfeek fullname: Tawfeek, Sayed M. – sequence: 4 givenname: Amal H. surname: Alharbi fullname: Alharbi, Amal H. – sequence: 5 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 6 givenname: Abdelaziz A. orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz A. – sequence: 7 givenname: Marwa M. surname: Eid fullname: Eid, Marwa M. – sequence: 8 givenname: Nima orcidid: 0000-0002-8348-6530 surname: Khodadadi fullname: Khodadadi, Nima – sequence: 9 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith – sequence: 10 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami – sequence: 11 givenname: Zahraa orcidid: 0000-0001-9389-2850 surname: Tarek fullname: Tarek, Zahraa |
| BookMark | eNp9kktvEzEUhUeoSJTSX8BmJDZsUvwc2-xC-pQqpYvA1rrjx9RhZhzsiVD49ThNK6CqsBe2js53LN9731ZHYxxdVb3H6IxShT7ZAN0Y8xRMxpQQyqh6VR0TJPiMMSyP_rq_qU5zXqOyFKaS8ONqvtxMYQi_wtjV14tv9XnIDrKr75KzwUwhjnUY64tut5k-16t7V9_vlnerqy_1ZYLB_Yzp-7vqtYc-u9PH86T6enmxWlzPbpdXN4v57cwwKacZYEMIMoIz33qvjGiMbaVkqmkQWGodgOSOcqeokahtkG2JtS0ijWRCGkFPqptDro2w1psUBkg7HSHoByGmTkMqReidhtaCVAp7ySnDnisPxuK95rjHXJWsj4esTYo_ti5PegjZuL6H0cVt1kQqKqnADS3WD8-s67hNY_npgwshKrn44-qgvB9GH6cEZh-q50IwihURTXGdveAq27ohmNJVH4r-D6AOgEkx5-S8NmGCfVcKGHqNkd6PgH5hBApLn7FPNfsf9RvUxLdz |
| CitedBy_id | crossref_primary_10_1007_s11468_025_02932_6 crossref_primary_10_1038_s41598_024_74475_5 crossref_primary_10_1038_s41598_025_02355_7 crossref_primary_10_1007_s44196_025_00956_8 crossref_primary_10_1007_s44196_025_00957_7 crossref_primary_10_1038_s41598_025_00153_9 crossref_primary_10_1007_s10916_025_02185_0 crossref_primary_10_1038_s41598_025_00509_1 crossref_primary_10_1038_s41598_025_95983_y crossref_primary_10_1038_s41598_024_73559_6 crossref_primary_10_1186_s12872_025_04739_z crossref_primary_10_1371_journal_pone_0317554 crossref_primary_10_1186_s40537_025_01191_w crossref_primary_10_1007_s10115_025_02489_0 crossref_primary_10_1038_s41598_025_00607_0 crossref_primary_10_1038_s41598_025_04171_5 crossref_primary_10_1002_for_3258 crossref_primary_10_1016_j_bspc_2024_107417 crossref_primary_10_1038_s41598_025_98703_8 crossref_primary_10_1038_s41598_024_83592_0 crossref_primary_10_1038_s41598_025_98721_6 crossref_primary_10_1007_s11760_025_04545_2 crossref_primary_10_1016_j_virol_2024_110307 crossref_primary_10_1016_j_imu_2025_101651 crossref_primary_10_1038_s41598_025_07104_4 crossref_primary_10_1186_s12911_025_03014_7 crossref_primary_10_1186_s12911_025_03018_3 crossref_primary_10_1038_s41598_025_99167_6 crossref_primary_10_1186_s12911_025_03094_5 |
| Cites_doi | 10.1007/978-1-4842-6579-6 10.1016/j.imu.2019.100267 10.3390/mi14020265 10.1214/aos/1013203451 10.1186/1756-0500-7-565 10.1007/s10620-019-05886-y 10.3390/math10193614 10.1101/2020.11.02.20224840 10.3390/diagnostics13122038 10.1016/j.patrec.2019.05.021 10.1016/j.cmpb.2011.08.003 10.3390/s23042085 10.1016/j.cmpb.2020.105551 10.1109/IJCNN.2018.8489307 10.1109/ICCV.2015.350 10.1136/oemed-2015-102879 10.1109/CCAA.2016.7813704 10.1016/j.ecolmodel.2019.06.002 10.1093/infdis/jiy401 10.20944/preprints202102.0488.v1 10.1109/TNNLS.2020.3006877 10.1016/j.neucom.2020.07.061 10.1023/A:1009887311454 10.1186/1471-2334-12-86 10.1109/TKDE.2019.2912815 10.1007/s10462-011-9230-1 10.1016/j.csda.2016.07.016 10.1145/3292500.3330701 10.1371/journal.pone.0034460 10.1016/j.neucom.2019.10.118 10.1109/ICITACEE50144.2020.9239164 10.1007/978-3-642-35326-0_6 10.1016/j.patcog.2020.107245 10.1016/j.neucom.2017.11.077 10.3390/electronics11111750 10.1016/j.rser.2018.04.008 10.1016/j.datak.2022.102087 10.1109/TCYB.2022.3228301 10.4254/wjh.v7.i26.2676 10.3390/math10203845 10.1016/j.procs.2015.04.201 10.1007/978-981-10-7512-4_91 10.1007/s007050050479 10.3390/diagnostics12112892 10.1002/hep.26744 10.1016/j.bspc.2023.104908 10.3390/biomimetics8060457 10.1002/hep.20819 10.1016/j.envsoft.2017.12.001 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.3390/diagnostics13223439 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_abda8991f85341f59facd1da89e5f159 A774319276 10_3390_diagnostics13223439 |
| GeographicLocations | Egypt Taiwan |
| GeographicLocations_xml | – name: Taiwan – name: Egypt |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c488t-a1c220c754fbff9c76cdb8849660ad3deaa85e35e93c80b60db2ddb0268478c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:50:44 EDT 2025 Wed Oct 01 13:00:50 EDT 2025 Mon Jun 30 04:39:32 EDT 2025 Tue Nov 11 11:10:01 EST 2025 Tue Nov 04 18:32:55 EST 2025 Sat Nov 29 07:15:49 EST 2025 Tue Nov 18 20:54:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-a1c220c754fbff9c76cdb8849660ad3deaa85e35e93c80b60db2ddb0268478c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9843-6392 0000-0002-8348-6530 0000-0003-3021-5902 0000-0002-8352-6731 0000-0002-3048-1920 0000-0001-7080-1979 0000-0002-2203-4549 0000-0001-9389-2850 |
| OpenAccessLink | https://doaj.org/article/abda8991f85341f59facd1da89e5f159 |
| PQID | 2893003857 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_abda8991f85341f59facd1da89e5f159 proquest_miscellaneous_2893837163 proquest_journals_2893003857 gale_infotracmisc_A774319276 gale_infotracacademiconefile_A774319276 crossref_citationtrail_10_3390_diagnostics13223439 crossref_primary_10_3390_diagnostics13223439 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Cervantes (ref_53) 2020; 408 Westermann (ref_9) 2015; 72 Wong (ref_44) 2019; 32 ref_14 ref_57 Robertson (ref_1) 1998; 143 ref_55 ref_54 Prieto (ref_23) 2018; 90 ref_18 ref_16 ref_15 Zareapoor (ref_59) 2015; 48 ref_61 ref_25 ref_24 Tran (ref_28) 2020; 103 ref_20 Simmonds (ref_5) 2005; 42 ref_29 ref_27 Lusa (ref_48) 2017; 113 Ezz (ref_32) 2019; 17 Dong (ref_60) 2006; 24 Schratz (ref_12) 2019; 406 Priyanka (ref_52) 2020; 12 Peng (ref_58) 2020; 32 Sartakhti (ref_34) 2012; 108 Huang (ref_8) 2020; 65 Peter (ref_47) 2017; 30 ref_36 Fouad (ref_62) 2023; 14 ref_35 ref_33 Kashif (ref_11) 2021; 1 Meyer (ref_41) 2018; 101 Kotsiantis (ref_22) 2011; 42 (ref_10) 2022; 142 ref_39 ref_38 ref_37 Liu (ref_56) 2022; 53 Nandipati (ref_31) 2020; 4 Borgia (ref_3) 2018; 218 Yang (ref_13) 2020; 415 Khafaga (ref_17) 2022; 73 Friedman (ref_26) 2001; 29 ref_46 ref_45 ref_43 ref_42 ref_40 Cai (ref_21) 2018; 300 Smith (ref_2) 2014; 59 ref_49 Mohamed (ref_7) 2015; 7 ref_4 Cai (ref_30) 2019; 125 Samee (ref_19) 2022; 73 Rastogi (ref_51) 2000; 4 ref_6 |
| References_xml | – ident: ref_45 doi: 10.1007/978-1-4842-6579-6 – volume: 17 start-page: 100267 year: 2019 ident: ref_32 article-title: Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100267 – ident: ref_38 doi: 10.3390/mi14020265 – volume: 29 start-page: 1189 year: 2001 ident: ref_26 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_37 doi: 10.1186/1756-0500-7-565 – volume: 65 start-page: 1491 year: 2020 ident: ref_8 article-title: Noninvasive measurements predict liver fibrosis well in hepatitis C virus patients after direct-acting antiviral therapy publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-019-05886-y – ident: ref_14 doi: 10.3390/math10193614 – ident: ref_39 – volume: 1 start-page: 79 year: 2021 ident: ref_11 article-title: Treatment response prediction in hepatitis C patients using machine learning techniques publication-title: Int. J. Technol. Innov. Manag. – ident: ref_25 doi: 10.1101/2020.11.02.20224840 – ident: ref_18 doi: 10.3390/diagnostics13122038 – ident: ref_42 – volume: 125 start-page: 396 year: 2019 ident: ref_30 article-title: Classification complexity assessment for hyper-parameter optimization publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.05.021 – volume: 108 start-page: 570 year: 2012 ident: ref_34 article-title: Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA) publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.08.003 – ident: ref_40 doi: 10.3390/s23042085 – ident: ref_33 doi: 10.1016/j.cmpb.2020.105551 – ident: ref_55 doi: 10.1109/IJCNN.2018.8489307 – ident: ref_49 doi: 10.1109/ICCV.2015.350 – volume: 72 start-page: 880 year: 2015 ident: ref_9 article-title: The prevalence of hepatitis C among healthcare workers: A systematic review and meta-analysis publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2015-102879 – ident: ref_57 doi: 10.1109/CCAA.2016.7813704 – volume: 406 start-page: 109 year: 2019 ident: ref_12 article-title: Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.06.002 – volume: 218 start-page: 1722 year: 2018 ident: ref_3 article-title: Identification of a novel hepatitis C virus genotype from Punjab, India: Expanding classification of hepatitis C virus into 8 genotypes publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy401 – ident: ref_24 doi: 10.20944/preprints202102.0488.v1 – ident: ref_27 – volume: 32 start-page: 2595 year: 2020 ident: ref_58 article-title: Discriminative ridge machine: A classifier for high-dimensional data or imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3006877 – volume: 415 start-page: 295 year: 2020 ident: ref_13 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 4 start-page: 315 year: 2000 ident: ref_51 article-title: PUBLIC: A decision tree classifier that integrates building and pruning publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009887311454 – ident: ref_4 doi: 10.1186/1471-2334-12-86 – volume: 32 start-page: 1586 year: 2019 ident: ref_44 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – ident: ref_20 – volume: 42 start-page: 157 year: 2011 ident: ref_22 article-title: Feature selection for machine learning classification problems: A recent overview publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9230-1 – volume: 113 start-page: 19 year: 2017 ident: ref_48 article-title: Gradient boosting for high-dimensional prediction of rare events publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2016.07.016 – ident: ref_46 doi: 10.1145/3292500.3330701 – ident: ref_6 doi: 10.1371/journal.pone.0034460 – volume: 408 start-page: 189 year: 2020 ident: ref_53 article-title: A comprehensive survey on support vector machine classification: Applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – ident: ref_29 doi: 10.1109/ICITACEE50144.2020.9239164 – volume: 73 start-page: 749 year: 2022 ident: ref_17 article-title: Meta-heuristics for feature selection and classification in diagnostic breast cancer publication-title: Comput. Mater. Contin. – ident: ref_36 doi: 10.1007/978-3-642-35326-0_6 – volume: 103 start-page: 107245 year: 2020 ident: ref_28 article-title: Hyper-parameter optimization in classification: To-do or not-to-do publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107245 – volume: 300 start-page: 70 year: 2018 ident: ref_21 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 14 start-page: 252 year: 2023 ident: ref_62 article-title: Adaptive Visual Sentiment Prediction Model Based on Event Concepts and Object Detection Techniques in Social Media publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_43 doi: 10.3390/electronics11111750 – volume: 24 start-page: 239 year: 2006 ident: ref_60 article-title: Using Bagging classifier to predict protein domain structural class publication-title: J. Biomol. Struct. Dyn. – volume: 4 start-page: 89 year: 2020 ident: ref_31 article-title: Hepatitis C virus (HCV) prediction by machine learning techniques publication-title: Appl. Model. Simul. – volume: 90 start-page: 728 year: 2018 ident: ref_23 article-title: Feature selection in machine learning prediction systems for renewable energy applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.008 – volume: 142 start-page: 102087 year: 2022 ident: ref_10 article-title: Hepatitis C virus data analysis and prediction using machine learning publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2022.102087 – ident: ref_50 – volume: 53 start-page: 7353 year: 2022 ident: ref_56 article-title: PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3228301 – volume: 12 start-page: 246 year: 2020 ident: ref_52 article-title: Decision tree classifier: A detailed survey publication-title: Int. J. Inf. Decis. Sci. – volume: 7 start-page: 2676 year: 2015 ident: ref_7 article-title: Hepatitis C virus: A global view publication-title: World J. Hepatol. doi: 10.4254/wjh.v7.i26.2676 – ident: ref_15 doi: 10.3390/math10203845 – volume: 48 start-page: 679 year: 2015 ident: ref_59 article-title: Application of credit card fraud detection: Based on bagging ensemble classifier publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.04.201 – ident: ref_35 doi: 10.1007/978-981-10-7512-4_91 – volume: 143 start-page: 2493 year: 1998 ident: ref_1 article-title: Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: Proposals for standardization publication-title: Arch. Virol. doi: 10.1007/s007050050479 – ident: ref_16 doi: 10.3390/diagnostics12112892 – volume: 59 start-page: 318 year: 2014 ident: ref_2 article-title: Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource publication-title: Hepatology doi: 10.1002/hep.26744 – ident: ref_54 doi: 10.1016/j.bspc.2023.104908 – ident: ref_61 doi: 10.3390/biomimetics8060457 – volume: 42 start-page: 962 year: 2005 ident: ref_5 article-title: Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes publication-title: Hepatology doi: 10.1002/hep.20819 – volume: 73 start-page: 4193 year: 2022 ident: ref_19 article-title: Metaheuristic optimization through deep learning classification of COVID-19 in chest X-ray images publication-title: Comput. Mater. Contin. – volume: 101 start-page: 1 year: 2018 ident: ref_41 article-title: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.12.001 – volume: 30 start-page: 1 year: 2017 ident: ref_47 article-title: Cost efficient gradient boosting publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0000913825 |
| Score | 2.4155695 |
| Snippet | The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3439 |
| SubjectTerms | Accuracy Algorithms Biopsy Blood Classification Datasets Disease Feature selection Forecasts and trends Genotype & phenotype gradient boosting (GB) Hepatitis C Hepatitis C virus hepatitis C virus (HCV) hyperparameters Infection Infections Inflammation Liver cancer Liver cirrhosis Machine learning Medical research Medicine, Experimental Optimization OPTUNA |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BhxAvjE8RGMhISLwQLbGd2OFlakfLXugqNNDeLMd2oBKko-0mjb-eu8QtTIK98GqfLSd3vg-f_TuAV4IrFcpSporAKqXXZaqD5WlWozXKyw4Spis2oaZTfXpazeKB2ypeq9zoxE5R-4WjM_J9DAxEl8ZSB2c_UqoaRdnVWELjJuwQUpkcwM5oPJ193J6yEOolxkA93JDA-H7f9zfYCAOZAjEhqUz4HyapQ-7_l37ujM5k93-Xew_uRneTDXv5uA83QvsAbn-ICfWHMDxGlfF9_hMNGDs6_Mze9fkaNlsSCTGNzVs2plplbxmKFPt6eTw7eT9ik82lrkfwaTI-OTxKY1WF1OFmXac2d5xnThWyqZumcqp0vtZaEkyn9cIHa3URRBEq4XRWl5mvufd1RrAwSjslHsOgXbThCTCcAald3tQukJGzZcCJZeW4dBz90AT45scaFyHHqfLFN4OhB3HD_IUbCbzZDjrrETeuJx8Rx7akBJfdNSyWX0zcfcbW3mJgmTfonMi8KarGOp9TWygadOgSeE38NrSpcYHOxrcJ-JkEj2WGihytiqsygb0rlLgZ3dXujTiYqAxW5rcsJPBy200j6YJbGxbnPY0WGLyKp9dP8QzuUMX7_jnkHgzWy_PwHG65i_V8tXwR5f8XbvEPDA priority: 102 providerName: ProQuest |
| Title | Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework |
| URI | https://www.proquest.com/docview/2893003857 https://www.proquest.com/docview/2893837163 https://doaj.org/article/abda8991f85341f59facd1da89e5f159 |
| Volume | 13 |
| WOSCitedRecordID | wos001108144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M2O dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2boy-jO6LeW2DBoO9zNSWPyT3LWmTdQ9JzOhG9iRkSWaB1i1pOuj--t5ZTkih61764gf5JKQ7ne7OOv8O4FPChXB5noaCwCpTK_NQOs3DqEJrFOctJExbbEJMJnI2K8qNUl-UE-bhgT3jDnRlNcYEcY12JY3rrKi1sTG1uaxGW0ynL3o9G8FUewYXhK2XeZihBOP6A-sz1wj7mAKwJKXy4BumqEXs_9e53Bqb0Q687LxE1vezewVPXPMaXoy7e_A30J-ipp_P_6LdYSdHP9mxv2Zh5YJIiNds3rAhlRg7ZLgT2O-baXn6dcBGq1yst_BjNDw9Ogm7YgihQR1bhjo2nEdGZGld1XVhRG5sJWVK6JraJtZpLTOXZK5IjIyqPLIVt7aKCM1FSCOSd7DVXDTuPTAcAalNXFfGkW3SucOB08Lw1HB0HwPgK74o0yGFU8GKM4URAzFT3cPMAL6sO116oIyHyQfE8DUpoVy3DSh71cle_U_2AXwmcSnSRZyg0d0vBbhMQrVSfUH-UcFFHsDeHUrUIXP39UrgqtPhK4WhaNJenIoAPq5fU0_KS2vcxbWnwRAfndoPj7GgXdj20LD0iWcPtpaLa7cPz82f5fxq0YOnYiZ78GwwnJTfe-2Gx-eYT7Gt_DYuf90CF-cFvg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3ohAgUUCccGqvWt710gIpY-QqE3qQ6jKyax31xAJnJKkoPKj-I3M-BGoBL31wNU7Xnk9n-fhnf0G4JngUro4Dj1JZJWhVbGnnOaen6M3CuKKEqZqNiHHY3V0lKRr8LM9C0Nlla1NrAy1nRn6R76JiYGotrHkm-OvHnWNot3VtoVGDYs9d_odU7bF6-EO6vc55_3dyfbAa7oKeAbBuvR0YDj3jYzCIi-KxMjY2FypkGgqtRXWaa0iJyKXCKP8PPZtzq3NfaJFkcpIgfNegvUQwa46sJ4OR-n71V8dYtnEnKumNxIi8TdtXTFHnMuU-ImQ2pL_4QKrTgH_8geVk-vf-N9ez0243oTTrFfj_xasufI2XBk1BQN3oHeAJvHL9Ac6aDbYPmQ79X4US-ckQqBk05LtUi-2Vww_Gfbp9CCdvN1i_bZo7S68u5AF3INOOSvdfWA4A0qboMiNIyeuY4cTh4nhoeEYZ3eBt4rMTEOpTp09PmeYWpH2s79ovwsvVzcd14wi54tvEUJWokQHXl2YzT9mjXXJdG41Js5BgcFXGBRRUmhjA7rmogID1i68IHxlZLTwAY1uzl7gMon-K-tJCiQTLuMubJyRRGNjzg638MsaY7fIfmOvC09Xw3QnFfCVbnZSyyiBybl4cP4UT-DqYDLaz_aH472HcA1fs6iPfm5AZzk_cY_gsvm2nC7mj5tvj8GHi8bzLyadbbU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvBGBAkYCcSHaxHbiBAmhbbdLq8LuHgrqzXVsB1aCbNndgspP49cxk8dCJeitB67xZBQnn-cRj78BeCq4Uj5NZaiIrFK6LA0zb3gYFeiN4rSmhKmbTajRKDs8zCdr8LM7C0NllZ1NrA21m1n6R97DxEDU21iqV7ZlEZPB8PXx15A6SNFOa9dOo4HIvj_9junb4tXeAL_1M86HOwfbu2HbYSC0CNxlaGLLeWRVIsuiLHOrUuuKLJNEWWmccN6YLPEi8bmwWVSkkSu4c0VEFCkqs0qg3ktwWUl0ylQ2yMer_zvEt4nZV0N0JEQe9VxTO0fsy5QCCkkNyv9whnXPgH95htrdDa__zy_qBlxrg2zWb1bFTVjz1S3YeNeWEdyG_hgN5ZfpD3TbbHf7Axs0u1RsMicRgiqbVmyHOrS9ZLiQ2KfT8eTgzRYbdqVsd-D9hUzgLqxXs8rfA4YaUNrGZWE9uXaTelQsc8ul5Rh9B8C7j6ptS7RO_T4-a0y4CAn6L0gI4MXqpuOGZ-R88S1Cy0qUSMLrC7P5R93aHG0KZzCdjksMyWRcJnlprIvpmk9KDGMDeE5Y02TK8AGtaU9k4DSJFEz3FYWXOVdpAJtnJNEE2bPDHRR1awIX-jcOA3iyGqY7qayv8rOTRiYTmLKL--ereAwbCGL9dm-0_wCu4lsWzXnQTVhfzk_8Q7hivy2ni_mjehEyOLpoMP8CLt907w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+HCV+Disease+Prediction+in+Egypt%3A+The+hyOPTGB+Framework&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Elshewey%2C+Ahmed+M&rft.au=Shams%2C+Mahmoud+Y&rft.au=Tawfeek%2C+Sayed+M&rft.au=Alharbi%2C+Amal+H&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=22&rft_id=info:doi/10.3390%2Fdiagnostics13223439&rft.externalDocID=A774319276 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |