ChemoPy: freely available python package for computational biology and chemoinformatics

Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Ročník 29; číslo 8; s. 1092 - 1094
Hlavní autoři: Cao, Dong-Sheng, Xu, Qing-Song, Hu, Qian-Nan, Liang, Yi-Zeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 15.04.2013
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. Availability: The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Contact:  yizeng_liang@263.net Supplementary information:  Supplementary data are available at Bioinformatics online.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btt105