ChemoPy: freely available python package for computational biology and chemoinformatics

Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics Vol. 29; no. 8; pp. 1092 - 1094
Main Authors: Cao, Dong-Sheng, Xu, Qing-Song, Hu, Qian-Nan, Liang, Yi-Zeng
Format: Journal Article
Language:English
Published: England 15.04.2013
Subjects:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. Availability: The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Contact:  yizeng_liang@263.net Supplementary information:  Supplementary data are available at Bioinformatics online.
AbstractList Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently.MOTIVATIONMolecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently.The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows.AVAILABILITYThe python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. Availability: The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Contact:  yizeng_liang@263.net Supplementary information:  Supplementary data are available at Bioinformatics online.
Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently. The python package, ChemoPy, is freely available via http://code.google.com/p/pychem/downloads/list, and it runs on Linux and MS-Windows. Supplementary data are available at Bioinformatics online.
Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other drug discovery processes. To facilitate extensive studies of drug molecules, we developed a freely available, open-source python package called chemoinformatics in python (ChemoPy) for calculating the commonly used structural and physicochemical features. It computes 16 drug feature groups composed of 19 descriptors that include 1135 descriptor values. In addition, it provides seven types of molecular fingerprint systems for drug molecules, including topological fingerprints, electro-topological state (E-state) fingerprints, MACCS keys, FP4 keys, atom pairs fingerprints, topological torsion fingerprints and Morgan/circular fingerprints. By applying a semi-empirical quantum chemistry program MOPAC, ChemoPy can also compute a large number of 3D molecular descriptors conveniently.
Author Liang, Yi-Zeng
Hu, Qian-Nan
Xu, Qing-Song
Cao, Dong-Sheng
Author_xml – sequence: 1
  givenname: Dong-Sheng
  surname: Cao
  fullname: Cao, Dong-Sheng
– sequence: 2
  givenname: Qing-Song
  surname: Xu
  fullname: Xu, Qing-Song
– sequence: 3
  givenname: Qian-Nan
  surname: Hu
  fullname: Hu, Qian-Nan
– sequence: 4
  givenname: Yi-Zeng
  surname: Liang
  fullname: Liang, Yi-Zeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23493324$$D View this record in MEDLINE/PubMed
BookMark eNqFUctOwzAQtFARfcAngHLkEupHEjtwQhUvqRIcQBwtx9m0gSQOcYKUv8dVWgQc6GW9lmZ2RjNTNKpMBQidEnxBcMzmSW7yKjNNqdpc23nStgSHB2hCWMT9QBAy-t4xG6OptW8Y4xCH0REaUxbEjNFggl4XayjNU3_pZQ1A0XvqU-WFSgrw6r5dm8qrlX5XK_CclqdNWXetUzSVKjxnoTArR6lST2_O_DB0jA4zVVg42b4z9HJ787y495ePdw-L66WvAyFaX-EoTKhQKXBQXFNNUw5RIDiIlPJMuJlgonSGtdCEhFozoUicQqqp-xI2Q-fD3boxHx3YVpa51VAUqgLTWUkiTqgIBYv3Q1lIqaDM5bUfSjmnUYw3Bs620C4pIZV1k5eq6eUuYge4GgC6MdY2kEmdDxG2jYtaEiw3hcrfhcqhUMcO_7B3Av_zvgD3C61f
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_131959
crossref_primary_10_1016_j_ijpharm_2021_120705
crossref_primary_10_1186_s13321_018_0283_x
crossref_primary_10_1002_slct_202404446
crossref_primary_10_1039_D1RA06551C
crossref_primary_10_1093_bib_bbab135
crossref_primary_10_3390_molecules28104050
crossref_primary_10_1039_C6TX00083E
crossref_primary_10_1016_j_jmgm_2024_108742
crossref_primary_10_1016_j_jmgm_2022_108344
crossref_primary_10_1093_bib_bbaa282
crossref_primary_10_1093_bib_bbab527
crossref_primary_10_1039_C7ME00094D
crossref_primary_10_1186_s13321_023_00737_5
crossref_primary_10_1039_C7TX00259A
crossref_primary_10_1186_s13321_016_0146_2
crossref_primary_10_1038_s41598_020_67701_3
crossref_primary_10_1109_TCBB_2021_3086702
crossref_primary_10_3390_biomedicines11071972
crossref_primary_10_1007_s00500_018_3479_0
crossref_primary_10_1186_s13321_015_0109_z
crossref_primary_10_1002_cem_2922
crossref_primary_10_1093_bib_bbad422
crossref_primary_10_3390_ijms22083848
crossref_primary_10_1039_D3RA00526G
crossref_primary_10_1111_cbdd_13200
crossref_primary_10_1007_s13721_018_0174_0
crossref_primary_10_1016_j_jmgm_2014_10_006
crossref_primary_10_1021_acs_est_5c08128
crossref_primary_10_1021_acs_jchemed_5c00677
crossref_primary_10_1016_j_asoc_2013_10_033
crossref_primary_10_1016_j_eswa_2025_126972
crossref_primary_10_1093_bib_bbab390
crossref_primary_10_1002_chem_202304279
crossref_primary_10_1155_2021_7181815
crossref_primary_10_4155_fmc_2018_0076
crossref_primary_10_1016_j_bioorg_2019_02_026
crossref_primary_10_1016_j_foodchem_2025_145260
crossref_primary_10_1016_j_crfs_2025_101127
crossref_primary_10_1007_s00217_022_04044_5
crossref_primary_10_1016_j_cclet_2022_107964
crossref_primary_10_1186_s13321_018_0289_4
crossref_primary_10_1007_s42514_021_00080_x
crossref_primary_10_1007_s12293_024_00414_6
crossref_primary_10_1080_1062936X_2025_2552141
crossref_primary_10_1080_10715762_2018_1529867
crossref_primary_10_1007_s11030_024_10889_7
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1007_s00894_016_2957_5
crossref_primary_10_1016_j_chemolab_2024_105292
crossref_primary_10_1038_s41598_019_43664_y
crossref_primary_10_3390_molecules29133159
crossref_primary_10_1021_acs_jcim_5c01532
crossref_primary_10_1039_D0FO03059G
crossref_primary_10_1071_EN17155
crossref_primary_10_1002_JLB_3MA0320_440RR
crossref_primary_10_1002_cem_2746
crossref_primary_10_1016_j_procbio_2025_04_011
crossref_primary_10_1016_j_foodcont_2025_111251
crossref_primary_10_1016_j_foodchem_2020_126864
crossref_primary_10_1002_jcc_25213
crossref_primary_10_1016_j_foodres_2023_113036
crossref_primary_10_1093_bib_bbac503
crossref_primary_10_3390_life11111140
crossref_primary_10_1038_s41698_021_00148_5
crossref_primary_10_1039_D2FO01315K
crossref_primary_10_1186_s13321_018_0270_2
crossref_primary_10_1016_j_ejmech_2016_09_033
crossref_primary_10_1016_j_ejps_2017_07_004
crossref_primary_10_1016_j_jelechem_2015_11_015
crossref_primary_10_1016_j_chemolab_2017_10_006
crossref_primary_10_1039_D0EE02838J
crossref_primary_10_1016_j_ijbiomac_2024_137060
crossref_primary_10_1155_2022_4133663
crossref_primary_10_1515_revce_2024_0027
crossref_primary_10_3389_fenvs_2015_00080
crossref_primary_10_1039_C8TX00331A
crossref_primary_10_1007_s10910_017_0826_9
crossref_primary_10_3390_ijms17071023
crossref_primary_10_3390_ijms20092175
crossref_primary_10_1007_s11427_018_9342_2
crossref_primary_10_1007_s10822_016_9915_2
crossref_primary_10_3390_ph15030323
crossref_primary_10_1016_j_chemolab_2017_09_005
crossref_primary_10_1080_15376516_2018_1499840
crossref_primary_10_1093_nar_gkac351
crossref_primary_10_1134_S0036024424701498
crossref_primary_10_1016_j_chemolab_2021_104384
crossref_primary_10_3390_antibiotics14010070
crossref_primary_10_3390_molecules27154807
crossref_primary_10_1016_j_procbio_2023_11_026
crossref_primary_10_1093_bib_bbab046
crossref_primary_10_1186_s13321_017_0211_5
crossref_primary_10_1186_s13321_017_0215_1
crossref_primary_10_1371_journal_pone_0291767
crossref_primary_10_1016_j_foodchem_2022_132435
crossref_primary_10_1016_j_ijbiomac_2024_139231
crossref_primary_10_1016_j_ejmech_2016_10_066
crossref_primary_10_3389_fphar_2017_00539
crossref_primary_10_1002_jcc_26167
crossref_primary_10_1016_j_ejmech_2020_112421
crossref_primary_10_1016_j_jscs_2023_101675
crossref_primary_10_3389_fphar_2019_00391
crossref_primary_10_1186_s13321_023_00720_0
crossref_primary_10_1186_s13321_024_00839_8
crossref_primary_10_1016_j_jchromb_2022_123132
crossref_primary_10_1016_j_chemolab_2015_07_009
crossref_primary_10_1002_qua_27259
crossref_primary_10_1515_psr_2019_0007
crossref_primary_10_1002_cem_2955
crossref_primary_10_1016_j_aca_2013_07_003
crossref_primary_10_1039_D5CS00053J
crossref_primary_10_1007_s11814_023_1377_3
crossref_primary_10_1007_s11030_022_10434_4
crossref_primary_10_3389_fchem_2021_662688
crossref_primary_10_1039_D3ME00033H
crossref_primary_10_1002_jcc_26519
crossref_primary_10_1146_annurev_chembioeng_101220_102232
crossref_primary_10_3390_app13179516
crossref_primary_10_1002_ijch_201300147
crossref_primary_10_1016_j_jmgm_2019_05_015
crossref_primary_10_1186_s13321_018_0258_y
crossref_primary_10_3390_polym16111496
crossref_primary_10_1016_j_ejpb_2025_114652
crossref_primary_10_1093_bib_bbz150
crossref_primary_10_1016_j_scitotenv_2023_167878
crossref_primary_10_1039_D2EE00887D
crossref_primary_10_1016_j_csbj_2023_05_022
crossref_primary_10_1016_j_ijtb_2023_03_003
crossref_primary_10_3390_ijms24032026
crossref_primary_10_1186_1758_2946_6_36
crossref_primary_10_1371_journal_pone_0299875
crossref_primary_10_2174_0115748936269606231001140647
crossref_primary_10_1002_aic_17634
crossref_primary_10_3390_ijms22158073
Cites_doi 10.1186/1758-2946-4-17
10.1016/j.ejmech.2011.09.045
10.1186/1752-153X-2-24
10.1016/j.bmc.2008.11.075
10.1002/cem.1321
10.2174/138920308784534005
10.1038/nbt1284
10.1016/j.bmc.2010.01.068
10.2174/157340609788681430
10.1016/j.aca.2012.09.021
10.1016/j.ejmech.2011.01.023
10.1007/BF00128336
10.1002/jcc.21056
10.1021/mp800102c
10.1002/cem.1416
10.2174/156802608786786543
10.1126/science.1158140
10.1016/j.bmc.2004.11.030
10.1021/ci025584y
10.1021/pr101009e
10.1038/nrd1032
10.1016/j.aca.2011.02.010
10.1002/jcc.20174
10.1002/jcc.20776
10.1016/j.bmc.2008.07.023
10.2174/138620711795508331
10.1016/j.chroma.2011.12.020
10.1002/prot.20277
10.2174/138620711795508368
10.1002/qsar.200610093
10.1021/ci034039+
10.1016/j.bmc.2008.04.068
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1093/bioinformatics/btt105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Computer and Information Systems Abstracts
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 1094
ExternalDocumentID 23493324
10_1093_bioinformatics_btt105
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c488t-a065b28ade7ea7c2c2d7e6487e8d27f88d2b01acf0c8c115cc38a19dedc211513
ISICitedReferencesCount 179
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318109300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Fri Sep 05 09:02:13 EDT 2025
Tue Oct 07 09:59:19 EDT 2025
Thu Jul 10 17:25:41 EDT 2025
Mon Jul 21 05:42:10 EDT 2025
Tue Nov 18 22:15:42 EST 2025
Sat Nov 29 05:33:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c488t-a065b28ade7ea7c2c2d7e6487e8d27f88d2b01acf0c8c115cc38a19dedc211513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/29/8/1092/17107016/btt105.pdf
PMID 23493324
PQID 1327726901
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_1671285839
proquest_miscellaneous_1352282380
proquest_miscellaneous_1327726901
pubmed_primary_23493324
crossref_citationtrail_10_1093_bioinformatics_btt105
crossref_primary_10_1093_bioinformatics_btt105
PublicationCentury 2000
PublicationDate 2013-04-15
PublicationDateYYYYMMDD 2013-04-15
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2013
References O’Boyle (2023012810302873400_btt105-B23) 2011; 3
Prado-Prado (2023012810302873400_btt105-B28) 2011; 46
Gola (2023012810302873400_btt105-B12) 2006; 25
Du (2023012810302873400_btt105-B10) 2008; 9
González-Díaz (2023012810302873400_btt105-B15) 2011; 10
Zhu (2023012810302873400_btt105-B39) 2011; 14
Chou (2023012810302873400_btt105-B6) 2006; 5
O’Boyle (2023012810302873400_btt105-B22) 2008; 2
Prado-Prado (2023012810302873400_btt105-B27) 2010; 18
Steinbeck (2023012810302873400_btt105-B30) 2003; 43
Campillos (2023012810302873400_btt105-B1) 2008; 321
Katritzky (2023012810302873400_btt105-B18) 1994
Cao (2023012810302873400_btt105-B3) 2011; 692
Stewart (2023012810302873400_btt105-B31) 1990; 4
Todeschini (2023012810302873400_btt105-B32) 2010
Prado-Prado (2023012810302873400_btt105-B26) 2009; 17
Hanwell (2023012810302873400_btt105-B16) 2012; 4
Keiser (2023012810302873400_btt105-B19) 2007; 25
Wei (2023012810302873400_btt105-B37) 2009; 5
Du (2023012810302873400_btt105-B9) 2008; 29
Prado-Prado (2023012810302873400_btt105-B25) 2008; 16
Prado-Prado (2023012810302873400_btt105-B29) 2011; 46
Viña (2023012810302873400_btt105-B34) 2009; 6
Cao (2023012810302873400_btt105-B2) 2010; 24
Cao (2023012810302873400_btt105-B4) 2012; 26
González-Díaz (2023012810302873400_btt105-B14) 2008; 8
van de Waterbeemd (2023012810302873400_btt105-B33) 2003; 2
Du (2023012810302873400_btt105-B11) 2009; 30
Pérez-González (2023012810302873400_btt105-B24) 2003; 43
Yan (2023012810302873400_btt105-B38) 2012; 1223
O’Boyle (2023012810302873400_btt105-B21) 2008; 2
Du (2023012810302873400_btt105-B8) 2005; 26
González-Díaz (2023012810302873400_btt105-B13) 2005; 13
Cao (2023012810302873400_btt105-B5) 2012; 752
Dea-Ayuela (2023012810302873400_btt105-B7) 2008; 16
Izrailev (2023012810302873400_btt105-B17) 2004; 57
Marrero-Ponce (2023012810302873400_btt105-B20) 2002
Wegner (2023012810302873400_btt105-B36) 2005
Wang (2023012810302873400_btt105-B35) 2011; 14
References_xml – volume: 4
  start-page: 17
  year: 2012
  ident: 2023012810302873400_btt105-B16
  article-title: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
  publication-title: J. Chemoinform.
  doi: 10.1186/1758-2946-4-17
– volume: 46
  start-page: 5838
  year: 2011
  ident: 2023012810302873400_btt105-B29
  article-title: 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.09.045
– volume: 2
  start-page: 24
  year: 2008
  ident: 2023012810302873400_btt105-B21
  article-title: Cinfony—combining open source cheminformatics toolkits behind a common interface
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-2-24
– volume: 17
  start-page: 569
  year: 2009
  ident: 2023012810302873400_btt105-B26
  article-title: Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2008.11.075
– volume: 24
  start-page: 584
  year: 2010
  ident: 2023012810302873400_btt105-B2
  article-title: Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine
  publication-title: J. Chemometr.
  doi: 10.1002/cem.1321
– volume: 9
  start-page: 248
  year: 2008
  ident: 2023012810302873400_btt105-B10
  article-title: Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920308784534005
– volume: 25
  start-page: 197
  year: 2007
  ident: 2023012810302873400_btt105-B19
  article-title: Relating protein pharmacology by ligand chemistry
  publication-title: Nat. Biotech.
  doi: 10.1038/nbt1284
– volume: 18
  start-page: 2225
  year: 2010
  ident: 2023012810302873400_btt105-B27
  article-title: Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2010.01.068
– volume-title: Molecular Descriptors for Chemoinformatics
  year: 2010
  ident: 2023012810302873400_btt105-B32
– volume-title: CODESSA Comprehensive Descriptors for Structural and Statistical Analysis
  year: 1994
  ident: 2023012810302873400_btt105-B18
– volume-title: TOMOCOMD software, version 1.0, 2002
  year: 2002
  ident: 2023012810302873400_btt105-B20
– volume: 5
  start-page: 305
  year: 2009
  ident: 2023012810302873400_btt105-B37
  article-title: Investigation into adamantane-based M2 inhibitors with FB-QSAR
  publication-title: Med. Chem.
  doi: 10.2174/157340609788681430
– volume: 752
  start-page: 1
  year: 2012
  ident: 2023012810302873400_btt105-B5
  article-title: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2012.09.021
– volume: 2
  start-page: 1
  year: 2008
  ident: 2023012810302873400_btt105-B22
  article-title: Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit
  publication-title: Chem. Cent. J.
– volume: 46
  start-page: 1074
  year: 2011
  ident: 2023012810302873400_btt105-B28
  article-title: Using entropy of drug and protein graphs to predict FDA drug-target network: theoretical-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.01.023
– volume: 4
  start-page: 1
  year: 1990
  ident: 2023012810302873400_btt105-B31
  article-title: MOPAC: a semiempirical molecular orbital program
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/BF00128336
– volume: 30
  start-page: 295
  year: 2009
  ident: 2023012810302873400_btt105-B11
  article-title: Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21056
– volume: 6
  start-page: 825
  year: 2009
  ident: 2023012810302873400_btt105-B34
  article-title: Alingment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800102c
– volume: 26
  start-page: 7
  year: 2012
  ident: 2023012810302873400_btt105-B4
  article-title: Computer-aided prediction of toxicity with substructure pattern and random forest
  publication-title: J. Chemometr.
  doi: 10.1002/cem.1416
– volume-title: JOELib: Graph/Data Mining and Clustering
  year: 2005
  ident: 2023012810302873400_btt105-B36
– volume: 8
  start-page: 1676
  year: 2008
  ident: 2023012810302873400_btt105-B14
  article-title: Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802608786786543
– volume: 321
  start-page: 263
  year: 2008
  ident: 2023012810302873400_btt105-B1
  article-title: Drug target identification using side-effect similarity
  publication-title: Science
  doi: 10.1126/science.1158140
– volume: 13
  start-page: 1119
  year: 2005
  ident: 2023012810302873400_btt105-B13
  article-title: Predicting multiple drugs side effects with a general drug-target interaction thermodynamic Markov model
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2004.11.030
– volume: 43
  start-page: 493
  year: 2003
  ident: 2023012810302873400_btt105-B30
  article-title: The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci025584y
– volume: 10
  start-page: 1698
  year: 2011
  ident: 2023012810302873400_btt105-B15
  article-title: MIND-BEST: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical experimental study of G3PDH protein from Trichomonas gallinae
  publication-title: J. Proteome. Res.
  doi: 10.1021/pr101009e
– volume: 2
  start-page: 192
  year: 2003
  ident: 2023012810302873400_btt105-B33
  article-title: ADMET in silico modelling: towards prediction paradise?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1032
– volume: 692
  start-page: 50
  year: 2011
  ident: 2023012810302873400_btt105-B3
  article-title: In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint
  publication-title: Anal. Chim. Acta.
  doi: 10.1016/j.aca.2011.02.010
– volume: 26
  start-page: 461
  year: 2005
  ident: 2023012810302873400_btt105-B8
  article-title: Heuristic molecular lipophilicity potential (HMLP): a 2D-QSAR study to LADH of molecular family pyrazole and derivatives
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20174
– volume: 29
  start-page: 211
  year: 2008
  ident: 2023012810302873400_btt105-B9
  article-title: Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR)
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20776
– volume: 16
  start-page: 7770
  year: 2008
  ident: 2023012810302873400_btt105-B7
  article-title: HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2008.07.023
– volume: 14
  start-page: 328
  year: 2011
  ident: 2023012810302873400_btt105-B35
  article-title: Recent advances on aqueous solubility prediction
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/138620711795508331
– volume: 1223
  start-page: 118
  year: 2012
  ident: 2023012810302873400_btt105-B38
  article-title: Comparison of quantitative structure-retention relationship models on four stationary phases with different polarity for a diverse set of flavor compounds
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.12.020
– volume: 57
  start-page: 711
  year: 2004
  ident: 2023012810302873400_btt105-B17
  article-title: Enzyme classification by ligand binding
  publication-title: Proteins
  doi: 10.1002/prot.20277
– volume: 14
  start-page: 362
  year: 2011
  ident: 2023012810302873400_btt105-B39
  article-title: Recent developments of in silico predictions of oral bioavailability
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/138620711795508368
– volume: 5
  start-page: 55
  year: 2006
  ident: 2023012810302873400_btt105-B6
  article-title: Predicting networking couples for metabolic pathways of Arabidopsis
  publication-title: EXCLI J.
– volume: 25
  start-page: 1172
  year: 2006
  ident: 2023012810302873400_btt105-B12
  article-title: ADMET property prediction: the state of the art and current challenges
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200610093
– volume: 3
  start-page: 1
  year: 2011
  ident: 2023012810302873400_btt105-B23
  article-title: Open babel: an open chemical toolbox
  publication-title: J. Cheminform.
– volume: 43
  start-page: 1192
  year: 2003
  ident: 2023012810302873400_btt105-B24
  article-title: TOPS-MODE based QSARs derived from heterogeneous series of compounds. Applications to the design of new herbicides
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034039+
– volume: 16
  start-page: 5871
  year: 2008
  ident: 2023012810302873400_btt105-B25
  article-title: Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2008.04.068
SSID ssj0005056
ssj0051444
Score 2.5209472
Snippet Motivation: Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T...
Molecular representation for small molecules has been routinely used in QSAR/SAR, virtual screening, database search, ranking, drug ADME/T prediction and other...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1092
SubjectTerms Bioinformatics
Computational Biology - methods
Databases, Chemical
Drug Design
Drugs
Fingerprints
Keys
Ligands
Packages
Pharmaceutical Preparations - chemistry
Quantum chemistry
Software
Topology
Title ChemoPy: freely available python package for computational biology and chemoinformatics
URI https://www.ncbi.nlm.nih.gov/pubmed/23493324
https://www.proquest.com/docview/1327726901
https://www.proquest.com/docview/1352282380
https://www.proquest.com/docview/1671285839
Volume 29
WOSCitedRecordID wos000318109300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEG_KY2UkbiuzSZzUNje0Au2pLKKIwCVyHGeJqJKqm1btT-PfMY6dNFlBYQ9combijBzP1_GMPZ5B6JXgeUhTPyOKakrC0JOESylI5jFQyTzKGbXFJth0yuNYnI9GP9uzMOs5K0u-2YjFfxU10EDY5ujsNcTdMQUC_AahwxXEDtd_ErxJAVCdN4mc8qXW8-2xXMti3hyRWmxNqoBj8JN_mFgdE2KomrIO7ZJgPyeTMoxcYtW6DYpv93-L_pMmZ-mmDZN3dUF6awynsrLGenlBPn3XbrKEB_HK0D8Whl7tyGeOLEsy7cUMFW5t-2tBvrVM3IKFKR4REntk0-lYalKtc8_qNd2nOb3rFLPrpgUg72lZ37P189yMDbfhb2cDmykrHYyIIdS170W7CbDd9L8yL3bRinafniZDRollc4BuBCwSJppw9iHeRRd5TeHg7lvbw2OCngzZnFg2Q7PoD75OY_PM7qI7zlnBby3I7qGRLu-jW7Z86fYB-uKg9gZboOEOaNgCDTugYegHHgANO6BhAAq-CrSH6PP7d7PTM-IKdRAF-r8mEuzYNOAy00xLpgIVZExPwBXWPAtYzuGaer5Uuae4AhdEKcqlLzKdqQBuffoIHZZVqZ8gHPiKp9A6B0M_jHwlQzYRpkxAOuGCaT1GYTtOiXJZ7E0xlXmyV0pj9Lp7bWHTuPzthZetEBJQuGYXTZa6Wl0mPg3AIzV13Pa1AbeGgzXs7WkzYWAbRuCgjNFjK-WuawENBYUReHrdbj9Dt3d_uefosF6u9At0U63r4nJ5hA5YzI8aoP4CAvnREQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ChemoPy%3A+freely+available+python+package+for+computational+biology+and+chemoinformatics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Cao%2C+Dong-Sheng&rft.au=Xu%2C+Qing-Song&rft.au=Hu%2C+Qian-Nan&rft.au=Liang%2C+Yi-Zeng&rft.date=2013-04-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=29&rft.issue=8&rft.spage=1092&rft.epage=1094&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtt105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btt105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon