Programmable protein circuit design

A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 184; no. 9; p. 2284
Main Authors: Chen, Zibo, Elowitz, Michael B
Format: Journal Article
Language:English
Published: United States 29.04.2021
Subjects:
ISSN:1097-4172, 1097-4172
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1097-4172
1097-4172
DOI:10.1016/j.cell.2021.03.007