COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk

•Multi-stage stochastic epidemics-ventilator-logistics compartmental model.•Optimize ventilator allocation under asymptomatic uncertainty and risk.•Epidemiological, population, migration, and cost data-driven model.•New region-based sub-problem and bounds improving optimality gap.•A general model th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 304; H. 1; S. 255 - 275
Hauptverfasser: Yin, Xuecheng, Büyüktahtakın, İ. Esra, Patel, Bhumi P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.01.2023
Schlagworte:
ISSN:0377-2217, 1872-6860, 0377-2217
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Multi-stage stochastic epidemics-ventilator-logistics compartmental model.•Optimize ventilator allocation under asymptomatic uncertainty and risk.•Epidemiological, population, migration, and cost data-driven model.•New region-based sub-problem and bounds improving optimality gap.•A general model that could be extended to other infectious diseases. This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.
AbstractList This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.
This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.
•Multi-stage stochastic epidemics-ventilator-logistics compartmental model.•Optimize ventilator allocation under asymptomatic uncertainty and risk.•Epidemiological, population, migration, and cost data-driven model.•New region-based sub-problem and bounds improving optimality gap.•A general model that could be extended to other infectious diseases. This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. We also define a new region-based sub-problem and bounds on the problem and then show their computational benefits in terms of the optimality and relaxation gaps. The computational results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.
Author Patel, Bhumi P.
Yin, Xuecheng
Büyüktahtakın, İ. Esra
Author_xml – sequence: 1
  givenname: Xuecheng
  surname: Yin
  fullname: Yin, Xuecheng
  organization: Yale School of Public Health, New Haven, CT, United States
– sequence: 2
  givenname: İ. Esra
  surname: Büyüktahtakın
  fullname: Büyüktahtakın, İ. Esra
  email: esratoy@njit.edu
  organization: Systems Optimization and Data Analytics Lab (SODAL), Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, United States
– sequence: 3
  givenname: Bhumi P.
  surname: Patel
  fullname: Patel, Bhumi P.
  organization: Systems Optimization and Data Analytics Lab (SODAL), Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34866765$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARnRZ-gAXKspsEP-LHVKgSmuFRqVI3gNhZjnMDnnriYDsjzd_j6bQIWHTjK_mex9U5Z-hkDCMg9JrghmAi3m4a2ITYUExJQ0iDOX2GFkRJWgsl8AlaYCZlTSmRp-gspQ3GmHDCX6BT1iohpOAL9H11--16XZPlZbU22dTr6HYwVmHKbmt8ZbwP1mQXytdQlU123uQQqzRPk99X89hDLK-FmI0b874yY19Fl-5eoueD8QlePcxz9PXjhy-rz_XN7afr1fub2rZK5VoqLKCVVCoOhnUct93AO-DWikEOS7q0QEzbMdkTY5gSXPVy2cqOMq5oay07R1dH3WnuttDbcmI0Xk-x3B_3Ohin_92M7qf-EXZaCUZbLIrAxYNADL9mSFlvXbLgvRkhzElTgSXDQt1D3_zt9cfkMc4CUEeAjSGlCIO2Lt_HV6yd1wTrQ3N6ow_N6UNzmhBdmitU-h_1Uf1J0rsjCUrCOwdRJ-ugtNG7CDbrPrin6L8Bc22y4w
CitedBy_id crossref_primary_10_1016_j_ejor_2023_09_034
crossref_primary_10_1080_0305215X_2023_2234294
crossref_primary_10_1016_j_ijpe_2024_109200
crossref_primary_10_1002_oca_3032
crossref_primary_10_1016_j_cie_2023_109107
crossref_primary_10_1016_j_ejor_2023_10_045
crossref_primary_10_1007_s10479_022_04926_7
crossref_primary_10_1108_K_12_2023_2738
crossref_primary_10_3389_fpubh_2023_1029385
crossref_primary_10_1080_01605682_2024_2436622
crossref_primary_10_1007_s10729_025_09703_z
crossref_primary_10_1080_00207543_2025_2455448
crossref_primary_10_1007_s12652_022_03863_4
crossref_primary_10_1016_j_cie_2025_111094
crossref_primary_10_1016_j_cor_2024_106578
crossref_primary_10_1287_mnsc_2023_02958
crossref_primary_10_1007_s12046_024_02541_9
crossref_primary_10_1007_s12046_023_02332_8
crossref_primary_10_1016_j_omega_2025_103405
crossref_primary_10_1016_j_tre_2024_103828
crossref_primary_10_1016_j_jclepro_2023_139669
crossref_primary_10_1016_j_jclepro_2023_135985
crossref_primary_10_1080_00207543_2022_2162619
crossref_primary_10_1016_j_ejor_2023_03_032
crossref_primary_10_1016_j_ejor_2023_09_005
crossref_primary_10_1016_j_ejor_2022_07_019
crossref_primary_10_1111_itor_13473
crossref_primary_10_1111_risa_14339
crossref_primary_10_1007_s10479_025_06721_6
crossref_primary_10_1002_net_22149
crossref_primary_10_1007_s10898_024_01364_6
crossref_primary_10_1016_j_cor_2024_106568
crossref_primary_10_1016_j_cor_2023_106149
crossref_primary_10_1007_s10479_024_06100_7
crossref_primary_10_3390_su152215911
crossref_primary_10_1007_s13132_023_01537_w
crossref_primary_10_1007_s12351_025_00928_y
crossref_primary_10_1016_j_omega_2025_103318
crossref_primary_10_1016_j_cie_2025_111157
crossref_primary_10_1080_24725854_2023_2223246
crossref_primary_10_1016_j_eswa_2025_127143
crossref_primary_10_1016_j_compchemeng_2023_108527
crossref_primary_10_1016_j_eswa_2025_129545
crossref_primary_10_1016_j_seps_2025_102269
crossref_primary_10_1016_j_cor_2025_107275
crossref_primary_10_1108_IJOPM_09_2022_0581
crossref_primary_10_1080_23302674_2025_2457459
Cites_doi 10.1016/j.ejor.2017.08.037
10.1016/j.ijheh.2020.113610
10.1287/ijoc.2018.0885
10.1016/j.compchemeng.2020.106945
10.1098/rsos.201131
10.1016/S0025-5564(01)00050-5
10.1016/j.ejor.2016.09.049
10.1007/s10479-022-04926-7
10.1007/s00134-016-4325-4
10.3201/eid2306.161417
10.1016/j.ejor.2017.10.038
10.1016/j.mjafi.2020.03.022
10.1016/j.mbs.2008.07.006
10.1016/j.ejor.2015.05.048
10.1056/NEJMp2006141
10.1371/journal.pone.0241468
10.1097/ALN.0000000000003296
10.1016/j.eswa.2020.114077
10.3390/v12070777
10.1007/s10107-018-1249-5
10.1016/j.cie.2018.01.018
10.1016/j.ijpe.2012.05.023
10.1016/S0025-5564(03)00090-7
10.1155/2020/3452402
10.1016/S2468-2667(20)30157-2
10.1001/jama.2020.5046
10.1371/journal.pone.0241027
10.7326/M20-1260
10.1016/S1473-3099(20)30553-3
10.1137/16M1075594
10.2196/19368
10.1002/nav.21905
10.1016/S1473-3099(20)30144-4
10.1101/2020.06.26.20141127
10.1016/S0378-4266(02)00271-6
10.1016/j.mbs.2018.10.010
10.1016/j.chaos.2020.110107
10.1016/j.tre.2020.101967
10.1016/j.ejor.2017.12.022
ContentType Journal Article
Copyright 2021 Elsevier B.V.
2021 Elsevier B.V. All rights reserved.
2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: 2021 Elsevier B.V. All rights reserved.
– notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.ejor.2021.11.052
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
0377-2217
EndPage 275
ExternalDocumentID PMC8632406
34866765
10_1016_j_ejor_2021_11_052
S0377221721010031
Genre Journal Article
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
BNPGV
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c488t-7806e472785ea3b504bf5be5cc6f7f929ce1a4b37d1aa38658d7947b235824cc3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861383000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Sep 30 16:33:16 EDT 2025
Sun Sep 28 02:34:59 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Sat Nov 29 07:21:13 EST 2025
Tue Nov 18 21:49:25 EST 2025
Fri Feb 23 02:38:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pandemic resource and ventilator allocation
Mean-CVaR multi-stage stochastic mixed-integer programming model
COVID-19
Risk-averse optimization
OR in health services
Language English
License 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c488t-7806e472785ea3b504bf5be5cc6f7f929ce1a4b37d1aa38658d7947b235824cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8632406
PMID 34866765
PQID 2607306806
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8632406
proquest_miscellaneous_2607306806
pubmed_primary_34866765
crossref_citationtrail_10_1016_j_ejor_2021_11_052
crossref_primary_10_1016_j_ejor_2021_11_052
elsevier_sciencedirect_doi_10_1016_j_ejor_2021_11_052
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of operational research
PublicationTitleAlternate Eur J Oper Res
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ambikapathy, Krishnamurthy (bib0002) 2020; 6
Manca, Caldiroli, Storti (bib0046) 2020
Harvard Medical School (2021). Symptoms, spread and other essential information about Coronavirus and COVID-19.
Kucharski, Russell, Diamond, Liu, Edmunds, Funk, Munday (bib0039) 2020
Meng, Qiu, Wan, Ai, Xue, Guo, Tong (bib0051) 2020; 132
Defourny, Ernst, Wehenkel (bib0022) 2012
Dasaklis, Pappis, Rachaniotis (bib0021) 2012; 139
Accessed November 30, 2020.
Accessed May 30, 2021.
Bakir, Boland, Dandurand, Erera (bib0004) 2020; 32
Queiroz, Ivanov, Dolgui, Wamba (bib0054) 2020
Loeffler-Wirth, Schmidt, Binder (bib0044) 2020; 12
Bushaj, Büyüktahtakın, Haight (bib0011) 2021
Büyüktahtakın (bib0013) 2021
Kretzschmar, Rozhnova, Bootsma, van Boven, van de Wijgert, Bonten (bib0037) 2020; 5
Alonso-Ayuso, Escudero, Guignard, Weintraub (bib0001) 2018; 267
Meller, M. (2020). The asymptomatic and pre-symptomatic spread of COVID-19.
Yin, Büyüktahtakın (bib0066) 2021
Zou, Ahmed, Sun (bib0071) 2019; 175
Tanner, Sattenspiel, Ntaimo (bib0059) 2008; 215
Govindan, Mina, Alavi (bib0026) 2020; 138
Kaplan, Craft, Wein (bib0032) 2003; 185
Zaric, Brandeau (bib0068) 2001; 171
.
Burki, T. (2020). China’s successful control of COVID-19.
CNN (2021). New Zealand and Australia were Covid success stories. why are they behind on vaccine rollouts?
Kıbış, Büyüktahtakın (bib0035) 2019; 307
Chatterjee, Chatterjee, Kumar, Shankar (bib0018) 2020
JHU (2020). COVID-19 United States cases by county.
Ku, Ng, Lin (bib0038) 2020
Yin, Büyüktahtakın (bib0067) 2021; 0
Wang, Pasco, Du, Petty, Fox, Galvani, Meyers (bib0061) 2020
CDC (2021). Clinical questions about COVID-19: Questions and answers.
Homem-de Mello, Pagnoncelli (bib0050) 2016; 249
Zeb, Alzahrani, Erturk, Zaman (bib0069) 2020; 2020
Coşgun, Büyüktahtakın (bib0020) 2018; 118
Lee, Zhao, Sun, Pan, Zhou, Xiong, Zhang (bib0041) 2020; 15
Kıbış, Büyüktahtakın, Haight, Akhundov, Knight, Flower (bib0036) 2021; 33
Huang, Araz, Morton, Johnson, Damien, Clements, Meyers (bib0030) 2017; 23
Sandıkçı, Özaltın (bib0058) 2017; 27
Fischer, Avrashi, Oz, Fadul, Gutman, Rubenstein, Glöckner (bib0024) 2020; 7
Li, Bouardi, Lami, Trikalinos, Trichakis, Bertsimas (bib0042) 2020
Bushaj, S., Yin, X., Beqiri, A., Andrews, D., & Büyüktahtakın, İ. E. (2021b). A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization. Under Review.
Ranney, Griffeth, Jha (bib0055) 2020; 382
Lilleker, D. (2021). The good, the bad and the ugly of government responses to COVID.
Accessed February 13, 2021.
Environmental Systems Research Institute (ESRI) (2021). ArcGIS map.
Accessed February 12, 2021.
Katris (bib0033) 2020; 166
Hogan, A. (2020). Watch: Ventilators are in high demand for COVID-19 patients. How do they work?
Mahmutoğulları, Çavuş, Aktürk (bib0045) 2018; 266
Bertsimas, D., Boussioux, L., Wright, R. C., Delarue, A., Digalakis Jr, V., Jacquillat, A., Kitane, D. L., Lukin, G., Li, M. L., Mingardi, L. et al. (2020). From predictions to prescriptions: A data-driven response to COVID-19.
Accessed January 20, 2021.
Badr, Du, Marshall, Dong, Squire, Gardner (bib0003) 2020; 20
Rockafellar, Uryasev (bib0057) 2002; 26
Roberts, Seymour, Dimitrov (bib0056) 2020
Accessed August 2, 2021.
Murray, C. (2020). Forecasting COVID-19 impact on hospital bed-days, ICU-Days, ventilator-days and deaths by US state in the next 4 months, 10.1101/2020.03.27.20043752.
Hu, Lin, Wang, Xu, Tatem, Meng, Wu (bib0029) 2020
Büyüktahtakın, des Bordes, Kıbış (bib0014) 2018; 265
Bein, Grasso, Moerer, Quintel, Guerin, Deja, Mehta (bib0005) 2016; 42
Weissman, Crane-Droesch, Chivers, Luong, Hanish, Levy, Anesi (bib0063) 2020; 173
Billingham, Widrick, Edwards, Klaus (bib0008) 2020
Glass, H. (2020). High-acuity ventilator cost guide.
Tuan, Mohammadi, Rezapour (bib0060) 2020; 140
McCrimmon, K. K. (2021). The truth about COVID-19 and asymptomatic spread: It’s common, so wear a mask and avoid large gatherings.
Wei, Liu, Zhu, Qian, Ye, Li, Wang (bib0062) 2020; 230
Yin, X., Bushaj, S., Yuan, Y., & Büyüktahtakın, İ. E. (2021). COVID-19: An agent-based simulation-optimization approach to vaccine center location vaccine allocation problem. Under Review.
Blanco, V., Gázquez, R., & Leal, M. (2020). Reallocating and sharing health equipments in sanitary emergency situations: The COVID-19 case in Spain.
Zhang, Jia, Lei, Wang, Zhao, Guo, Xie (bib0070) 2020
Kıbış, Büyüktahtakın (bib0034) 2017; 259
Castro, de Carvalho, Chin, Kahn, Franca, Macario, de Oliveira (bib0015) 2020
White, Lo (bib0064) 2020; 323
Bernstein, L. (2020). More COVID-19 patients are surviving ventilators in the ICU.
CENSUS (2020). Datasets.
Parker, F., Sawczuk, H., Ganjkhanloo, F., Ahmadi, F., & Ghobadi, K. (2020). Optimal resource and demand redistribution for healthcare systems under stress from COVID-19.
Lacasa, Challen, Brooks-Pollock, Danon (bib0040) 2020; 15
Mehrotra, Rahimian, Barah, Luo, Schantz (bib0048) 2020
Büyüktahtakın (10.1016/j.ejor.2021.11.052_bib0014) 2018; 265
10.1016/j.ejor.2021.11.052_bib0009
10.1016/j.ejor.2021.11.052_bib0006
10.1016/j.ejor.2021.11.052_bib0007
Li (10.1016/j.ejor.2021.11.052_bib0042) 2020
Katris (10.1016/j.ejor.2021.11.052_bib0033) 2020; 166
10.1016/j.ejor.2021.11.052_bib0049
10.1016/j.ejor.2021.11.052_bib0047
Billingham (10.1016/j.ejor.2021.11.052_bib0008) 2020
Bein (10.1016/j.ejor.2021.11.052_bib0005) 2016; 42
10.1016/j.ejor.2021.11.052_bib0043
Yin (10.1016/j.ejor.2021.11.052_bib0067) 2021; 0
Huang (10.1016/j.ejor.2021.11.052_bib0030) 2017; 23
Kıbış (10.1016/j.ejor.2021.11.052_bib0036) 2021; 33
Zhang (10.1016/j.ejor.2021.11.052_bib0070) 2020
Bushaj (10.1016/j.ejor.2021.11.052_bib0011) 2021
Weissman (10.1016/j.ejor.2021.11.052_bib0063) 2020; 173
Homem-de Mello (10.1016/j.ejor.2021.11.052_bib0050) 2016; 249
10.1016/j.ejor.2021.11.052_bib0019
10.1016/j.ejor.2021.11.052_bib0017
Castro (10.1016/j.ejor.2021.11.052_bib0015) 2020
Mehrotra (10.1016/j.ejor.2021.11.052_bib0048) 2020
10.1016/j.ejor.2021.11.052_bib0016
Coşgun (10.1016/j.ejor.2021.11.052_bib0020) 2018; 118
Alonso-Ayuso (10.1016/j.ejor.2021.11.052_bib0001) 2018; 267
Kıbış (10.1016/j.ejor.2021.11.052_bib0035) 2019; 307
10.1016/j.ejor.2021.11.052_bib0012
10.1016/j.ejor.2021.11.052_bib0053
10.1016/j.ejor.2021.11.052_bib0010
10.1016/j.ejor.2021.11.052_bib0052
Zaric (10.1016/j.ejor.2021.11.052_bib0068) 2001; 171
Loeffler-Wirth (10.1016/j.ejor.2021.11.052_bib0044) 2020; 12
Rockafellar (10.1016/j.ejor.2021.11.052_bib0057) 2002; 26
Tuan (10.1016/j.ejor.2021.11.052_bib0060) 2020; 140
Roberts (10.1016/j.ejor.2021.11.052_bib0056) 2020
Zeb (10.1016/j.ejor.2021.11.052_bib0069) 2020; 2020
Wang (10.1016/j.ejor.2021.11.052_bib0061) 2020
Tanner (10.1016/j.ejor.2021.11.052_bib0059) 2008; 215
Ambikapathy (10.1016/j.ejor.2021.11.052_bib0002) 2020; 6
10.1016/j.ejor.2021.11.052_bib0028
Kıbış (10.1016/j.ejor.2021.11.052_bib0034) 2017; 259
10.1016/j.ejor.2021.11.052_bib0027
Bakir (10.1016/j.ejor.2021.11.052_bib0004) 2020; 32
10.1016/j.ejor.2021.11.052_bib0025
10.1016/j.ejor.2021.11.052_bib0023
Mahmutoğulları (10.1016/j.ejor.2021.11.052_bib0045) 2018; 266
10.1016/j.ejor.2021.11.052_bib0065
Wei (10.1016/j.ejor.2021.11.052_bib0062) 2020; 230
Kretzschmar (10.1016/j.ejor.2021.11.052_bib0037) 2020; 5
White (10.1016/j.ejor.2021.11.052_bib0064) 2020; 323
Zou (10.1016/j.ejor.2021.11.052_bib0071) 2019; 175
Manca (10.1016/j.ejor.2021.11.052_bib0046) 2020
Dasaklis (10.1016/j.ejor.2021.11.052_bib0021) 2012; 139
Büyüktahtakın (10.1016/j.ejor.2021.11.052_bib0013) 2021
Badr (10.1016/j.ejor.2021.11.052_bib0003) 2020; 20
Sandıkçı (10.1016/j.ejor.2021.11.052_bib0058) 2017; 27
Kaplan (10.1016/j.ejor.2021.11.052_bib0032) 2003; 185
Yin (10.1016/j.ejor.2021.11.052_bib0066) 2021
10.1016/j.ejor.2021.11.052_bib0031
Kucharski (10.1016/j.ejor.2021.11.052_bib0039) 2020
Defourny (10.1016/j.ejor.2021.11.052_bib0022) 2012
Govindan (10.1016/j.ejor.2021.11.052_bib0026) 2020; 138
Lee (10.1016/j.ejor.2021.11.052_bib0041) 2020; 15
Ku (10.1016/j.ejor.2021.11.052_bib0038) 2020
Queiroz (10.1016/j.ejor.2021.11.052_bib0054) 2020
Lacasa (10.1016/j.ejor.2021.11.052_bib0040) 2020; 15
Hu (10.1016/j.ejor.2021.11.052_bib0029) 2020
Fischer (10.1016/j.ejor.2021.11.052_bib0024) 2020; 7
Ranney (10.1016/j.ejor.2021.11.052_bib0055) 2020; 382
Chatterjee (10.1016/j.ejor.2021.11.052_bib0018) 2020
Meng (10.1016/j.ejor.2021.11.052_bib0051) 2020; 132
References_xml – volume: 20
  start-page: 1247
  year: 2020
  end-page: 1254
  ident: bib0003
  article-title: Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study
  publication-title: The Lancet Infectious Diseases
– reference: . Accessed February 13, 2021.
– reference: Murray, C. (2020). Forecasting COVID-19 impact on hospital bed-days, ICU-Days, ventilator-days and deaths by US state in the next 4 months, 10.1101/2020.03.27.20043752.
– reference: McCrimmon, K. K. (2021). The truth about COVID-19 and asymptomatic spread: It’s common, so wear a mask and avoid large gatherings.
– start-page: 1
  year: 2020
  end-page: 38
  ident: bib0054
  article-title: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review
  publication-title: Annals of Operations Research
– year: 2020
  ident: bib0056
  article-title: Selectively caring for the most severe COVID-19 patients delays ICU bed shortages more than increasing hospital capacity
  publication-title: MedRxiv
– start-page: 1
  year: 2021
  end-page: 36
  ident: bib0013
  article-title: Stage-
  publication-title: Accepted for publication in Annals of Operations Research
– volume: 27
  start-page: 1772
  year: 2017
  end-page: 1800
  ident: bib0058
  article-title: A scalable bounding method for multistage stochastic programs
  publication-title: SIAM Journal on Optimization
– reference: Accessed May 30, 2021.
– volume: 42
  start-page: 699
  year: 2016
  end-page: 711
  ident: bib0005
  article-title: The standard of care of patients with ARDS: Ventilatory settings and rescue therapies for refractory hypoxemia
  publication-title: Intensive Care Medicine
– reference: CENSUS (2020). Datasets.
– volume: 7
  start-page: 201131
  year: 2020
  ident: bib0024
  article-title: The behavioural challenge of the COVID-19 pandemic: Indirect measurements and personalized attitude changing treatments (impact)
  publication-title: Royal Society Open Science
– volume: 23
  start-page: 914
  year: 2017
  ident: bib0030
  article-title: Stockpiling ventilators for influenza pandemics
  publication-title: Emerging Infectious Diseases
– year: 2020
  ident: bib0038
  article-title: Epidemiological benchmarks of the COVID-19 outbreak control in China after Wuhan’s lockdown: A modelling study with an empirical approach
  publication-title: Available at SSRN 3544127
– reference: Bernstein, L. (2020). More COVID-19 patients are surviving ventilators in the ICU.
– volume: 266
  start-page: 595
  year: 2018
  end-page: 608
  ident: bib0045
  article-title: Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR
  publication-title: European Journal of Operational Research
– volume: 15
  start-page: e0241468
  year: 2020
  ident: bib0041
  article-title: Human mobility trends during the early stage of the COVID-19 pandemic in the United States
  publication-title: PLoS One
– reference: Harvard Medical School (2021). Symptoms, spread and other essential information about Coronavirus and COVID-19.
– year: 2020
  ident: bib0042
  article-title: Forecasting COVID-19 and analyzing the effect of government interventions
  publication-title: MedRxiv
– volume: 12
  start-page: 777
  year: 2020
  ident: bib0044
  article-title: COVID-19 transmission trajectories-monitoring the pandemic in the worldwide context
  publication-title: Viruses
– year: 2020
  ident: bib0015
  article-title: Demand for hospitalization services for COVID-19 patients in Brazil
  publication-title: MedRxiv
– reference: Meller, M. (2020). The asymptomatic and pre-symptomatic spread of COVID-19.
– year: 2020
  ident: bib0008
  article-title: COVID-19 (SARS-CoV-2) ventilator resource management using a network optimization model and predictive system demand
  publication-title: MedRxiv
– volume: 140
  start-page: 110107
  year: 2020
  ident: bib0060
  article-title: A mathematical model for COVID-19 transmission by using the caputo fractional derivative
  publication-title: Chaos, Solitons & Fractals
– reference: Bushaj, S., Yin, X., Beqiri, A., Andrews, D., & Büyüktahtakın, İ. E. (2021b). A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization. Under Review.
– volume: 173
  start-page: 21
  year: 2020
  end-page: 28
  ident: bib0063
  article-title: Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic
  publication-title: Annals of Internal Medicine
– volume: 185
  start-page: 33
  year: 2003
  end-page: 72
  ident: bib0032
  article-title: Analyzing bioterror response logistics: The case of smallpox
  publication-title: Mathematical Biosciences
– volume: 307
  start-page: 53
  year: 2019
  end-page: 69
  ident: bib0035
  article-title: Optimizing multi-modal cancer treatment under 3D spatio-temporal tumor growth
  publication-title: Mathematical Biosciences
– reference: Hogan, A. (2020). Watch: Ventilators are in high demand for COVID-19 patients. How do they work?
– volume: 249
  start-page: 188
  year: 2016
  end-page: 199
  ident: bib0050
  article-title: Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective
  publication-title: European Journal of Operational Research
– volume: 171
  start-page: 33
  year: 2001
  end-page: 58
  ident: bib0068
  article-title: Resource allocation for epidemic control over short time horizons
  publication-title: Mathematical Biosciences
– year: 2020
  ident: bib0061
  article-title: Impact of social distancing measures on COVID-19 healthcare demand in Central Texas
  publication-title: MedRxiv
– reference: . Accessed January 20, 2021.
– year: 2020
  ident: bib0029
  article-title: The risk of COVID-19 transmission in train passengers: An epidemiological and modelling study
  publication-title: Clinical Infectious Diseases
– volume: 382
  start-page: e41
  year: 2020
  ident: bib0055
  article-title: Critical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemic
  publication-title: New England Journal of Medicine
– reference: Accessed February 12, 2021.
– start-page: 1
  year: 2021
  end-page: 26
  ident: bib0066
  article-title: A multi-stage stochastic programming approach to epidemic resource allocation with equity considerations
  publication-title: Published online ahead of print in Health Care Management Science
– volume: 166
  start-page: 114077
  year: 2020
  ident: bib0033
  article-title: A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece
  publication-title: Expert Systems with Applications
– reference: Burki, T. (2020). China’s successful control of COVID-19.
– reference: Blanco, V., Gázquez, R., & Leal, M. (2020). Reallocating and sharing health equipments in sanitary emergency situations: The COVID-19 case in Spain.
– year: 2021
  ident: bib0011
  article-title: Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation
  publication-title: European Journal of Operational Research
– reference: Bertsimas, D., Boussioux, L., Wright, R. C., Delarue, A., Digalakis Jr, V., Jacquillat, A., Kitane, D. L., Lukin, G., Li, M. L., Mingardi, L. et al. (2020). From predictions to prescriptions: A data-driven response to COVID-19.
– volume: 33
  start-page: 808
  year: 2021
  end-page: 834
  ident: bib0036
  article-title: A multistage stochastic programming approach to the optimal surveillance and control of the emerald ash borer in cities
  publication-title: INFORMS Journal on Computing
– volume: 0
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0067
  article-title: Risk-averse multi-stage stochastic programming to optimizing vaccine allocation and treatment logistics for effective epidemic response
  publication-title: IISE Transactions on Healthcare Systems Engineering
– volume: 118
  start-page: 423
  year: 2018
  end-page: 439
  ident: bib0020
  article-title: Stochastic dynamic resource allocation for HIV prevention and treatment: An approximate dynamic programming approach
  publication-title: Computers & Industrial Engineering
– volume: 139
  start-page: 393
  year: 2012
  end-page: 410
  ident: bib0021
  article-title: Epidemics control and logistics operations: A review
  publication-title: International Journal of Production Economics
– volume: 267
  start-page: 1051
  year: 2018
  end-page: 1074
  ident: bib0001
  article-title: Risk management for forestry planning under uncertainty in demand and prices
  publication-title: European Journal of Operational Research
– start-page: 97
  year: 2012
  end-page: 143
  ident: bib0022
  article-title: Multistage stochastic programming: A scenario tree based approach to planning under uncertainty
  publication-title: Decision theory models for applications in artificial intelligence: Concepts and solutions
– volume: 2020
  year: 2020
  ident: bib0069
  article-title: Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class
  publication-title: BioMed Research International
– reference: JHU (2020). COVID-19 United States cases by county.
– start-page: 106945
  year: 2020
  ident: bib0046
  article-title: A simplified math approach to predict ICU beds and mortality rate for hospital emergency planning under COVID-19 pandemic
  publication-title: Computers & Chemical Engineering
– year: 2020
  ident: bib0048
  article-title: A model of supply-chain decisions for resource sharing with an application to ventilator allocation to combat COVID-19
  publication-title: Naval Research Logistics (NRL)
– reference: CNN (2021). New Zealand and Australia were Covid success stories. why are they behind on vaccine rollouts?
– volume: 15
  start-page: e0241027
  year: 2020
  ident: bib0040
  article-title: A flexible method for optimising sharing of healthcare resources and demand in the context of the COVID-19 pandemic
  publication-title: Plos One
– reference: Lilleker, D. (2021). The good, the bad and the ugly of government responses to COVID.
– volume: 32
  start-page: 145
  year: 2020
  end-page: 163
  ident: bib0004
  article-title: Sampling scenario set partition dual bounds for multistage stochastic programs
  publication-title: INFORMS Journal on Computing
– volume: 6
  start-page: e19368
  year: 2020
  ident: bib0002
  article-title: Mathematical modelling to assess the impact of lockdown on COVID-19 transmission in India: Model development and validation
  publication-title: JMIR Public Health and Surveillance
– volume: 265
  start-page: 1046
  year: 2018
  end-page: 1063
  ident: bib0014
  article-title: A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa
  publication-title: European Journal of Operational Research
– volume: 230
  start-page: 113610
  year: 2020
  ident: bib0062
  article-title: Impacts of transportation and meteorological factors on the transmission of COVID-19
  publication-title: International Journal of Hygiene and Environmental Health
– year: 2020
  ident: bib0070
  article-title: Effects of human behaviour changes during the COVID-19 pandemic on influenza spread in Hong Kong
  publication-title: Clinical Infectious Diseases
– volume: 259
  start-page: 308
  year: 2017
  end-page: 321
  ident: bib0034
  article-title: Optimizing invasive species management: A mixed-integer linear programming approach
  publication-title: European Journal of Operational Research
– reference: . Accessed August 2, 2021.
– reference: Environmental Systems Research Institute (ESRI) (2021). ArcGIS map.
– volume: 323
  start-page: 1773
  year: 2020
  end-page: 1774
  ident: bib0064
  article-title: A framework for rationing ventilators and critical care beds during the COVID-19 pandemic
  publication-title: JAMA
– reference: Glass, H. (2020). High-acuity ventilator cost guide.
– volume: 5
  start-page: e452
  year: 2020
  end-page: e459
  ident: bib0037
  article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: A modelling study
  publication-title: The Lancet Public Health
– reference: Parker, F., Sawczuk, H., Ganjkhanloo, F., Ahmadi, F., & Ghobadi, K. (2020). Optimal resource and demand redistribution for healthcare systems under stress from COVID-19.
– volume: 132
  start-page: 1317
  year: 2020
  end-page: 1332
  ident: bib0051
  article-title: Intubation and ventilation amid the COVID-19 outbreak: Wuhan’s experience
  publication-title: Anesthesiology
– reference: .
– reference: . Accessed May 30, 2021.
– reference: . Accessed November 30, 2020.
– volume: 138
  start-page: 101967
  year: 2020
  ident: bib0026
  article-title: A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 26
  start-page: 1443
  year: 2002
  end-page: 1471
  ident: bib0057
  article-title: Conditional value-at-risk for general loss distributions
  publication-title: Journal of Banking & Finance
– volume: 215
  start-page: 144
  year: 2008
  end-page: 151
  ident: bib0059
  article-title: Finding optimal vaccination strategies under parameter uncertainty using stochastic programming
  publication-title: Mathematical Biosciences
– reference: CDC (2021). Clinical questions about COVID-19: Questions and answers.
– year: 2020
  ident: bib0018
  article-title: Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model
  publication-title: Medical Journal Armed Forces India
– year: 2020
  ident: bib0039
  article-title: Early dynamics of transmission and control of COVID-19: A mathematical modelling study
  publication-title: The Lancet Infectious Diseases
– reference: Accessed November 30, 2020.
– reference: Yin, X., Bushaj, S., Yuan, Y., & Büyüktahtakın, İ. E. (2021). COVID-19: An agent-based simulation-optimization approach to vaccine center location vaccine allocation problem. Under Review.
– volume: 175
  start-page: 461
  year: 2019
  end-page: 502
  ident: bib0071
  article-title: Stochastic dual dynamic integer programming
  publication-title: Mathematical Programming
– ident: 10.1016/j.ejor.2021.11.052_bib0028
– ident: 10.1016/j.ejor.2021.11.052_bib0053
– volume: 265
  start-page: 1046
  issue: 3
  year: 2018
  ident: 10.1016/j.ejor.2021.11.052_bib0014
  article-title: A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.08.037
– volume: 230
  start-page: 113610
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0062
  article-title: Impacts of transportation and meteorological factors on the transmission of COVID-19
  publication-title: International Journal of Hygiene and Environmental Health
  doi: 10.1016/j.ijheh.2020.113610
– volume: 32
  start-page: 145
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0004
  article-title: Sampling scenario set partition dual bounds for multistage stochastic programs
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.2018.0885
– start-page: 106945
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0046
  article-title: A simplified math approach to predict ICU beds and mortality rate for hospital emergency planning under COVID-19 pandemic
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2020.106945
– volume: 7
  start-page: 201131
  issue: 8
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0024
  article-title: The behavioural challenge of the COVID-19 pandemic: Indirect measurements and personalized attitude changing treatments (impact)
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.201131
– volume: 171
  start-page: 33
  issue: 1
  year: 2001
  ident: 10.1016/j.ejor.2021.11.052_bib0068
  article-title: Resource allocation for epidemic control over short time horizons
  publication-title: Mathematical Biosciences
  doi: 10.1016/S0025-5564(01)00050-5
– volume: 259
  start-page: 308
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2021.11.052_bib0034
  article-title: Optimizing invasive species management: A mixed-integer linear programming approach
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.09.049
– ident: 10.1016/j.ejor.2021.11.052_bib0012
  doi: 10.1007/s10479-022-04926-7
– volume: 42
  start-page: 699
  issue: 5
  year: 2016
  ident: 10.1016/j.ejor.2021.11.052_bib0005
  article-title: The standard of care of patients with ARDS: Ventilatory settings and rescue therapies for refractory hypoxemia
  publication-title: Intensive Care Medicine
  doi: 10.1007/s00134-016-4325-4
– volume: 23
  start-page: 914
  issue: 6
  year: 2017
  ident: 10.1016/j.ejor.2021.11.052_bib0030
  article-title: Stockpiling ventilators for influenza pandemics
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid2306.161417
– volume: 266
  start-page: 595
  issue: 2
  year: 2018
  ident: 10.1016/j.ejor.2021.11.052_bib0045
  article-title: Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.10.038
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0018
  article-title: Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model
  publication-title: Medical Journal Armed Forces India
  doi: 10.1016/j.mjafi.2020.03.022
– ident: 10.1016/j.ejor.2021.11.052_bib0052
– volume: 215
  start-page: 144
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2021.11.052_bib0059
  article-title: Finding optimal vaccination strategies under parameter uncertainty using stochastic programming
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2008.07.006
– volume: 0
  start-page: 1
  issue: 0
  year: 2021
  ident: 10.1016/j.ejor.2021.11.052_bib0067
  article-title: Risk-averse multi-stage stochastic programming to optimizing vaccine allocation and treatment logistics for effective epidemic response
  publication-title: IISE Transactions on Healthcare Systems Engineering
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0070
  article-title: Effects of human behaviour changes during the COVID-19 pandemic on influenza spread in Hong Kong
  publication-title: Clinical Infectious Diseases
– ident: 10.1016/j.ejor.2021.11.052_bib0025
– volume: 249
  start-page: 188
  issue: 1
  year: 2016
  ident: 10.1016/j.ejor.2021.11.052_bib0050
  article-title: Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.05.048
– volume: 382
  start-page: e41
  issue: 18
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0055
  article-title: Critical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemic
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMp2006141
– ident: 10.1016/j.ejor.2021.11.052_bib0031
– volume: 15
  start-page: e0241468
  issue: 11
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0041
  article-title: Human mobility trends during the early stage of the COVID-19 pandemic in the United States
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241468
– start-page: 1
  year: 2021
  ident: 10.1016/j.ejor.2021.11.052_bib0013
  article-title: Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs
  publication-title: Accepted for publication in Annals of Operations Research
– volume: 132
  start-page: 1317
  issue: 6
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0051
  article-title: Intubation and ventilation amid the COVID-19 outbreak: Wuhan’s experience
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000003296
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0042
  article-title: Forecasting COVID-19 and analyzing the effect of government interventions
  publication-title: MedRxiv
– volume: 166
  start-page: 114077
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0033
  article-title: A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114077
– volume: 12
  start-page: 777
  issue: 7
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0044
  article-title: COVID-19 transmission trajectories-monitoring the pandemic in the worldwide context
  publication-title: Viruses
  doi: 10.3390/v12070777
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0008
  article-title: COVID-19 (SARS-CoV-2) ventilator resource management using a network optimization model and predictive system demand
  publication-title: MedRxiv
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0029
  article-title: The risk of COVID-19 transmission in train passengers: An epidemiological and modelling study
  publication-title: Clinical Infectious Diseases
– volume: 175
  start-page: 461
  issue: 1
  year: 2019
  ident: 10.1016/j.ejor.2021.11.052_bib0071
  article-title: Stochastic dual dynamic integer programming
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-018-1249-5
– ident: 10.1016/j.ejor.2021.11.052_bib0010
– year: 2021
  ident: 10.1016/j.ejor.2021.11.052_bib0011
  article-title: Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation
  publication-title: European Journal of Operational Research
– ident: 10.1016/j.ejor.2021.11.052_bib0049
– volume: 118
  start-page: 423
  year: 2018
  ident: 10.1016/j.ejor.2021.11.052_bib0020
  article-title: Stochastic dynamic resource allocation for HIV prevention and treatment: An approximate dynamic programming approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.01.018
– volume: 139
  start-page: 393
  issue: 2
  year: 2012
  ident: 10.1016/j.ejor.2021.11.052_bib0021
  article-title: Epidemics control and logistics operations: A review
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2012.05.023
– start-page: 97
  year: 2012
  ident: 10.1016/j.ejor.2021.11.052_bib0022
  article-title: Multistage stochastic programming: A scenario tree based approach to planning under uncertainty
– volume: 185
  start-page: 33
  issue: 1
  year: 2003
  ident: 10.1016/j.ejor.2021.11.052_bib0032
  article-title: Analyzing bioterror response logistics: The case of smallpox
  publication-title: Mathematical Biosciences
  doi: 10.1016/S0025-5564(03)00090-7
– volume: 2020
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0069
  article-title: Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class
  publication-title: BioMed Research International
  doi: 10.1155/2020/3452402
– volume: 33
  start-page: 808
  issue: 2
  year: 2021
  ident: 10.1016/j.ejor.2021.11.052_bib0036
  article-title: A multistage stochastic programming approach to the optimal surveillance and control of the emerald ash borer in cities
  publication-title: INFORMS Journal on Computing
– volume: 5
  start-page: e452
  issue: 8
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0037
  article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: A modelling study
  publication-title: The Lancet Public Health
  doi: 10.1016/S2468-2667(20)30157-2
– volume: 323
  start-page: 1773
  issue: 18
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0064
  article-title: A framework for rationing ventilators and critical care beds during the COVID-19 pandemic
  publication-title: JAMA
  doi: 10.1001/jama.2020.5046
– start-page: 1
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0054
  article-title: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review
  publication-title: Annals of Operations Research
– volume: 15
  start-page: e0241027
  issue: 10
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0040
  article-title: A flexible method for optimising sharing of healthcare resources and demand in the context of the COVID-19 pandemic
  publication-title: Plos One
  doi: 10.1371/journal.pone.0241027
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0061
  article-title: Impact of social distancing measures on COVID-19 healthcare demand in Central Texas
  publication-title: MedRxiv
– ident: 10.1016/j.ejor.2021.11.052_bib0065
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0056
  article-title: Selectively caring for the most severe COVID-19 patients delays ICU bed shortages more than increasing hospital capacity
  publication-title: MedRxiv
– volume: 173
  start-page: 21
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0063
  article-title: Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic
  publication-title: Annals of Internal Medicine
  doi: 10.7326/M20-1260
– volume: 20
  start-page: 1247
  issue: 11
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0003
  article-title: Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30553-3
– ident: 10.1016/j.ejor.2021.11.052_bib0017
– ident: 10.1016/j.ejor.2021.11.052_bib0027
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0015
  article-title: Demand for hospitalization services for COVID-19 patients in Brazil
  publication-title: MedRxiv
– volume: 27
  start-page: 1772
  issue: 3
  year: 2017
  ident: 10.1016/j.ejor.2021.11.052_bib0058
  article-title: A scalable bounding method for multistage stochastic programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1075594
– volume: 6
  start-page: e19368
  issue: 2
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0002
  article-title: Mathematical modelling to assess the impact of lockdown on COVID-19 transmission in India: Model development and validation
  publication-title: JMIR Public Health and Surveillance
  doi: 10.2196/19368
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0048
  article-title: A model of supply-chain decisions for resource sharing with an application to ventilator allocation to combat COVID-19
  publication-title: Naval Research Logistics (NRL)
  doi: 10.1002/nav.21905
– ident: 10.1016/j.ejor.2021.11.052_bib0006
– ident: 10.1016/j.ejor.2021.11.052_bib0023
– ident: 10.1016/j.ejor.2021.11.052_bib0019
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0039
  article-title: Early dynamics of transmission and control of COVID-19: A mathematical modelling study
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30144-4
– ident: 10.1016/j.ejor.2021.11.052_bib0007
  doi: 10.1101/2020.06.26.20141127
– volume: 26
  start-page: 1443
  issue: 7
  year: 2002
  ident: 10.1016/j.ejor.2021.11.052_bib0057
  article-title: Conditional value-at-risk for general loss distributions
  publication-title: Journal of Banking & Finance
  doi: 10.1016/S0378-4266(02)00271-6
– volume: 307
  start-page: 53
  year: 2019
  ident: 10.1016/j.ejor.2021.11.052_bib0035
  article-title: Optimizing multi-modal cancer treatment under 3D spatio-temporal tumor growth
  publication-title: Mathematical Biosciences
  doi: 10.1016/j.mbs.2018.10.010
– volume: 140
  start-page: 110107
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0060
  article-title: A mathematical model for COVID-19 transmission by using the caputo fractional derivative
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110107
– volume: 138
  start-page: 101967
  year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0026
  article-title: A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2020.101967
– year: 2020
  ident: 10.1016/j.ejor.2021.11.052_bib0038
  article-title: Epidemiological benchmarks of the COVID-19 outbreak control in China after Wuhan’s lockdown: A modelling study with an empirical approach
– ident: 10.1016/j.ejor.2021.11.052_bib0043
– ident: 10.1016/j.ejor.2021.11.052_bib0016
– ident: 10.1016/j.ejor.2021.11.052_bib0009
– volume: 267
  start-page: 1051
  issue: 3
  year: 2018
  ident: 10.1016/j.ejor.2021.11.052_bib0001
  article-title: Risk management for forestry planning under uncertainty in demand and prices
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.12.022
– ident: 10.1016/j.ejor.2021.11.052_bib0047
– start-page: 1
  year: 2021
  ident: 10.1016/j.ejor.2021.11.052_bib0066
  article-title: A multi-stage stochastic programming approach to epidemic resource allocation with equity considerations
  publication-title: Published online ahead of print in Health Care Management Science
SSID ssj0001515
Score 2.596163
Snippet •Multi-stage stochastic epidemics-ventilator-logistics compartmental model.•Optimize ventilator allocation under asymptomatic uncertainty and...
This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 255
SubjectTerms COVID-19
Mean-CVaR multi-stage stochastic mixed-integer programming model
OR in health services
Pandemic resource and ventilator allocation
Risk-averse optimization
Title COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk
URI https://dx.doi.org/10.1016/j.ejor.2021.11.052
https://www.ncbi.nlm.nih.gov/pubmed/34866765
https://www.proquest.com/docview/2607306806
https://pubmed.ncbi.nlm.nih.gov/PMC8632406
Volume 304
WOSCitedRecordID wos000861383000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9pAEF6RpKraQx_0RR_RVqp6QY7wc01vCRA1FSI5kMo9Wev1WkCIocZE4dD_3hnv2kCiROmhlwUtfsnzMTM7O_MNIV_auJ2ZJKYhI4cbTmQLA7wMbgjTjEQsXIvHBWV-nw0GfhC0z2q1P2UtzNWUpal_fd2e_1dRwxwIG0tn_0Hc1UVhAr6D0GEEscP4IMF3Tn-edA2zjWv9Ls-50c1QozVnoBwukRlgivardBSLdMcprrybC2zwuSoa42YwCpUskK-qFPQ7o_jao4WJrIwtahKhKtj8S3EVBEsJKNHWEqMAuFF_1Fmpj4ucj3J-gQ7ukalK0pq9RVZZjjNwjNUuyWh5OdalaTpkYdkbIQtdqsWYYVmqaLNUw7ZqQ7yFN61UFZHvLWWv4g6TAzmZIbOrZR4gH6sixN1m1h6chsfn_X447AXDr_PfBjYdw8153YFlh-xZzG2DUtw7POkFPypTjt5esQ2ln1dXXakEwZu3vcuzub1yuZmAu-HRDF-QZ3opQg8VhF6Smkzr5HFZCVEnz8uOH1QbgDp5ukFf-YoEJdS-0Q2gUQ00ugYanSV0DTSqgEYLoNENoFEAGkWgvSbnx71h57uhO3UYAgxAbjC_5UkHXGHfldyO3JYTJW4kXSG8hCXggQtpclAELDY5xy6zfgx2gEVFnbYjhP2G7KazVL4jFPnymBVHIvFhtdFuRa7PwEm17dhzEunFDWKWbzkUmsYeu6lMwzJfcRKiZEKUDKxvQ5BMgzSrc-aKxOXeo91SeKF2Q5V7GQLw7j3vcynpEHQ0brzxVM6Wi9Dy0JB68JIa5K2SfPUctuNjmrnbIGwLE9UByP--_Us6HhU88D62Wmh57x9w3w_kyfqP-JHs5tlSfiKPxFU-XmT7ZIcF_r4G_1-dxNDN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19%3A+Data-Driven+optimal+allocation+of+ventilator+supply+under+uncertainty+and+risk&rft.jtitle=European+journal+of+operational+research&rft.au=Yin%2C+Xuecheng&rft.au=B%C3%BCy%C3%BCktahtak%C4%B1n%2C+I+Esra&rft.au=Patel%2C+Bhumi+P&rft.date=2023-01-01&rft.issn=0377-2217&rft.volume=304&rft.issue=1&rft.spage=255&rft_id=info:doi/10.1016%2Fj.ejor.2021.11.052&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon