Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision

As a convex relaxation of the rank minimization model, the nuclear norm minimization (NNM) problem has been attracting significant research interest in recent years. The standard NNM regularizes each singular value equally, composing an easily calculated convex norm. However, this restricts its capa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 121; no. 2; pp. 183 - 208
Main Authors: Gu, Shuhang, Xie, Qi, Meng, Deyu, Zuo, Wangmeng, Feng, Xiangchu, Zhang, Lei
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2017
Springer
Springer Nature B.V
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a convex relaxation of the rank minimization model, the nuclear norm minimization (NNM) problem has been attracting significant research interest in recent years. The standard NNM regularizes each singular value equally, composing an easily calculated convex norm. However, this restricts its capability and flexibility in dealing with many practical problems, where the singular values have clear physical meanings and should be treated differently. In this paper we study the weighted nuclear norm minimization (WNNM) problem, which adaptively assigns weights on different singular values. As the key step of solving general WNNM models, the theoretical properties of the weighted nuclear norm proximal (WNNP) operator are investigated. Albeit nonconvex, we prove that WNNP is equivalent to a standard quadratic programming problem with linear constrains, which facilitates solving the original problem with off-the-shelf convex optimization solvers. In particular, when the weights are sorted in a non-descending order, its optimal solution can be easily obtained in closed-form. With WNNP, the solving strategies for multiple extensions of WNNM, including robust PCA and matrix completion, can be readily constructed under the alternating direction method of multipliers paradigm. Furthermore, inspired by the reweighted sparse coding scheme, we present an automatic weight setting method, which greatly facilitates the practical implementation of WNNM. The proposed WNNM methods achieve state-of-the-art performance in typical low level vision tasks, including image denoising, background subtraction and image inpainting.
AbstractList As a convex relaxation of the rank minimization model, the nuclear norm minimization (NNM) problem has been attracting significant research interest in recent years. The standard NNM regularizes each singular value equally, composing an easily calculated convex norm. However, this restricts its capability and flexibility in dealing with many practical problems, where the singular values have clear physical meanings and should be treated differently. In this paper we study the weighted nuclear norm minimization (WNNM) problem, which adaptively assigns weights on different singular values. As the key step of solving general WNNM models, the theoretical properties of the weighted nuclear norm proximal (WNNP) operator are investigated. Albeit nonconvex, we prove that WNNP is equivalent to a standard quadratic programming problem with linear constrains, which facilitates solving the original problem with off-the-shelf convex optimization solvers. In particular, when the weights are sorted in a non-descending order, its optimal solution can be easily obtained in closed-form. With WNNP, the solving strategies for multiple extensions of WNNM, including robust PCA and matrix completion, can be readily constructed under the alternating direction method of multipliers paradigm. Furthermore, inspired by the reweighted sparse coding scheme, we present an automatic weight setting method, which greatly facilitates the practical implementation of WNNM. The proposed WNNM methods achieve state-of-the-art performance in typical low level vision tasks, including image denoising, background subtraction and image inpainting.
Audience Academic
Author Meng, Deyu
Zuo, Wangmeng
Feng, Xiangchu
Gu, Shuhang
Xie, Qi
Zhang, Lei
Author_xml – sequence: 1
  givenname: Shuhang
  surname: Gu
  fullname: Gu, Shuhang
  organization: Department of Computing, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Qi
  surname: Xie
  fullname: Xie, Qi
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 3
  givenname: Deyu
  surname: Meng
  fullname: Meng, Deyu
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 4
  givenname: Wangmeng
  surname: Zuo
  fullname: Zuo, Wangmeng
  organization: School of Computer Science and Technology, Harbin Institute of Technology
– sequence: 5
  givenname: Xiangchu
  surname: Feng
  fullname: Feng, Xiangchu
  organization: Department of Applied Mathematics, Xidian University
– sequence: 6
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: cslzhang@comp.polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University
BookMark eNp9kV9vFCEUxYmpidvqB_CNxBd9mMqFgZl53DRWN6418e8jocxlpZkZVmC09dPLdkxMm2hIIJz8zuVyzzE5msKEhDwFdgqMNS8TAFeiYqAq1glWyQdkBbIRFdRMHpEV63gRVQePyHFKV4wx3nKxIm-_ot99y9jTi9kOaCK9CHGk7_zkR__LZB8maqaebnKi6_1-8PZWSzQHug0_6RZ_4EC_-FTEx-ShM0PCJ3_OE_L5_NWnszfV9v3rzdl6W9m6bXOlBFgJzLX2kgH0ArFcmkvZSdf1rmZll65p0YDivMPGGaWcQuawYdgCEyfk-VJ3H8P3GVPWo08Wh8FMGOakoW1r4LxWbUGf3UOvwhyn0p3mIGRT5tDJQp0u1M4MqP3kQo7GltXj6G0ZtPNFX8vStWCiPpR9ccdQmIzXeWfmlPTm44e7bLOwNoaUIjptfb4dYnnEDxqYPiSolwR1SVAfEtSHtuCecx_9aOLNfz188aTCTjuMfz_8b9Nvc6issg
CitedBy_id crossref_primary_10_1016_j_cam_2023_115215
crossref_primary_10_1109_TGRS_2020_2985400
crossref_primary_10_1109_TPAMI_2017_2748590
crossref_primary_10_1049_iet_ipr_2019_0469
crossref_primary_10_1109_TNNLS_2022_3144630
crossref_primary_10_3390_electronics10060655
crossref_primary_10_1109_TIM_2023_3285991
crossref_primary_10_12677_AIRR_2019_81004
crossref_primary_10_23919_cje_2023_00_340
crossref_primary_10_1631_FITEE_2300017
crossref_primary_10_1109_ACCESS_2020_2999891
crossref_primary_10_3390_math10040671
crossref_primary_10_1109_TIP_2021_3128321
crossref_primary_10_1049_ipr2_12049
crossref_primary_10_1109_TCYB_2018_2825598
crossref_primary_10_1007_s42979_025_03716_9
crossref_primary_10_1109_TIP_2019_2958309
crossref_primary_10_1109_TMM_2021_3081930
crossref_primary_10_1016_j_dsp_2024_104836
crossref_primary_10_1109_JSTARS_2023_3286974
crossref_primary_10_1007_s11042_018_7004_3
crossref_primary_10_1049_ipr2_13150
crossref_primary_10_3390_rs12142264
crossref_primary_10_1109_ACCESS_2020_2964683
crossref_primary_10_1117_1_JEI_32_2_023021
crossref_primary_10_1007_s00454_019_00162_2
crossref_primary_10_1007_s11263_023_01960_1
crossref_primary_10_1016_j_neuroimage_2024_120616
crossref_primary_10_1080_01431161_2025_2522945
crossref_primary_10_1007_s10851_023_01148_9
crossref_primary_10_1080_10095020_2025_2486277
crossref_primary_10_1177_17483026241264131
crossref_primary_10_1002_sia_6736
crossref_primary_10_1049_iet_spr_2019_0377
crossref_primary_10_3390_app12062931
crossref_primary_10_1016_j_cviu_2024_104204
crossref_primary_10_3390_rs11020193
crossref_primary_10_1109_TIP_2024_3475738
crossref_primary_10_1109_TPAMI_2022_3157083
crossref_primary_10_1145_3592144
crossref_primary_10_1109_TMM_2021_3126934
crossref_primary_10_1016_j_jvcir_2018_05_021
crossref_primary_10_1049_iet_ipr_2019_1660
crossref_primary_10_1109_TIP_2020_2980116
crossref_primary_10_1007_s00500_022_06845_y
crossref_primary_10_1109_ACCESS_2019_2960078
crossref_primary_10_1109_TIP_2022_3176133
crossref_primary_10_1109_LGRS_2023_3322946
crossref_primary_10_1109_TCYB_2021_3072896
crossref_primary_10_1007_s13042_018_0814_9
crossref_primary_10_1109_TGRS_2018_2885089
crossref_primary_10_1007_s00530_023_01198_4
crossref_primary_10_1109_TCI_2021_3083135
crossref_primary_10_1109_TGRS_2020_2996686
crossref_primary_10_1016_j_cviu_2024_104216
crossref_primary_10_1007_s10915_020_01203_2
crossref_primary_10_1049_iet_ipr_2019_1648
crossref_primary_10_1109_TIP_2020_3008367
crossref_primary_10_1016_j_cam_2023_115564
crossref_primary_10_3390_rs14061343
crossref_primary_10_1109_TCYB_2023_3305552
crossref_primary_10_1038_s41598_024_80404_3
crossref_primary_10_1049_iet_ipr_2019_1409
crossref_primary_10_1049_rsn2_12283
crossref_primary_10_1007_s11042_021_11151_0
crossref_primary_10_1016_j_neucom_2018_12_034
crossref_primary_10_1049_iet_ipr_2019_1654
crossref_primary_10_1007_s10489_024_06024_6
crossref_primary_10_1137_17M1135694
crossref_primary_10_1117_1_JEI_31_3_033022
crossref_primary_10_1002_mp_15387
crossref_primary_10_1109_TPAMI_2021_3122259
crossref_primary_10_1109_JSTARS_2021_3069032
crossref_primary_10_1007_s11042_020_09234_5
crossref_primary_10_1016_j_patcog_2017_11_008
crossref_primary_10_1109_TGRS_2019_2957153
crossref_primary_10_1016_j_jvcir_2021_103335
crossref_primary_10_1109_TCOMM_2023_3331521
crossref_primary_10_1155_2021_9035163
crossref_primary_10_1109_TPAMI_2020_3017672
crossref_primary_10_1007_s00034_023_02330_5
crossref_primary_10_1109_TGRS_2018_2862384
crossref_primary_10_1016_j_neucom_2020_01_103
crossref_primary_10_1007_s10044_022_01088_x
crossref_primary_10_1016_j_sigpro_2019_06_004
crossref_primary_10_1109_TAES_2021_3090930
crossref_primary_10_1109_TCSVT_2023_3291821
crossref_primary_10_1007_s10915_023_02366_4
crossref_primary_10_1016_j_camwa_2022_07_019
crossref_primary_10_1109_TCSVT_2019_2927603
crossref_primary_10_1039_C8CC06132G
crossref_primary_10_1186_s42492_019_0016_7
crossref_primary_10_1016_j_jvcir_2022_103729
crossref_primary_10_1137_23M1578358
crossref_primary_10_1117_1_JRS_16_024524
crossref_primary_10_1109_TPAMI_2022_3204203
crossref_primary_10_1016_j_ijleo_2022_170415
crossref_primary_10_1007_s42967_023_00339_w
crossref_primary_10_1080_10618600_2024_2331020
crossref_primary_10_1109_TGRS_2025_3593019
crossref_primary_10_1016_j_sigpro_2024_109817
crossref_primary_10_3390_app13127184
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_3390_s22228899
crossref_primary_10_1109_TCYB_2021_3084931
crossref_primary_10_1109_LGRS_2024_3516363
crossref_primary_10_1109_TIP_2020_3023798
crossref_primary_10_1080_01431161_2021_1993461
crossref_primary_10_1109_TIP_2022_3226406
crossref_primary_10_1016_j_neucom_2019_08_088
crossref_primary_10_3788_LOP241353
crossref_primary_10_1016_j_neucom_2018_12_075
crossref_primary_10_1109_TCYB_2020_2978500
crossref_primary_10_1109_ACCESS_2021_3059887
crossref_primary_10_1109_TPAMI_2019_2961672
crossref_primary_10_1109_TIP_2018_2865684
crossref_primary_10_1190_geo2019_0586_1
crossref_primary_10_1016_j_sigpro_2023_109319
crossref_primary_10_1109_TGRS_2021_3085779
crossref_primary_10_3788_gzxb20255406_0630001
crossref_primary_10_1049_joe_2017_0388
crossref_primary_10_1109_TCSVT_2018_2878803
crossref_primary_10_1109_ACCESS_2018_2881966
crossref_primary_10_1007_s11760_025_04264_8
crossref_primary_10_12677_airr_2024_132022
crossref_primary_10_1109_TCYB_2021_3051656
crossref_primary_10_1177_00405175221148516
crossref_primary_10_1007_s41095_022_0277_5
crossref_primary_10_1016_j_sigpro_2024_109706
crossref_primary_10_1155_2022_3167717
crossref_primary_10_1016_j_cam_2025_116958
crossref_primary_10_1007_s00521_020_04717_w
crossref_primary_10_3233_JIFS_179375
crossref_primary_10_1016_j_csda_2023_107809
crossref_primary_10_1109_TGRS_2020_3024623
crossref_primary_10_1109_TNNLS_2022_3183970
crossref_primary_10_1016_j_sigpro_2020_107645
crossref_primary_10_1016_j_amc_2021_125977
crossref_primary_10_1016_j_cviu_2024_104270
crossref_primary_10_3390_math11092127
crossref_primary_10_1016_j_sigpro_2023_109322
crossref_primary_10_1007_s10915_024_02671_6
crossref_primary_10_1109_JSTARS_2021_3116965
crossref_primary_10_3390_rs12122027
crossref_primary_10_1109_TCSVT_2024_3382306
crossref_primary_10_1088_1361_6501_ab7406
crossref_primary_10_1109_ACCESS_2018_2868731
crossref_primary_10_3390_s20061797
crossref_primary_10_1155_2021_8814415
crossref_primary_10_1007_s11042_022_12406_0
crossref_primary_10_1016_j_knosys_2020_105482
crossref_primary_10_1016_j_knosys_2022_109008
crossref_primary_10_1016_j_image_2018_09_012
crossref_primary_10_1109_ACCESS_2020_3010540
crossref_primary_10_1109_TIP_2021_3075092
crossref_primary_10_1109_TPAMI_2024_3461721
crossref_primary_10_1007_s11075_024_01887_9
crossref_primary_10_1109_TNNLS_2019_2900572
crossref_primary_10_1137_21M143786X
crossref_primary_10_1016_j_image_2018_09_010
crossref_primary_10_1016_j_knosys_2020_106694
crossref_primary_10_1007_s00138_024_01573_9
crossref_primary_10_1155_2017_4965262
crossref_primary_10_1016_j_geoen_2023_212307
crossref_primary_10_1016_j_cmpb_2022_107240
crossref_primary_10_1134_S1061830920040087
crossref_primary_10_3390_s18010060
crossref_primary_10_1016_j_ins_2019_06_012
crossref_primary_10_1007_s42967_024_00381_2
crossref_primary_10_1016_j_ins_2017_10_053
crossref_primary_10_1049_ipr2_12121
crossref_primary_10_1016_j_sigpro_2024_109725
crossref_primary_10_1109_ACCESS_2020_2976805
crossref_primary_10_1109_TUFFC_2022_3198503
crossref_primary_10_1109_TIP_2018_2874284
crossref_primary_10_1016_j_dsp_2025_105169
crossref_primary_10_1109_ACCESS_2021_3125152
crossref_primary_10_1109_TNNLS_2019_2956153
crossref_primary_10_1016_j_eswa_2023_120456
crossref_primary_10_3390_math8081325
crossref_primary_10_1016_j_patcog_2020_107639
crossref_primary_10_1155_2020_9365405
crossref_primary_10_1002_sta4_70064
crossref_primary_10_1109_TIP_2020_2972109
crossref_primary_10_1109_TKDE_2020_2978465
crossref_primary_10_1016_j_patcog_2024_110456
crossref_primary_10_1186_s12859_021_04464_2
crossref_primary_10_1109_LSP_2018_2850222
crossref_primary_10_1109_TNNLS_2018_2885699
crossref_primary_10_1007_s10851_018_0867_0
crossref_primary_10_1109_TIP_2021_3108913
crossref_primary_10_1109_LSP_2022_3199145
crossref_primary_10_3390_s21206842
crossref_primary_10_1016_j_dsp_2022_103795
crossref_primary_10_1007_s11042_023_16584_3
crossref_primary_10_1186_s13640_018_0301_y
crossref_primary_10_1007_s44443_025_00126_y
crossref_primary_10_1016_j_cad_2019_05_036
crossref_primary_10_1016_j_neucom_2017_05_052
crossref_primary_10_1109_TNNLS_2023_3273353
crossref_primary_10_1016_j_neucom_2018_07_066
crossref_primary_10_1109_TASE_2020_2997718
crossref_primary_10_1049_iet_ipr_2017_0880
crossref_primary_10_1016_j_ins_2020_08_016
crossref_primary_10_1016_j_sigpro_2019_03_011
crossref_primary_10_1049_ipr2_70004
crossref_primary_10_1109_ACCESS_2020_3005024
crossref_primary_10_3934_ipi_2025046
crossref_primary_10_1109_JBHI_2021_3061793
crossref_primary_10_1109_JSTARS_2024_3478848
crossref_primary_10_1137_22M1543653
crossref_primary_10_1016_j_sigpro_2019_107325
crossref_primary_10_1109_TIP_2021_3061908
crossref_primary_10_1007_s00034_024_02931_8
crossref_primary_10_1109_TIP_2021_3138325
crossref_primary_10_1016_j_ins_2023_04_010
crossref_primary_10_1088_1361_6420_acc88a
crossref_primary_10_1109_TGRS_2020_3032168
crossref_primary_10_3390_mi12101205
crossref_primary_10_1007_s10489_021_02974_3
crossref_primary_10_1137_19M1294800
crossref_primary_10_1007_s10851_020_00949_6
crossref_primary_10_1016_j_cviu_2024_104007
crossref_primary_10_1088_1361_6420_ad9774
crossref_primary_10_1109_ACCESS_2018_2890417
crossref_primary_10_1109_TNNLS_2023_3327716
crossref_primary_10_3934_ipi_2024044
crossref_primary_10_1016_j_knosys_2020_106657
crossref_primary_10_1016_j_dsp_2023_103932
crossref_primary_10_1137_23M158975X
crossref_primary_10_1016_j_sigpro_2023_109219
crossref_primary_10_1109_TAP_2025_3547742
crossref_primary_10_1109_ACCESS_2019_2929541
crossref_primary_10_1109_TETCI_2019_2935747
crossref_primary_10_1016_j_inffus_2023_101832
crossref_primary_10_1007_s11760_024_03559_6
crossref_primary_10_1109_TIP_2021_3078329
crossref_primary_10_1016_j_neunet_2020_10_010
crossref_primary_10_1016_j_optlaseng_2022_107413
crossref_primary_10_1109_TSP_2019_2946026
crossref_primary_10_1109_TKDE_2020_2983708
crossref_primary_10_1016_j_jvcir_2018_10_015
crossref_primary_10_3390_rs16224152
crossref_primary_10_1016_j_jfranklin_2022_09_002
crossref_primary_10_1109_JSTARS_2019_2960518
crossref_primary_10_1016_j_apm_2024_115645
crossref_primary_10_1155_2020_3012952
crossref_primary_10_1016_j_neunet_2025_107670
crossref_primary_10_1007_s12652_017_0586_1
crossref_primary_10_1016_j_optlastec_2023_109688
crossref_primary_10_1002_advs_202300206
crossref_primary_10_1109_TIP_2021_3068646
crossref_primary_10_1007_s10586_022_03773_2
crossref_primary_10_1109_TIP_2017_2678798
crossref_primary_10_1007_s00521_020_05284_w
crossref_primary_10_1007_s41095_021_0220_1
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1007_s10915_021_01728_0
crossref_primary_10_1016_j_ins_2018_06_028
crossref_primary_10_1088_1742_6596_1651_1_012166
crossref_primary_10_1016_j_compeleceng_2024_109363
crossref_primary_10_1080_2150704X_2021_1887538
crossref_primary_10_1109_TPAMI_2023_3341688
crossref_primary_10_1016_j_sigpro_2022_108901
crossref_primary_10_1109_LGRS_2019_2896888
crossref_primary_10_1007_s10915_021_01679_6
crossref_primary_10_1109_TIP_2021_3086049
crossref_primary_10_3390_rs14236044
crossref_primary_10_1155_2019_1262171
crossref_primary_10_1007_s10589_019_00084_y
crossref_primary_10_1016_j_ijleo_2021_167557
crossref_primary_10_1109_TIP_2020_3004696
crossref_primary_10_1109_TCYB_2022_3224070
crossref_primary_10_3390_rs11040382
crossref_primary_10_1080_07038992_2024_2305913
crossref_primary_10_1109_ACCESS_2018_2794478
crossref_primary_10_1155_2022_9780668
crossref_primary_10_1016_j_engappai_2024_108274
crossref_primary_10_1016_j_neucom_2024_128823
crossref_primary_10_1007_s11760_023_02870_y
crossref_primary_10_1111_exsy_13092
crossref_primary_10_1109_TPAMI_2018_2873587
crossref_primary_10_1109_TGRS_2020_3030233
crossref_primary_10_1016_j_ijleo_2023_171374
crossref_primary_10_1109_TSIPN_2020_2976704
crossref_primary_10_1016_j_ijleo_2023_171013
crossref_primary_10_1109_TGRS_2023_3329303
crossref_primary_10_1121_10_0032458
crossref_primary_10_1049_ipr2_12982
crossref_primary_10_1016_j_neucom_2020_12_117
crossref_primary_10_1016_j_asoc_2021_107958
crossref_primary_10_1051_wujns_2023281061
crossref_primary_10_1109_ACCESS_2020_3011580
crossref_primary_10_1117_1_JEI_34_3_033016
crossref_primary_10_1007_s13042_020_01256_7
crossref_primary_10_1016_j_sigpro_2024_109666
crossref_primary_10_1007_s11042_018_6495_2
crossref_primary_10_3390_signals2020019
crossref_primary_10_1016_j_sigpro_2023_109284
crossref_primary_10_1109_TMM_2024_3360713
crossref_primary_10_1109_TGRS_2022_3230051
crossref_primary_10_1007_s11760_023_02674_0
crossref_primary_10_1016_j_ins_2018_10_003
crossref_primary_10_1109_JSTARS_2017_2700023
crossref_primary_10_1109_TGRS_2023_3308936
crossref_primary_10_1016_j_patcog_2024_110995
crossref_primary_10_1016_j_amc_2023_128048
crossref_primary_10_1016_j_brainresbull_2018_08_006
crossref_primary_10_1016_j_amc_2021_126342
crossref_primary_10_1109_TCYB_2018_2811764
crossref_primary_10_1109_TIP_2019_2941319
crossref_primary_10_1002_nla_70013
crossref_primary_10_1007_s00211_022_01335_7
crossref_primary_10_1007_s11004_022_10019_9
crossref_primary_10_1109_TSP_2018_2883924
crossref_primary_10_3390_e24070946
crossref_primary_10_1109_TCYB_2020_3026101
crossref_primary_10_1109_TMM_2021_3124087
crossref_primary_10_1109_TPAMI_2022_3179556
crossref_primary_10_1016_j_patcog_2023_109352
crossref_primary_10_1109_TGRS_2025_3588895
crossref_primary_10_7717_peerj_11642
crossref_primary_10_1016_j_inffus_2024_102347
crossref_primary_10_1016_j_sigpro_2024_109449
crossref_primary_10_1016_j_cam_2025_116695
crossref_primary_10_1016_j_bspc_2022_103524
crossref_primary_10_1109_TCSVT_2022_3233589
crossref_primary_10_1109_TGRS_2022_3175486
crossref_primary_10_1109_TVCG_2020_3026785
crossref_primary_10_1007_s13042_023_01935_1
crossref_primary_10_1016_j_apm_2024_01_020
crossref_primary_10_1016_j_eswa_2022_116976
crossref_primary_10_1007_s11760_024_03624_0
crossref_primary_10_1016_j_neucom_2025_130267
crossref_primary_10_1109_ACCESS_2018_2818322
crossref_primary_10_1109_TIP_2019_2957925
crossref_primary_10_3390_e21090900
crossref_primary_10_1007_s13042_019_01039_9
crossref_primary_10_1007_s00034_024_02902_z
crossref_primary_10_1109_TGRS_2018_2873326
crossref_primary_10_3390_math11132940
crossref_primary_10_1007_s11042_022_12635_3
crossref_primary_10_1016_j_amc_2024_129230
crossref_primary_10_1088_1361_6420_ac65ac
crossref_primary_10_1049_itr2_12383
crossref_primary_10_1109_LSP_2025_3547662
crossref_primary_10_1016_j_sigpro_2023_109191
crossref_primary_10_1016_j_sigpro_2022_108816
crossref_primary_10_1080_10618600_2024_2394464
crossref_primary_10_1007_s10898_023_01322_8
crossref_primary_10_1007_s11045_021_00802_y
crossref_primary_10_1016_j_patcog_2024_110986
crossref_primary_10_1109_ACCESS_2019_2915636
crossref_primary_10_1093_jge_gxad043
crossref_primary_10_1109_TPAMI_2024_3464875
crossref_primary_10_1016_j_cam_2022_114947
crossref_primary_10_1093_jge_gxae015
crossref_primary_10_1109_TCSVT_2017_2759187
crossref_primary_10_1155_2018_4790174
crossref_primary_10_1109_ACCESS_2019_2923255
crossref_primary_10_1109_ACCESS_2020_2992132
crossref_primary_10_1007_s11042_023_15860_6
crossref_primary_10_1016_j_sigpro_2022_108926
crossref_primary_10_1109_TCI_2021_3054249
crossref_primary_10_1109_TSP_2022_3183466
crossref_primary_10_1109_TIM_2023_3246527
crossref_primary_10_1016_j_ijleo_2020_164940
crossref_primary_10_1109_TGRS_2021_3068465
crossref_primary_10_1016_j_sigpro_2023_109051
crossref_primary_10_1109_TGRS_2023_3282217
crossref_primary_10_1016_j_neucom_2024_128885
crossref_primary_10_1007_s10916_019_1500_5
crossref_primary_10_1109_TPAMI_2018_2858249
crossref_primary_10_3390_math12091412
crossref_primary_10_1109_TCSVT_2023_3306811
crossref_primary_10_1109_TNNLS_2020_2980398
crossref_primary_10_1016_j_inffus_2023_102086
crossref_primary_10_1049_ipr2_12563
crossref_primary_10_1007_s40314_024_02874_5
crossref_primary_10_1088_1361_6501_ad9164
crossref_primary_10_1016_j_bspc_2021_103302
crossref_primary_10_1016_j_optlaseng_2018_10_019
crossref_primary_10_1109_TGRS_2024_3357981
crossref_primary_10_1007_s10489_022_03406_6
crossref_primary_10_1007_s10712_024_09828_w
crossref_primary_10_12677_AAM_2023_126277
crossref_primary_10_1007_s11042_020_09536_8
crossref_primary_10_1007_s11063_020_10253_4
crossref_primary_10_1007_s00371_023_02960_5
crossref_primary_10_1007_s11042_023_15928_3
crossref_primary_10_3390_rs12081278
crossref_primary_10_1007_s11517_020_02312_8
crossref_primary_10_1109_TNNLS_2020_2985850
crossref_primary_10_3390_electronics12224685
crossref_primary_10_1007_s00034_020_01358_1
crossref_primary_10_1016_j_sigpro_2021_108109
crossref_primary_10_1007_s00034_020_01457_z
crossref_primary_10_1109_LSP_2025_3531200
crossref_primary_10_1016_j_eswa_2024_125876
crossref_primary_10_1007_s00034_018_0845_1
crossref_primary_10_1007_s11042_023_16098_y
crossref_primary_10_1016_j_cam_2022_114244
crossref_primary_10_1016_j_bspc_2020_102123
crossref_primary_10_1109_TIP_2023_3310331
crossref_primary_10_1007_s10044_024_01291_y
crossref_primary_10_1109_TIP_2020_3004733
crossref_primary_10_1109_ACCESS_2018_2862403
crossref_primary_10_1016_j_neucom_2019_11_123
crossref_primary_10_1016_j_optlastec_2023_110061
crossref_primary_10_1109_JPROC_2018_2853589
crossref_primary_10_1155_2022_1920933
crossref_primary_10_3389_fonc_2022_832037
crossref_primary_10_1109_ACCESS_2018_2870371
crossref_primary_10_1109_TCYB_2022_3175771
crossref_primary_10_1109_TIM_2024_3470039
crossref_primary_10_1109_TIP_2018_2886712
crossref_primary_10_1109_TIP_2019_2916976
crossref_primary_10_3390_app14104239
crossref_primary_10_1016_j_sigpro_2024_109382
crossref_primary_10_1016_j_ins_2021_07_035
crossref_primary_10_3390_jimaging6100103
crossref_primary_10_3390_s22083065
crossref_primary_10_1109_ACCESS_2019_2944577
crossref_primary_10_1109_ACCESS_2020_3018705
crossref_primary_10_1007_s11222_020_09939_5
crossref_primary_10_3934_ipi_2021017
crossref_primary_10_1109_TGRS_2023_3305025
crossref_primary_10_1109_TGRS_2023_3324147
crossref_primary_10_1109_JSTARS_2022_3228942
crossref_primary_10_1109_TII_2019_2916986
crossref_primary_10_3934_era_2025192
crossref_primary_10_1109_ACCESS_2017_2780985
crossref_primary_10_1109_MSP_2017_2717489
crossref_primary_10_1016_j_dsp_2023_104029
crossref_primary_10_1016_j_optcom_2023_130245
crossref_primary_10_1109_TIP_2020_2980753
crossref_primary_10_1007_s11042_019_08430_2
crossref_primary_10_1109_TGRS_2022_3229012
crossref_primary_10_1007_s10915_018_0785_8
crossref_primary_10_1007_s11831_025_10266_z
crossref_primary_10_1109_JSTARS_2023_3258424
crossref_primary_10_1007_s11831_021_09629_z
crossref_primary_10_1109_LGRS_2021_3131201
crossref_primary_10_1016_j_ijleo_2020_165723
crossref_primary_10_1109_TMM_2020_3009502
crossref_primary_10_1109_TIP_2017_2662206
crossref_primary_10_1016_j_jfranklin_2023_12_025
crossref_primary_10_1016_j_neucom_2018_02_057
crossref_primary_10_3390_signals2010010
crossref_primary_10_1007_s00138_021_01232_3
crossref_primary_10_1121_10_0023934
crossref_primary_10_1007_s11042_022_12083_z
crossref_primary_10_1109_TIP_2020_3021291
crossref_primary_10_1109_TKDE_2018_2867533
crossref_primary_10_1109_TSP_2020_3025519
crossref_primary_10_1016_j_ins_2021_12_055
crossref_primary_10_1016_j_neucom_2024_128572
crossref_primary_10_1109_JSTARS_2021_3115172
crossref_primary_10_1007_s11042_022_12774_7
crossref_primary_10_1109_LGRS_2019_2926196
crossref_primary_10_1109_ACCESS_2022_3207930
crossref_primary_10_1109_TCSS_2024_3406629
crossref_primary_10_1109_TGRS_2024_3457792
crossref_primary_10_1109_TIP_2020_3015545
crossref_primary_10_1016_j_neucom_2018_02_002
crossref_primary_10_1016_j_infrared_2021_103893
crossref_primary_10_3389_fcomp_2023_1131317
crossref_primary_10_1016_j_inffus_2022_11_026
crossref_primary_10_1007_s00500_023_09399_9
crossref_primary_10_1186_s13634_023_01027_w
crossref_primary_10_1016_j_sigpro_2021_108425
crossref_primary_10_1016_j_dsp_2024_104520
crossref_primary_10_1155_2020_8136384
crossref_primary_10_1016_j_patcog_2022_108537
crossref_primary_10_1049_iet_ipr_2019_0157
crossref_primary_10_1063_5_0206599
crossref_primary_10_1109_JSTSP_2018_2873148
crossref_primary_10_3390_s19020343
crossref_primary_10_3390_electronics9091426
crossref_primary_10_3390_jimaging10070151
crossref_primary_10_1007_s11042_023_17159_y
crossref_primary_10_1109_TCSVT_2018_2878794
crossref_primary_10_1109_TNNLS_2021_3057439
crossref_primary_10_1109_TIP_2019_2926736
crossref_primary_10_1049_iet_ipr_2018_6357
crossref_primary_10_3390_s23063015
crossref_primary_10_1016_j_neunet_2020_09_021
crossref_primary_10_1109_TIP_2020_3005515
crossref_primary_10_1016_j_sigpro_2022_108650
crossref_primary_10_1109_ACCESS_2022_3226331
crossref_primary_10_1137_24M1691788
crossref_primary_10_1109_ACCESS_2020_2977273
crossref_primary_10_3390_rs17162867
crossref_primary_10_1109_TPAMI_2024_3512458
crossref_primary_10_1016_j_neucom_2019_04_030
crossref_primary_10_1109_TGRS_2023_3268554
crossref_primary_10_1007_s42967_020_00076_4
crossref_primary_10_1137_22M1490843
crossref_primary_10_1007_s00034_024_02697_z
crossref_primary_10_1016_j_sigpro_2022_108640
crossref_primary_10_1016_j_dsp_2020_102880
crossref_primary_10_1109_ACCESS_2018_2876701
crossref_primary_10_1016_j_sigpro_2022_108521
crossref_primary_10_1016_j_ins_2020_04_028
crossref_primary_10_1088_1361_6420_add6d1
crossref_primary_10_1007_s11432_020_2880_3
crossref_primary_10_1007_s11760_024_03353_4
crossref_primary_10_3390_s20195541
crossref_primary_10_1109_TRPMS_2024_3523366
crossref_primary_10_1109_TCAD_2022_3197980
crossref_primary_10_1016_j_infrared_2024_105490
crossref_primary_10_1007_s12204_018_1992_z
crossref_primary_10_1109_TSP_2017_2784361
crossref_primary_10_1016_j_ins_2020_12_066
crossref_primary_10_1109_ACCESS_2020_2990463
crossref_primary_10_1007_s10489_022_04331_4
crossref_primary_10_1016_j_neucom_2021_06_008
crossref_primary_10_1109_TNNLS_2021_3059711
crossref_primary_10_1007_s11042_023_16778_9
crossref_primary_10_1007_s10489_022_04268_8
crossref_primary_10_3390_math10162829
crossref_primary_10_3390_rs10111821
crossref_primary_10_1016_j_ins_2020_05_049
crossref_primary_10_1109_TGRS_2017_2768386
crossref_primary_10_1016_j_conengprac_2020_104671
crossref_primary_10_3390_rs12121956
Cites_doi 10.1109/TIP.2012.2221729
10.1109/TIP.2004.836169
10.1007/s10208-009-9045-5
10.1007/BF01647331
10.1109/TIP.2014.2329449
10.1007/s11263-012-0515-x
10.1007/s10994-014-5469-5
10.1007/s11263-007-0052-1
10.1007/s11075-009-9310-3
10.1109/18.382009
10.1137/1.9780898717877
10.1109/TPAMI.2008.114
10.1109/TIP.2007.901238
10.1109/34.969114
10.1145/1970392.1970395
10.1007/s11263-010-0418-7
10.1137/080738970
10.1109/TSP.2012.2208955
10.1023/A:1023709501986
10.1109/TSP.2012.2197748
10.1007/s00041-008-9045-x
10.1109/LSP.2007.898300
10.1109/TIP.2011.2156801
10.1016/j.csda.2011.11.013
10.1111/1467-9868.00196
10.1007/s11263-008-0197-6
10.1109/TPAMI.2011.282
10.24033/bsmf.1625
10.1109/CVPR.2011.5995309
10.1109/CVPR.2005.38
10.1109/ICCV.2011.6126377
10.1109/CVPR.2005.118
10.1007/978-3-642-33715-4_6
10.1109/CVPR.2014.526
10.1109/CVPR.2014.366
10.1109/ICCV.2013.169
10.1109/ICCV.2013.224
10.1109/CVPR.2011.5995369
10.1109/ICCV.2009.5459452
10.1109/ICCV.2013.25
10.1007/s11432-013-4970-y
10.1145/2488608.2488693
10.1145/1553374.1553434
10.1109/ICCV.2011.6126278
10.1109/CVPR.2010.5539849
10.1609/aaai.v29i1.9464
10.1109/ACC.2001.945730
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2017 Springer
International Journal of Computer Vision is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2017 Springer
– notice: International Journal of Computer Vision is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-016-0930-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Download PDF from ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 208
ExternalDocumentID A551030348
10_1007_s11263_016_0930_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c488t-631c510f8cb011d3ee10f7b595f9df40f9d5f78ea16229e7fa66f6e0fe70e8103
IEDL.DBID RSV
ISICitedReferencesCount 685
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393758400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Fri Sep 05 13:18:04 EDT 2025
Tue Nov 04 23:02:23 EST 2025
Sat Nov 29 10:05:17 EST 2025
Wed Nov 26 10:08:11 EST 2025
Sat Nov 29 06:42:27 EST 2025
Tue Nov 18 21:37:29 EST 2025
Fri Feb 21 02:26:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Low level vision
Nuclear norm minimization
Low rank analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-631c510f8cb011d3ee10f7b595f9df40f9d5f78ea16229e7fa66f6e0fe70e8103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2135700095
PQPubID 1456341
PageCount 26
ParticipantIDs proquest_miscellaneous_1884122468
proquest_journals_2135700095
gale_infotracacademiconefile_A551030348
gale_incontextgauss_ISR_A551030348
crossref_citationtrail_10_1007_s11263_016_0930_5
crossref_primary_10_1007_s11263_016_0930_5
springer_journals_10_1007_s11263_016_0930_5
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CR39
CR38
CR37
Moreau (CR46) 1965; 93
Roth, Black (CR53) 2009; 82
CR35
CR34
Chartrand (CR13) 2012; 60
Ding, He, Carin (CR17) 2011; 20
CR32
CR31
Babacan, Luessi, Molina, Katsaggelos (CR2) 2012; 60
Donoho (CR21) 1995; 41
CR4
Dabov, Foi, Katkovnik, Egiazarian (CR14) 2007; 16
CR6
Mohan, Fazel (CR45) 2012; 13
Candès, Recht (CR8) 2009; 9
CR49
CR48
CR47
CR44
CR42
CR41
CR40
Peng, Ganesh, Wright, Xu, Ma (CR50) 2012; 34
Candès, Wakin, Boyd (CR9) 2008; 14
Dahl, Hansen, Jensen, Jensen (CR15) 2010; 53
Buades, Coll, Morel (CR5) 2008; 76
Dong, Shi, Li (CR19) 2013; 22
Boykov, Veksler, Zabih (CR3) 2001; 23
De La Torre, Black (CR16) 2003; 54
Arias, Facciolo, Caselles, Sapiro (CR1) 2011; 93
Kwak (CR30) 2008; 30
CR18
Cai, Candès, Shen (CR7) 2010; 20
CR59
CR57
CR56
CR54
CR52
CR51
Zhang, Ganesh, Liang, Ma (CR63) 2012; 99
She (CR55) 2012; 56
Dong, Shi, Li, Ma, Huang (CR20) 2014; 23
Candès, Li, Ma, Wright (CR10) 2011; 58
CR29
Tipping, Bishop (CR58) 1999; 61
CR28
CR27
Li, Huang, Gu, Tian (CR33) 2004; 13
CR26
CR25
CR24
CR68
CR23
CR67
CR22
CR66
CR65
Chartrand (CR12) 2007; 14
CR64
Chan, Shen (CR11) 2005
CR62
Mirsky (CR43) 1975; 79
CR61
CR60
Lin, Liu, Li (CR36) 2015; 99
W Dong (930_CR19) 2013; 22
EJ Candès (930_CR9) 2008; 14
L Li (930_CR33) 2004; 13
N Kwak (930_CR30) 2008; 30
A Buades (930_CR5) 2008; 76
SD Babacan (930_CR2) 2012; 60
S Roth (930_CR53) 2009; 82
ME Tipping (930_CR58) 1999; 61
930_CR32
930_CR31
JJ Moreau (930_CR46) 1965; 93
930_CR35
930_CR34
Y Peng (930_CR50) 2012; 34
Z Zhang (930_CR63) 2012; 99
930_CR39
P Arias (930_CR1) 2011; 93
930_CR38
930_CR37
J Dahl (930_CR15) 2010; 53
K Mohan (930_CR45) 2012; 13
930_CR6
930_CR4
W Dong (930_CR20) 2014; 23
930_CR42
930_CR41
930_CR40
X Ding (930_CR17) 2011; 20
930_CR47
930_CR44
930_CR49
930_CR48
TF Chan (930_CR11) 2005
Z Lin (930_CR36) 2015; 99
Y She (930_CR55) 2012; 56
R Chartrand (930_CR12) 2007; 14
EJ Candès (930_CR8) 2009; 9
930_CR54
930_CR52
930_CR51
930_CR57
930_CR56
K Dabov (930_CR14) 2007; 16
930_CR18
930_CR59
EJ Candès (930_CR10) 2011; 58
F Torre De La (930_CR16) 2003; 54
R Chartrand (930_CR13) 2012; 60
DL Donoho (930_CR21) 1995; 41
L Mirsky (930_CR43) 1975; 79
930_CR61
930_CR60
930_CR65
930_CR64
Y Boykov (930_CR3) 2001; 23
930_CR62
JF Cai (930_CR7) 2010; 20
930_CR25
930_CR24
930_CR68
930_CR23
930_CR67
930_CR22
930_CR66
930_CR29
930_CR28
930_CR27
930_CR26
References_xml – volume: 22
  start-page: 700
  issue: 2
  year: 2013
  end-page: 711
  ident: CR19
  article-title: Nonlocal image restoration with bilateral variance estimation: A low-rank approach
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2012.2221729
– volume: 13
  start-page: 1459
  issue: 11
  year: 2004
  end-page: 1472
  ident: CR33
  article-title: Statistical modeling of complex backgrounds for foreground object detection
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2004.836169
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  end-page: 772
  ident: CR8
  article-title: Exact matrix completion via convex optimization
  publication-title: Foundations of Computational mathematics
  doi: 10.1007/s10208-009-9045-5
– ident: CR22
– volume: 79
  start-page: 303
  issue: 4
  year: 1975
  end-page: 306
  ident: CR43
  article-title: A trace inequality of john von neumann
  publication-title: Monatshefte für Mathematik
  doi: 10.1007/BF01647331
– volume: 23
  start-page: 3618
  issue: 8
  year: 2014
  end-page: 3632
  ident: CR20
  article-title: Compressive sensing via nonlocal low-rank regularization
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2014.2329449
– ident: CR49
– ident: CR68
– ident: CR4
– ident: CR39
– ident: CR51
– volume: 99
  start-page: 1
  issue: 1
  year: 2012
  end-page: 24
  ident: CR63
  article-title: Tilt: transform invariant low-rank textures
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0515-x
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 99
  start-page: 287
  issue: 2
  year: 2015
  end-page: 325
  ident: CR36
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5469-5
– ident: CR25
– ident: CR42
– volume: 76
  start-page: 123
  issue: 2
  year: 2008
  end-page: 139
  ident: CR5
  article-title: Nonlocal image and movie denoising
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0052-1
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR46
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bulletin de la Société mathématique de France
– volume: 53
  start-page: 67
  issue: 1
  year: 2010
  end-page: 92
  ident: CR15
  article-title: Algorithms and software for total variation image reconstruction via first-order methods
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-009-9310-3
– ident: CR67
– ident: CR57
– ident: CR32
– ident: CR60
– ident: CR64
– ident: CR26
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  end-page: 627
  ident: CR21
  article-title: De-noising by soft-thresholding
  publication-title: IEEE Transaction on Info Theory
  doi: 10.1109/18.382009
– ident: CR18
– ident: CR66
– ident: CR47
– year: 2005
  ident: CR11
  publication-title: Image processing and analysis: Variational, PDE, wavelet, and stochastic methods
  doi: 10.1137/1.9780898717877
– ident: CR37
– volume: 30
  start-page: 1672
  issue: 9
  year: 2008
  end-page: 1680
  ident: CR30
  article-title: Principal component analysis based on l1-norm maximization
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.114
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  ident: CR14
  article-title: Image denoising by sparse 3-d transform-domain collaborative filtering
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2007.901238
– ident: CR6
– volume: 23
  start-page: 1222
  issue: 11
  year: 2001
  end-page: 1239
  ident: CR3
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.969114
– ident: CR56
– ident: CR40
– ident: CR27
– ident: CR23
– volume: 58
  start-page: 11
  issue: 3
  year: 2011
  ident: CR10
  article-title: Robust principal component analysis?
  publication-title: Journal of the ACM
  doi: 10.1145/1970392.1970395
– volume: 93
  start-page: 319
  issue: 3
  year: 2011
  end-page: 347
  ident: CR1
  article-title: A variational framework for exemplar-based image inpainting
  publication-title: International Journal of computer Vision
  doi: 10.1007/s11263-010-0418-7
– ident: CR44
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  end-page: 1982
  ident: CR7
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/080738970
– ident: CR48
– ident: CR65
– volume: 60
  start-page: 5810
  issue: 11
  year: 2012
  end-page: 5819
  ident: CR13
  article-title: Nonconvex splitting for regularized low-rank+ sparse decomposition
  publication-title: IEEE Transaction on Signal Processing
  doi: 10.1109/TSP.2012.2208955
– volume: 13
  start-page: 3441
  issue: 1
  year: 2012
  end-page: 3473
  ident: CR45
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: The Journal of Machine Learning Research
– volume: 54
  start-page: 117
  issue: 1–3
  year: 2003
  end-page: 142
  ident: CR16
  article-title: A framework for robust subspace learning
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023709501986
– ident: CR38
– ident: CR52
– ident: CR31
– volume: 60
  start-page: 3964
  issue: 8
  year: 2012
  end-page: 3977
  ident: CR2
  article-title: Sparse bayesian methods for low-rank matrix estimation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2197748
– volume: 14
  start-page: 877
  issue: 5–6
  year: 2008
  end-page: 905
  ident: CR9
  article-title: Enhancing sparsity by reweighted minimization
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-008-9045-x
– ident: CR34
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  end-page: 710
  ident: CR12
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2007.898300
– volume: 20
  start-page: 3419
  issue: 12
  year: 2011
  end-page: 3430
  ident: CR17
  article-title: Bayesian robust principal component analysis
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2156801
– volume: 56
  start-page: 2976
  issue: 10
  year: 2012
  end-page: 2990
  ident: CR55
  article-title: An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2011.11.013
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  end-page: 622
  ident: CR58
  article-title: Probabilistic principal component analysis
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00196
– ident: CR59
– ident: CR28
– ident: CR41
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  end-page: 229
  ident: CR53
  article-title: Fields of experts
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-008-0197-6
– ident: CR62
– volume: 34
  start-page: 2233
  issue: 11
  year: 2012
  end-page: 2246
  ident: CR50
  article-title: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.282
– ident: CR24
– ident: 930_CR37
– ident: 930_CR62
– volume: 93
  start-page: 273
  year: 1965
  ident: 930_CR46
  publication-title: Bulletin de la Société mathématique de France
  doi: 10.24033/bsmf.1625
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: 930_CR12
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2007.898300
– volume: 79
  start-page: 303
  issue: 4
  year: 1975
  ident: 930_CR43
  publication-title: Monatshefte für Mathematik
  doi: 10.1007/BF01647331
– ident: 930_CR66
– volume: 54
  start-page: 117
  issue: 1–3
  year: 2003
  ident: 930_CR16
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1023709501986
– ident: 930_CR31
  doi: 10.1109/CVPR.2011.5995309
– ident: 930_CR4
  doi: 10.1109/CVPR.2005.38
– volume: 22
  start-page: 700
  issue: 2
  year: 2013
  ident: 930_CR19
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2012.2221729
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  ident: 930_CR53
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-008-0197-6
– volume: 23
  start-page: 3618
  issue: 8
  year: 2014
  ident: 930_CR20
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2014.2329449
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 930_CR14
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2007.901238
– ident: 930_CR52
– volume: 53
  start-page: 67
  issue: 1
  year: 2010
  ident: 930_CR15
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-009-9310-3
– volume: 13
  start-page: 1459
  issue: 11
  year: 2004
  ident: 930_CR33
  publication-title: IEEE Transaction on Image Processing
  doi: 10.1109/TIP.2004.836169
– ident: 930_CR23
– volume: 76
  start-page: 123
  issue: 2
  year: 2008
  ident: 930_CR5
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0052-1
– volume: 20
  start-page: 3419
  issue: 12
  year: 2011
  ident: 930_CR17
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2156801
– ident: 930_CR56
– ident: 930_CR18
  doi: 10.1109/ICCV.2011.6126377
– ident: 930_CR6
  doi: 10.1109/CVPR.2005.118
– ident: 930_CR32
  doi: 10.1007/978-3-642-33715-4_6
– volume: 56
  start-page: 2976
  issue: 10
  year: 2012
  ident: 930_CR55
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2011.11.013
– ident: 930_CR39
  doi: 10.1109/CVPR.2014.526
– ident: 930_CR67
– ident: 930_CR25
  doi: 10.1109/CVPR.2014.366
– ident: 930_CR42
  doi: 10.1109/ICCV.2013.169
– volume: 60
  start-page: 3964
  issue: 8
  year: 2012
  ident: 930_CR2
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2197748
– ident: 930_CR59
  doi: 10.1109/ICCV.2013.224
– ident: 930_CR47
  doi: 10.1109/CVPR.2011.5995369
– volume: 13
  start-page: 3441
  issue: 1
  year: 2012
  ident: 930_CR45
  publication-title: The Journal of Machine Learning Research
– volume-title: Image processing and analysis: Variational, PDE, wavelet, and stochastic methods
  year: 2005
  ident: 930_CR11
  doi: 10.1137/1.9780898717877
– ident: 930_CR22
– volume: 41
  start-page: 613
  issue: 3
  year: 1995
  ident: 930_CR21
  publication-title: IEEE Transaction on Info Theory
  doi: 10.1109/18.382009
– ident: 930_CR57
– volume: 93
  start-page: 319
  issue: 3
  year: 2011
  ident: 930_CR1
  publication-title: International Journal of computer Vision
  doi: 10.1007/s11263-010-0418-7
– ident: 930_CR41
  doi: 10.1109/ICCV.2009.5459452
– volume: 61
  start-page: 611
  issue: 3
  year: 1999
  ident: 930_CR58
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00196
– ident: 930_CR35
– ident: 930_CR49
  doi: 10.1109/ICCV.2013.25
– ident: 930_CR60
– ident: 930_CR64
  doi: 10.1007/s11432-013-4970-y
– volume: 23
  start-page: 1222
  issue: 11
  year: 2001
  ident: 930_CR3
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.969114
– ident: 930_CR29
– volume: 30
  start-page: 1672
  issue: 9
  year: 2008
  ident: 930_CR30
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.114
– volume: 58
  start-page: 11
  issue: 3
  year: 2011
  ident: 930_CR10
  publication-title: Journal of the ACM
  doi: 10.1145/1970392.1970395
– ident: 930_CR26
  doi: 10.1145/2488608.2488693
– ident: 930_CR48
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 930_CR8
  publication-title: Foundations of Computational mathematics
  doi: 10.1007/s10208-009-9045-5
– ident: 930_CR44
– volume: 60
  start-page: 5810
  issue: 11
  year: 2012
  ident: 930_CR13
  publication-title: IEEE Transaction on Signal Processing
  doi: 10.1109/TSP.2012.2208955
– ident: 930_CR54
– volume: 99
  start-page: 287
  issue: 2
  year: 2015
  ident: 930_CR36
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5469-5
– ident: 930_CR28
  doi: 10.1145/1553374.1553434
– ident: 930_CR61
– ident: 930_CR38
– ident: 930_CR34
– ident: 930_CR68
  doi: 10.1109/ICCV.2011.6126278
– volume: 14
  start-page: 877
  issue: 5–6
  year: 2008
  ident: 930_CR9
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-008-9045-x
– ident: 930_CR27
  doi: 10.1109/CVPR.2010.5539849
– ident: 930_CR65
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 930_CR7
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/080738970
– volume: 99
  start-page: 1
  issue: 1
  year: 2012
  ident: 930_CR63
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0515-x
– ident: 930_CR40
  doi: 10.1609/aaai.v29i1.9464
– ident: 930_CR51
– ident: 930_CR24
  doi: 10.1109/ACC.2001.945730
– volume: 34
  start-page: 2233
  issue: 11
  year: 2012
  ident: 930_CR50
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.282
SSID ssj0002823
Score 2.6779811
Snippet As a convex relaxation of the rank minimization model, the nuclear norm minimization (NNM) problem has been attracting significant research interest in recent...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Convexity
Image Processing and Computer Vision
Low level
Mathematical analysis
Mathematical models
Minimization
Noise reduction
Norms
Optimization
Pattern Recognition
Pattern Recognition and Graphics
Quadratic programming
Solvers
State of the art
Subtraction
Vision
Weight
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCeapLCzIICQkUkZdfJ7SqqKjYrhDP3izHGaOVICmbbPn7zGSdXQqiF45xHNvReB72zHzD2NOq8EpIUAmIEpLSg0lcGkwiQOnKAeq0eqD0TM3n-vTUvIsXbl0Mqxxl4iCo69bTHfnLPCsIih0tgldnPxKqGkXe1VhC4yq7RpYNhfSdpIcbSYzHiXUpeTwiCWmy0as5pM5lOXkwMzxPmwJfX9BLf0rnv9ykg_Y52v3fdd9iN6PdyafrjXKbXYHmDtuNNiiPHN5h01jmYWy7y95-Ga5PsducwI_dks_R0OUni2bxPWZxctfU_Ljv-PQ3fzjvWz5rf_IZxSXxz0MS-z326ej1x8M3SazBkHhk7T6RReaRbYP2FUqCugDAB1UJI4KpQ4lkrUVQGlwm89yACk7KICENoFLQWVrcZztN28Ae44WpvKxzGSpUiaUwFUHf1A7A194pXUxYOlLA-ghQTnUyvtkttDIRzVJQGhHNigl7vvnkbI3OcVnnJ0RWS6gXDYXVfHWrrrPHH97bqSBgwbQo9YQ9i51Ci5N7F7MU8BcIKOtCz4OR4DbyfWe31J6wx5vXyLHkhnENtKvOZlqX5M-UOMSLcVtth_jn-h9cPuE-u5GTyTFcDx2wnX65gofsuj_vF93y0cAYvwCLJBFL
  priority: 102
  providerName: ProQuest
Title Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision
URI https://link.springer.com/article/10.1007/s11263-016-0930-5
https://www.proquest.com/docview/2135700095
https://www.proquest.com/docview/1884122468
Volume 121
WOSCitedRecordID wos000393758400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgMvjE-tY1QGISGBIuXLX49l2sS0Lqo62AYvluOcUSVIpqaFf59z6rSMLwleLNm5OI7t8519vt8R8qLMrGAcRAQshyi3oCITOxUxELI0gDKt6kZ6LIpCXl2pSfDjbvvb7r1JslupN85uSeptjgnugFUWR2yL7KC0kz5ew_T8Yr384h5iFT8e90WMq6Q3Zf6uihvC6Ocl-RfbaCdyjnf_q7H3yN2gYdLRakrcJ7egfkB2g7ZJAy-3WNQHdOjLHpLTy-6gFMkKD3Ns5rRAlZaezerZl-CvSU1d0ZNFS0c_WL7poqHj5hsd-xtI9KJzV39E3h8fvTt8G4VoC5FFJl5EPEssMqiTtkSerzIAzIiSKeZU5XIcwIo5IcEkPE0VCGc4dxxiByIGmcTZY7JdNzXsEZqp0vIq5a5E4ZczVXqQm8oA2MoaIbMBiftu1zZAkfuIGJ_1BkTZ95_21898_2k2IK_Wr1yvcDj-Rvzcj6X2-Ba1v0DzySzbVp-cT_WIeQjBOMvlgLwMRK7Bj1sT_BHwFzwk1g3Kg35O6MDhrU6TzIcGQA11QJ6tHyNveoOLqaFZtjqRMveWS45VvO7nyaaKP7Z__5-on5A7qdc1unOhA7K9mC_hKbltvy5m7XxItsTlhyHZeXNUTKaYOxURpmfxIaYT9nHYMc93YlUMNg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5SkWChgEQgJFJHH8OiC0AqquNo0QFNqbcRwHrQRJ2WSp-FP8RmayyS4F0VsPHOM4dhJ_nhl7PN8Q8ihnTnLhZeB54oPEeR3YsNQB91Ll1oNOK7qRTmWWqcND_XaD_BxiYfBY5SATO0Fd1A73yJ_HEUMqdrAIXh59CzBrFHpXhxQaS1hM_Y9jWLI1LyavYXwfx_HOm_1Xu0GfVSBwANY2ECxyAMRSuRywXTDv4ULmXPNSF2UCL1rwUipvIxHH2svSClEKH5Zehl5FIYN2z5HzCVMS59VUBivJD8uXZep6WJJxoaPBi9qF6kUxekwjWL9rBrdP6ME_tcFfbtlO2-1s_W__6Qq53NvVdLycCFfJhq-uka3exqa9BGugaEhjMZRdJ9ODbnsYqmVI7mznNANDnu7NqtnXPkqV2qqgk7ah49_8_bStaVof0xTPXdGPXZD-DfLhTL7yJtms6srfIpTp3IkiFmUOKj_hOkdqn8J67wpnpWIjEg4jblxPwI55QL6YNXU0gsTgoTsEieEj8nT1yNGSfeS0yg8RRgZZPSo8NvTZLprGTN6_M2OOxIkhS9SIPOkrlTV07mwfhQGfgERgJ2puDwAzvVxrzBpdI_JgdRskErqZbOXrRWMipRL01wpo4tkA43UT_3z_26d3eJ9c3N3fS006yaZ3yKUYzatuK2ybbLbzhb9LLrjv7ayZ3-smJSWfzhrdvwDqAW6Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBSEuLE9RWMAgEBIo2rxsxweEKpaKqiWqeK64GMexUSVIliZlxV_j1zGTOi0LYm974NjEdR7-Mg_PzDeEPCgSIxi3IrAstUFqrAx06GTArMgKbUGnld1KT0WeZwcHcrZFfva1MJhW2cvETlCXtcE98r04SpCKHSyCPefTImb7o2eH3wLsIIWR1r6dxgoiE_vjCNy35ul4H9b6YRyPXrx9_jLwHQYCA8BtA55EBkDpMlMAzsvEWvghCiaZk6VL4aZL5kRmdcTjWFrhNOeO29BZEdosChOY9ww5K8DHxHTCGfu41gLgyqza2IN7xriM-ohqV7YXxRg9jcCXlwmcPqYT_9QMf4VoO8032vmf39klctHb23S4-kAuky1bXSE73vamXrI1cKhvb9Efu0omH7ptYxiWI-mzXtAcDHz6al7Nv_rqVaqrko7bhg5_ywOgbU2n9RGdYj4Wfd8V718j707lKa-T7aqu7A1CE1kYXsbcFWAKpEwWSPlTamtNabTIkgEJ-9VXxhOzY3-QL2pDKY2AUZiMh4BRbEAer_9yuGIlOWnwfYSUQraPCjHwWS-bRo3fvFZDhoSKYZJmA_LID3I1XNxoX50Bj4AEYcdG7vZgU17eNWqDtAG5tz4NkgrDT7qy9bJRUZalGMflMMWTHtKbKf55_zdPvuBdch5ArabjfHKLXIjR6up2yHbJdrtY2tvknPnezpvFne77pOTTaYP7Fytjd7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Nuclear+Norm+Minimization+and+Its+Applications+to+Low+Level+Vision&rft.jtitle=International+journal+of+computer+vision&rft.au=Gu%2C+Shuhang&rft.au=Xie%2C+Qi&rft.au=Meng%2C+Deyu&rft.au=Zuo%2C+Wangmeng&rft.date=2017-01-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=121&rft.issue=2&rft.spage=183&rft_id=info:doi/10.1007%2Fs11263-016-0930-5&rft.externalDocID=A551030348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon