Generalized smoothing splines and the optimal discretization of the Wiener filter

We introduce an extended class of cardinal L/sup */L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show that the L/sup */L-spline signal interpolation problem is well posed and that its solution is the unique minimizer of the spline energy functional...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 53; číslo 6; s. 2146 - 2159
Hlavní autori: Unser, M., Blu, T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.06.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce an extended class of cardinal L/sup */L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show that the L/sup */L-spline signal interpolation problem is well posed and that its solution is the unique minimizer of the spline energy functional /spl par/Ls/spl par//sub L2//sup 2/, subject to the interpolation constraint. Next, we consider the corresponding regularized least squares estimation problem, which is more appropriate for dealing with noisy data. The criterion to be minimized is the sum of a quadratic data term, which forces the solution to be close to the input samples, and a "smoothness" term that privileges solutions with small spline energies. Here, too, we find that the optimal solution, among all possible functions, is a cardinal L/sup */L-spline. We show that this smoothing spline estimator has a stable representation in a B-spline-like basis and that its coefficients can be computed by digital filtering of the input signal. We describe an efficient recursive filtering algorithm that is applicable whenever the transfer function of L is rational (which corresponds to the case of exponential splines). We justify these algorithms statistically by establishing an equivalence between L/sup */L smoothing splines and the minimum mean square error (MMSE) estimation of a stationary signal corrupted by white Gaussian noise. In this model-based formulation, the optimum operator L is the whitening filter of the process, and the regularization parameter is proportional to the noise variance. Thus, the proposed formalism yields the optimal discretization of the classical Wiener filter, together with a fast recursive algorithm. It extends the standard Wiener solution by providing the optimal interpolation space. We also present a Bayesian interpretation of the algorithm.
AbstractList We introduce an extended class of cardinal L/sup */L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show that the L/sup */L-spline signal interpolation problem is well posed and that its solution is the unique minimizer of the spline energy functional /spl par/Ls/spl par//sub L2//sup 2/, subject to the interpolation constraint. Next, we consider the corresponding regularized least squares estimation problem, which is more appropriate for dealing with noisy data. The criterion to be minimized is the sum of a quadratic data term, which forces the solution to be close to the input samples, and a "smoothness" term that privileges solutions with small spline energies. Here, too, we find that the optimal solution, among all possible functions, is a cardinal L/sup */L-spline. We show that this smoothing spline estimator has a stable representation in a B-spline-like basis and that its coefficients can be computed by digital filtering of the input signal. We describe an efficient recursive filtering algorithm that is applicable whenever the transfer function of L is rational (which corresponds to the case of exponential splines). We justify these algorithms statistically by establishing an equivalence between L/sup */L smoothing splines and the minimum mean square error (MMSE) estimation of a stationary signal corrupted by white Gaussian noise. In this model-based formulation, the optimum operator L is the whitening filter of the process, and the regularization parameter is proportional to the noise variance. Thus, the proposed formalism yields the optimal discretization of the classical Wiener filter, together with a fast recursive algorithm. It extends the standard Wiener solution by providing the optimal interpolation space. We also present a Bayesian interpretation of the algorithm.
We introduce an extended class of cardinal L super(*)L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show that the L super(*)L-spline signal interpolation problem is well posed and that its solution is the unique minimizer of the spline energy functional
In this model-based formulation, the optimum operator L is the whitening filter of the process, and the regularization parameter is proportional to the noise variance. [...] the proposed formalism yields the optimal discretization of the classical Wiener filter, together with a fast recursive algorithm.
Author Blu, T.
Unser, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Unser
  fullname: Unser, M.
  organization: Biomed. Imaging Group, Ecole Polytechnique Fed. de Lausanne, Switzerland
– sequence: 2
  givenname: T.
  surname: Blu
  fullname: Blu, T.
  organization: Biomed. Imaging Group, Ecole Polytechnique Fed. de Lausanne, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16794988$$DView record in Pascal Francis
BookMark eNp9kU1LHTEUhoNY8KOuu3AzFFpXc83X5GMpYrUgtEVLuwuZzJkayU2uSe6i_vrmesWC0K4SyPO-5JznAO3GFAGhdwQvCMH69Pbm64JiPCwUl4qSHbRPNCc95lLstjseWD8o-XMPHZRyjzHhXIt99O0SImQb_CNMXVmmVO98_NWVVfARSmfj1NU76NKq-qUN3eSLy1D9o60-xS7NT68__Kakm32okN-iN7MNBY6ez0P0_dPF7flVf_3l8vP52XXvuFK1HzQXzo3UcsJm7QQTUmtFR0GGacTCjZxJMk-aullINkxWkwlLKygdqQA7skN0su1d5fSwhlLNsn0OQrAR0roYpQWRmHLRyI__JalqmGJDA9-_Au_TOsc2hVFCE0Y0kw368AzZ4myYs43OF7PKbUH5tyFtDq6Vatyw5VxOpWSYjfP1aW01Wx8MwWbjzTRvZuPNbL213Omr3Ev1PxPH24QHgL80Z6xJZn8A1g6kDA
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2008_924144
crossref_primary_10_1016_j_sigpro_2020_107796
crossref_primary_10_1007_s00339_016_0701_8
crossref_primary_10_1109_TSP_2010_2042480
crossref_primary_10_1016_j_automatica_2007_05_011
crossref_primary_10_1109_TIP_2008_2001404
crossref_primary_10_1109_TIT_2012_2197719
crossref_primary_10_1109_TSP_2012_2222394
crossref_primary_10_1109_TSP_2007_908997
crossref_primary_10_1007_s11263_006_8066_7
crossref_primary_10_1007_s00477_023_02656_1
crossref_primary_10_1109_TSP_2011_2135856
crossref_primary_10_1016_j_stamet_2008_02_002
crossref_primary_10_1109_TSP_2011_2164399
crossref_primary_10_1109_MSP_2009_932125
crossref_primary_10_1109_TSP_2010_2091638
crossref_primary_10_1109_TSP_2006_890845
crossref_primary_10_1109_TSP_2009_2021450
crossref_primary_10_1109_TSP_2006_890843
crossref_primary_10_1109_TSP_2006_873365
crossref_primary_10_1109_TSP_2023_3329946
crossref_primary_10_3901_CJME_2014_1106_163
crossref_primary_10_1109_TSP_2010_2047642
crossref_primary_10_1016_j_measurement_2010_09_008
crossref_primary_10_1109_TIT_2013_2258371
crossref_primary_10_1109_TIP_2012_2217346
crossref_primary_10_1109_LSP_2013_2242061
crossref_primary_10_1016_j_sigpro_2011_03_008
crossref_primary_10_1109_TSP_2012_2226446
crossref_primary_10_1109_TIP_2009_2025008
crossref_primary_10_1109_TSP_2018_2860549
crossref_primary_10_1109_TSP_2011_2113342
crossref_primary_10_1109_TNB_2010_2043260
crossref_primary_10_1109_LSP_2006_872396
crossref_primary_10_1109_TSP_2018_2873514
crossref_primary_10_1109_TSP_2011_2170683
crossref_primary_10_1109_TMI_2009_2038576
Cites_doi 10.1109/TSP.2005.843700
10.1090/qam/15914
10.1007/BF02162161
10.1016/S0165-1684(96)00116-8
10.1109/78.193221
10.1073/pnas.52.4.947
10.1137/S0036144598349435
10.1109/29.57544
10.1017/cbo9781139165372
10.1214/aoms/1177697089
10.1016/0898-1221(92)90176-I
10.1007/BF00934498
10.1109/TIT.1978.1055825
10.1137/1.9781611970128
10.1137/s0036144501386986
10.1016/B978-012077790-7/50030-8
10.1109/79.581363
10.2307/1425829
10.1002/sapm1966451312
10.1201/9781482273144
10.1214/aos/1176349157
10.1109/29.45551
10.2307/2685361
10.1109/TSP.2005.843699
10.1007/BF01601941
10.1007/BFb0086566
10.1002/cpa.3160410705
10.1080/02331889808802631
10.1109/78.984733
10.1007/BF01893414
10.1007/BF01889598
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2005.847821
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 2159
ExternalDocumentID 2361880811
16794988
10_1109_TSP_2005_847821
1433144
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c488t-5946ccb2a413f9c63679982b615db06cb4371fd92cf6735da91d07a622b26eab3
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000229444000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Wed Oct 01 13:55:49 EDT 2025
Sun Sep 28 03:23:24 EDT 2025
Mon Jun 30 10:13:58 EDT 2025
Mon Jul 21 09:15:26 EDT 2025
Tue Nov 18 22:32:10 EST 2025
Sat Nov 29 08:03:54 EST 2025
Tue Aug 26 16:40:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords stationary processes
Non parametric estimation
Nonparametric estimation
smoothing splines
Exponential function
Recursive filtering
splines (polynomial and exponential)
Polynomial function
Interpolation
Wiener filter
Smoothing
Variational principle
Stationary process
Bayes methods
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-5946ccb2a413f9c63679982b615db06cb4371fd92cf6735da91d07a622b26eab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://infoscience.epfl.ch/record/63135
PQID 869131937
PQPubID 23500
PageCount 14
ParticipantIDs proquest_journals_869131937
proquest_miscellaneous_896170246
crossref_primary_10_1109_TSP_2005_847821
crossref_citationtrail_10_1109_TSP_2005_847821
proquest_miscellaneous_28024835
ieee_primary_1433144
pascalfrancis_primary_16794988
PublicationCentury 2000
PublicationDate 2005-06-01
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2005
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
Lathy (ref28) 1998
ref36
ref31
ref30
ref11
ref33
ref32
Papoulis (ref39) 1991
ref2
ref1
ref17
ref16
ref38
ref19
Ahlberg (ref9) 1967
ref18
De Boor (ref8) 1966; 15
ref24
ref23
ref25
ref20
ref22
ref21
Prenter (ref10) 1975
Stein (ref26) 1971
Oppenheim (ref27) 1996
ref29
ref7
ref4
ref3
ref6
ref5
Wahba (ref15) 1970; 32
References_xml – ident: ref1
  doi: 10.1109/TSP.2005.843700
– ident: ref37
  doi: 10.1090/qam/15914
– volume-title: Signal and Systems
  year: 1996
  ident: ref27
– ident: ref7
  doi: 10.1007/BF02162161
– volume-title: Probability, Random Variables, and Stochastic Processes
  year: 1991
  ident: ref39
– ident: ref31
  doi: 10.1016/S0165-1684(96)00116-8
– ident: ref25
  doi: 10.1109/78.193221
– ident: ref6
  doi: 10.1073/pnas.52.4.947
– ident: ref32
  doi: 10.1137/S0036144598349435
– ident: ref4
  doi: 10.1109/29.57544
– ident: ref29
  doi: 10.1017/cbo9781139165372
– volume-title: Splines and Variational Methods
  year: 1975
  ident: ref10
– volume: 15
  start-page: 953
  issue: 6
  year: 1966
  ident: ref8
  article-title: On splines and their minimum properties
  publication-title: J. Math. Mech.
– ident: ref14
  doi: 10.1214/aoms/1177697089
– ident: ref23
  doi: 10.1016/0898-1221(92)90176-I
– ident: ref21
  doi: 10.1007/BF00934498
– ident: ref20
  doi: 10.1109/TIT.1978.1055825
– volume-title: Signal Processing and Linear Systems
  year: 1998
  ident: ref28
– ident: ref16
  doi: 10.1137/1.9781611970128
– ident: ref30
  doi: 10.1137/s0036144501386986
– ident: ref34
  doi: 10.1016/B978-012077790-7/50030-8
– ident: ref5
  doi: 10.1109/79.581363
– ident: ref22
  doi: 10.2307/1425829
– volume: 32
  start-page: 173
  year: 1970
  ident: ref15
  article-title: Spline functions and stochastic processes
  publication-title: Sankhya Series A
– ident: ref38
  doi: 10.1002/sapm1966451312
– ident: ref18
  doi: 10.1201/9781482273144
– volume-title: The Theory of Splines and Their Applications
  year: 1967
  ident: ref9
– ident: ref17
  doi: 10.1214/aos/1176349157
– volume-title: Fourier Analysis on Euclidean Spaces
  year: 1971
  ident: ref26
– ident: ref3
  doi: 10.1109/29.45551
– ident: ref24
  doi: 10.2307/2685361
– ident: ref2
  doi: 10.1109/TSP.2005.843699
– ident: ref12
  doi: 10.1007/BF01601941
– ident: ref11
  doi: 10.1007/BFb0086566
– ident: ref35
  doi: 10.1002/cpa.3160410705
– ident: ref19
  doi: 10.1080/02331889808802631
– ident: ref33
  doi: 10.1109/78.984733
– ident: ref13
  doi: 10.1007/BF01893414
– ident: ref36
  doi: 10.1007/BF01889598
SSID ssj0014496
Score 2.0795863
Snippet We introduce an extended class of cardinal L/sup */L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show that...
In this model-based formulation, the optimum operator L is the whitening filter of the process, and the regularization parameter is proportional to the noise...
We introduce an extended class of cardinal L super(*)L-splines, where L is a pseudo-differential operator satisfying some admissibility conditions. We show...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2146
SubjectTerms Algorithms
Applied sciences
Detection, estimation, filtering, equalization, prediction
Digital filters
Discretization
Energy conservation
Estimation error
Exact sciences and technology
Filtering algorithms
Gaussian noise
Information, signal and communications theory
Interpolation
Least squares approximation
Mean square error methods
Mean square errors
Nonparametric estimation
Operators
Optimization
recursive filtering
Signal and communications theory
Signal processing
Signal, noise
Smoothing
Smoothing methods
smoothing splines
Splines
splines (polynomial and exponential)
stationary processes
Studies
Telecommunications and information theory
Transfer functions
variational principle
Wiener filter
Title Generalized smoothing splines and the optimal discretization of the Wiener filter
URI https://ieeexplore.ieee.org/document/1433144
https://www.proquest.com/docview/869131937
https://www.proquest.com/docview/28024835
https://www.proquest.com/docview/896170246
Volume 53
WOSCitedRecordID wos000229444000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29b9UwED-1FQMMUCiIUFo8MDCQNv6IP0aEWnWqiijibZE_pSfRpGreY-Cv5-ykr1TQgS2KHce-s893Pt_vAN5b7qQ0wtU00lQLnZraCSNrtIcsz3f_2taWZBPq_FwvFuZiCz5uYmFijOXyWTzKj8WXHwa_zkdlxzSH9wixDdtKySlWa-MxEKLk4kJ1gdetVosZxgf_dnz59WI6PEFJrBm9twOVlCr5QqQdkSZpSmbxl1wum83ps__r5i48nZVK8mmaBc9hK_Yv4MkfUIN78GXGl17-ioGMVwMyCN-TMQfkxpHYPhBUBcmAEuQKm8rBujm-cQrSJEMqpd-XuRGSltnF_hK-nZ5cfj6r53QKtcdVuqpbI6T3jlnct5LxkkuFthZzqNME10jvBDInBcN8koq3wRoaGmUlY47JaB1_BTv90MfXQISwqqHByOTQnGqV8Q311KQYGhN5myo4uiVx52es8Zzy4kdXbI7GdMiTnAGz7SaeVPBh88H1BLPxcNW9TPK7ahO1Kzi8x8O7chymMFpXsH_L1G5ep2OnpaEohLiq4N2mFBdY9prYPg7rsWM6w77xtgLyQA1tMqo9E_LNv7u2D48L4Gs5u3kLO6ubdTyAR_7najneHJZp_Bup7_Ar
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceLWIUGh94MCBtHH8iH1EiKqIsipiEXuL_JRWoglqdjnw6xk76ZYKeuAWxY7jzNjOjMfzfQCvDLNSam5LGmgsuYpVabmWJfpDhqWzf0KYTDbRzGZqsdBnW_BmkwsTQsiHz8JhusyxfN-7ddoqO6IpvYfzW3A7MWdN2VqbmAHnmY0LDQZWCtUsJiAffN_R_MvZuH2Ca7Gq6bV_UCZVSUcizYBSiSOdxV8rc_7dHD_8v44-ggeTWUnejuPgMWyF7gnc_wNscAc-TwjTy1_Bk-G8RxXhfTKklNwwENN5gsYg6XENOcemUrpuynAc0zRJH3Ppt2VqhMRlCrLvwtfj9_N3J-VEqFA6nKerUmgunbO1QeFF7SSTDXpbtUWrxttKOstRPdHr2kXZMOGNpr5qjKxrW8tgLHsK213fhWdAODdNRb2W0aJDJRrtKuqojsFXOjARCzi8FHHrJrTxRHrxvc1eR6Vb1EniwBTtqJMCXm8e-DECbdxcdSeJ_KraKO0C9q_p8KocP5NrpQrYu1RqO83UoVVSU1yGWFPAwaYUp1iKm5gu9OuhrVUCfmOiAHJDDaUTrn3N5fN_d-0A7p7MP522px9mH_fgXoZ_zTs5L2B7dbEOL-GO-7laDhf7eUj_Bk2u83Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+smoothing+splines+and+the+optimal+discretization+of+the+Wiener+filter&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Unser%2C+M&rft.au=Blu%2C+T&rft.date=2005-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=53&rft.issue=6&rft.spage=2146&rft_id=info:doi/10.1109%2FTSP.2005.847821&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2361880811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon