An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint
At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial m...
Uloženo v:
| Vydáno v: | Cell Ročník 181; číslo 6; s. 1276 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
11.06.2020
|
| Témata: | |
| ISSN: | 1097-4172, 1097-4172 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ
Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ
Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ
Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility. |
|---|---|
| AbstractList | At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility. At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility. |
| Author | Yang, Zhen Sefik, Esen Kasper, Dennis L Benoist, Christophe Mathis, Diane Ramanan, Deepshika Yang, Liang Kostic, Aleksandar Golovkina, Tatyana V Galván-Peña, Silvia Wu, Meng |
| Author_xml | – sequence: 1 givenname: Deepshika surname: Ramanan fullname: Ramanan, Deepshika organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 2 givenname: Esen surname: Sefik fullname: Sefik, Esen organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 3 givenname: Silvia surname: Galván-Peña fullname: Galván-Peña, Silvia organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 4 givenname: Meng surname: Wu fullname: Wu, Meng organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 5 givenname: Liang surname: Yang fullname: Yang, Liang organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 6 givenname: Zhen surname: Yang fullname: Yang, Zhen organization: Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA – sequence: 7 givenname: Aleksandar surname: Kostic fullname: Kostic, Aleksandar organization: Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA – sequence: 8 givenname: Tatyana V surname: Golovkina fullname: Golovkina, Tatyana V organization: Department of Microbiology, Committee on Microbiology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA – sequence: 9 givenname: Dennis L surname: Kasper fullname: Kasper, Dennis L organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA – sequence: 10 givenname: Diane surname: Mathis fullname: Mathis, Diane email: cbdm@hms.harvard.edu organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: cbdm@hms.harvard.edu – sequence: 11 givenname: Christophe surname: Benoist fullname: Benoist, Christophe email: cbdm@hms.harvard.edu organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: cbdm@hms.harvard.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32402238$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1Lw0AQxRep2A_9BzzIHr0kzn4l22MpGgstItZzmCS7JSXZrdlE8L83YgVPbx7vxzDz5mTivDOE3DKIGbDk4RiXpmliDhxikDEIuCAzBss0kizlk3_zlMxDOAKAVkpdkangEjgXekZeV45u2nZwvvGHuqQ7XxnqLd0NTV8fjDMd9rV32NB9hy60dQijpZn_NJ0LFGk29GNkDvTN9Cdfu_6aXFpsgrk564K8Pz3u18_R9iXbrFfbqJRa95FiKXBhiwILq1RVVNKWvBQpatTWynRp0RZJmaRcGdQJ12i55ksmLRQVYskX5P5376nzH4MJfT4e91MIOuOHkI8vChBMMDaid2d0KFpT5aeubrH7yv9q4N-fk2L- |
| CitedBy_id | crossref_primary_10_1038_s41575_022_00714_7 crossref_primary_10_1136_bmjopen_2024_091323 crossref_primary_10_1172_JCI148826 crossref_primary_10_3390_ijms241310663 crossref_primary_10_3389_fimmu_2022_1026994 crossref_primary_10_3390_toxics12040237 crossref_primary_10_1016_j_semcdb_2021_03_015 crossref_primary_10_3389_fimmu_2020_01853 crossref_primary_10_1016_j_ajcnut_2022_11_027 crossref_primary_10_1080_10408398_2022_2031097 crossref_primary_10_1111_imr_13315 crossref_primary_10_3389_fcell_2021_715901 crossref_primary_10_1038_s41590_023_01712_w crossref_primary_10_1126_sciimmunol_adi0672 crossref_primary_10_1038_s41467_021_21408_9 crossref_primary_10_1038_s41385_021_00471_x crossref_primary_10_1016_j_mucimm_2024_11_006 crossref_primary_10_1111_imr_12980 crossref_primary_10_1038_s41390_025_03992_4 crossref_primary_10_1038_s41586_022_05309_5 crossref_primary_10_1016_j_coi_2024_102505 crossref_primary_10_1016_j_it_2023_09_004 crossref_primary_10_1016_j_clinthera_2021_11_005 crossref_primary_10_1016_j_cell_2020_05_030 crossref_primary_10_3390_microorganisms9102117 crossref_primary_10_1126_science_adg6425 crossref_primary_10_1016_j_coi_2023_102297 crossref_primary_10_1093_jleuko_qiae049 crossref_primary_10_1007_s00441_020_03359_7 crossref_primary_10_1038_s41385_021_00420_8 crossref_primary_10_1002_imt2_270 crossref_primary_10_3389_fimmu_2020_600973 crossref_primary_10_1016_j_immuni_2021_02_002 crossref_primary_10_3390_biomedicines11020294 crossref_primary_10_1016_j_immuni_2021_11_005 crossref_primary_10_1073_pnas_2501030122 crossref_primary_10_1111_imr_13411 crossref_primary_10_1038_s41598_022_14095_z crossref_primary_10_1073_pnas_2311566120 crossref_primary_10_1016_j_mib_2020_07_008 crossref_primary_10_1111_imr_13376 crossref_primary_10_1016_j_it_2022_08_002 crossref_primary_10_1007_s11033_025_10829_0 crossref_primary_10_1016_j_chom_2022_02_005 crossref_primary_10_1016_j_jaci_2020_12_624 crossref_primary_10_1080_19490976_2021_1908101 crossref_primary_10_3389_fimmu_2020_603059 crossref_primary_10_1016_j_mib_2023_102421 crossref_primary_10_1038_s41590_025_02218_3 crossref_primary_10_3389_fped_2021_744104 crossref_primary_10_1016_j_chom_2022_09_011 crossref_primary_10_1371_journal_pntd_0012456 crossref_primary_10_1111_cea_13823 crossref_primary_10_1016_j_mucimm_2023_01_003 crossref_primary_10_1111_imr_13366 crossref_primary_10_3389_fimmu_2021_660974 crossref_primary_10_1080_10408398_2022_2053058 crossref_primary_10_1084_jem_20220839 crossref_primary_10_4049_jimmunol_2100215 crossref_primary_10_3390_nu13020606 crossref_primary_10_1093_intimm_dxab049 crossref_primary_10_1016_j_celrep_2025_115857 crossref_primary_10_3389_fimmu_2021_620124 crossref_primary_10_1016_j_mucimm_2024_04_002 crossref_primary_10_1002_eji_202250299 crossref_primary_10_1073_pnas_2221255120 crossref_primary_10_1126_science_adz8687 crossref_primary_10_1038_s41590_021_01052_7 crossref_primary_10_1016_j_chom_2022_04_007 crossref_primary_10_3390_biom14010078 crossref_primary_10_33549_physiolres_935296 crossref_primary_10_1097_MOG_0000000000000778 crossref_primary_10_1016_j_immuni_2023_02_013 crossref_primary_10_1038_s41568_023_00584_4 crossref_primary_10_3390_nu17061009 crossref_primary_10_3390_ijms26052130 crossref_primary_10_1126_science_ado5294 crossref_primary_10_1016_j_biopha_2022_113810 crossref_primary_10_1111_all_14736 crossref_primary_10_3390_foods13193102 crossref_primary_10_1016_j_immuni_2023_03_002 crossref_primary_10_1631_jzus_B2200047 crossref_primary_10_1111_febs_16047 crossref_primary_10_3389_fimmu_2022_822324 crossref_primary_10_1073_pnas_2209624119 crossref_primary_10_1038_s41577_020_0344_z crossref_primary_10_1016_j_immuni_2024_04_014 crossref_primary_10_1016_j_immuni_2020_07_025 crossref_primary_10_1073_pnas_2411301121 crossref_primary_10_1126_science_ady9543 crossref_primary_10_3390_foods11091229 crossref_primary_10_1016_j_immuni_2024_07_020 crossref_primary_10_1016_j_bbi_2025_07_025 crossref_primary_10_1016_j_jaci_2021_07_012 crossref_primary_10_3389_fmicb_2024_1480811 crossref_primary_10_3390_nu16121808 crossref_primary_10_1371_journal_pbio_3003263 crossref_primary_10_1016_j_jaci_2022_07_014 crossref_primary_10_3390_v16060818 crossref_primary_10_1016_j_mib_2020_08_003 crossref_primary_10_1111_all_14908 crossref_primary_10_1038_s41385_022_00491_1 crossref_primary_10_3389_fimmu_2023_1294292 crossref_primary_10_3390_biomedicines11041200 crossref_primary_10_1038_s41577_023_00890_w crossref_primary_10_1016_j_mce_2023_111956 crossref_primary_10_1016_j_mucimm_2025_01_006 crossref_primary_10_1146_annurev_immunol_093019_112348 crossref_primary_10_1146_annurev_immunol_102119_074236 crossref_primary_10_1172_JCI184319 crossref_primary_10_2147_IMCRJ_S512859 crossref_primary_10_1111_imr_13321 crossref_primary_10_1038_s41385_022_00484_0 crossref_primary_10_3389_fimmu_2024_1446072 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cell.2020.04.030 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4172 |
| ExternalDocumentID | 32402238 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK036836 – fundername: NIAID NIH HHS grantid: R37 AI051530 – fundername: NIAID NIH HHS grantid: R01 AI125603 – fundername: NIAID NIH HHS grantid: R01 AI051530 |
| GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDT AAEDW AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA 7X8 AAYWO ABDGV ACVFH ADCNI ADXHL AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c488t-517023fbbabf55dbd4fc2c37a8a8ff479fafb6c6725ea8628af282914f0bdaac2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540869600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4172 |
| IngestDate | Thu Oct 02 12:00:15 EDT 2025 Thu Apr 03 07:00:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Rorγ entero-mammary axis IgA maternal transmission colonic Tregs Tregs |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-517023fbbabf55dbd4fc2c37a8a8ff479fafb6c6725ea8628af282914f0bdaac2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0092867420304931/pdf |
| PMID | 32402238 |
| PQID | 2403031311 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2403031311 pubmed_primary_32402238 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-11 |
| PublicationDateYYYYMMDD | 2020-06-11 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell |
| PublicationTitleAlternate | Cell |
| PublicationYear | 2020 |
| References | 32424243 - Nat Rev Immunol. 2020 Jul;20(7):405 32497500 - Cell. 2020 Jun 11;181(6):1202-1204 |
| References_xml | – reference: 32497500 - Cell. 2020 Jun 11;181(6):1202-1204 – reference: 32424243 - Nat Rev Immunol. 2020 Jul;20(7):405 |
| SSID | ssj0008555 |
| Score | 2.6335828 |
| Snippet | At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1276 |
| SubjectTerms | Animals Digestive System - immunology Disease Susceptibility - immunology Female Gastrointestinal Microbiome - immunology Homeostasis - immunology Immunoglobulin A - immunology Inflammation - immunology Male Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, Inbred CBA Mice, Inbred NOD Nuclear Receptor Subfamily 1, Group F, Member 3 - immunology T-Lymphocytes, Regulatory - immunology |
| Title | An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32402238 https://www.proquest.com/docview/2403031311 |
| Volume | 181 |
| WOSCitedRecordID | wos000540869600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qKHhxX8aNCF6DXZI2PYmIox4cRlSYW8k6zKUdbUfw35uXdJiTIHjpJZSG15e35b3vQ-gqSqTzUzEjLv-xhAqpCReGEZVlzGiVRYmhnmwiHw75eFyMuoJb07VVLmyiN9S6VlAjvwbcOMAZjOOb2QcB1ii4Xe0oNFZRzy0V0NKVj5do4Zx51lO4ZCXUeepuaCb0d0Fh3OWHSeShTtPo9xDTu5rB9n83uYO2uiAT3wat2EUrptpDG4F28nsfvdxW-AnmQoLhw8CHhmuL_TDuxONQhwoh9p7MaQKU1HCg5W2wwA_z1i2ZCX417ayeVu0Beh_cv909ko5agSh3YlvC4tw5ayulkJYxLTW1KlFpLrjg1tK8sMLKTGV5woxwSQ8XFq5cY2ojqYVQySFaq-rKHCPMgbNaZ1ozF8vYIhGFcZ9QqZGUplxEfXS5kFXpNgxiF5Wp5025lFYfHQWBl7OAsVECTqCLXPjJH94-RZvwH6GBK47PUM-6g2vO0br6aqfN54XXCfccjp5_ADgiwTI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Immunologic+Mode+of+Multigenerational+Transmission+Governs+a+Gut+Treg+Setpoint&rft.jtitle=Cell&rft.au=Ramanan%2C+Deepshika&rft.au=Sefik%2C+Esen&rft.au=Galv%C3%A1n-Pe%C3%B1a%2C+Silvia&rft.au=Wu%2C+Meng&rft.date=2020-06-11&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=181&rft.issue=6&rft.spage=1276&rft_id=info:doi/10.1016%2Fj.cell.2020.04.030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon |