Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection
As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a p...
Uloženo v:
| Vydáno v: | Petroleum exploration and development Ročník 47; číslo 2; s. 383 - 392 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2020
KeAi Communications Co., Ltd |
| Témata: | |
| ISSN: | 1876-3804, 1876-3804 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. |
|---|---|
| AbstractList | As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. Key words: neural networks, machine learning, attribute extraction, Bayesian regularization algorithm, production forecasting, water flooding As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. |
| Author | NEGASH, Berihun Mamo YAW, Atta Dennis |
| Author_xml | – sequence: 1 givenname: Berihun Mamo surname: NEGASH fullname: NEGASH, Berihun Mamo email: bmamo.negash@utp.edu.my – sequence: 2 givenname: Atta Dennis surname: YAW fullname: YAW, Atta Dennis |
| BookMark | eNqFkEFLHTEQx0OxUGv9CIU9toe1yW6ySeihiLQqCD1Uz2F2kmheXzcyyVP89t3dJ1J68TIzzPD_wfzes4MpT4Gxj4KfCC6GL7-E0UPbGy4_dfzzwLlS7fCGHb6sD_6Z37HjUjac805rwbU5ZHenVFNMmGDbTGFHa6uPmX43I5Tgm3vKfoc15amJmQJCqWm6XeYGmrsnTxmBxvlKoQR6yIma3eQDNY9Q55qmTVjTH9jbCNsSjp_7Ebv58f367KK9-nl-eXZ61aI0prZC-BHNKHSHKFHhaJWPHCwGbwfspDS9VdJ6r62N0UdheOCdBBURUBnbH7HLPddn2Lh7Sn-AnlyG5NZFplsH88u4DU6P_YgQwEipJY9ge6Gihqhi7Dqlh5ml9iykXAqF-MIT3C323WrfLWpdx91q3y25r__lMFVYLFSCtH01_W2fDrOmhxTIFUxhmg2k2X-d_0ivEP4C6SijlQ |
| CitedBy_id | crossref_primary_10_1016_j_geoen_2024_213064 crossref_primary_10_1007_s12145_025_01745_9 crossref_primary_10_1186_s13638_020_01790_6 crossref_primary_10_3390_en14040857 crossref_primary_10_3390_en14133965 crossref_primary_10_1016_j_energy_2023_128255 crossref_primary_10_1016_j_fuel_2022_127067 crossref_primary_10_3390_en17010078 crossref_primary_10_1080_15567036_2024_2384214 crossref_primary_10_1016_j_rser_2021_111338 crossref_primary_10_1016_j_geoen_2023_212528 crossref_primary_10_1016_j_petrol_2020_107770 crossref_primary_10_1016_j_compchemeng_2025_109068 crossref_primary_10_2118_226202_PA crossref_primary_10_1016_j_petrol_2021_109715 crossref_primary_10_1016_j_jksues_2021_07_010 crossref_primary_10_2118_223940_PA crossref_primary_10_1016_j_jgsce_2023_204972 crossref_primary_10_3390_app10197000 crossref_primary_10_3390_s22145326 crossref_primary_10_2118_218389_PA crossref_primary_10_3390_en14206524 crossref_primary_10_1080_10916466_2024_2401513 crossref_primary_10_1016_j_apenergy_2024_122691 crossref_primary_10_3390_pr10071327 crossref_primary_10_1016_j_fss_2022_12_005 crossref_primary_10_1007_s41685_022_00247_6 crossref_primary_10_1016_j_marpetgeo_2024_107108 crossref_primary_10_1177_01445987231188161 crossref_primary_10_1016_j_flowmeasinst_2024_102690 crossref_primary_10_3390_en15051725 crossref_primary_10_3390_en15238833 crossref_primary_10_32604_ee_2022_019556 crossref_primary_10_1016_j_geoen_2024_213623 crossref_primary_10_3390_en17215502 crossref_primary_10_1016_j_compchemeng_2022_108107 crossref_primary_10_1016_j_engappai_2022_105472 crossref_primary_10_1038_s41598_024_54893_1 crossref_primary_10_1016_j_jappgeo_2023_105202 crossref_primary_10_1088_1742_6596_2468_1_012084 crossref_primary_10_1016_j_bspc_2021_103160 crossref_primary_10_1007_s00521_023_08716_5 crossref_primary_10_3390_pr12061219 crossref_primary_10_1016_j_aiig_2025_100139 crossref_primary_10_1016_j_fuel_2023_127569 crossref_primary_10_3390_en15186768 crossref_primary_10_1016_j_petrol_2021_109935 crossref_primary_10_3390_en15134768 crossref_primary_10_1093_jge_gxac069 crossref_primary_10_1016_j_egyr_2022_09_140 crossref_primary_10_1007_s12145_024_01236_3 crossref_primary_10_1007_s13202_021_01405_w crossref_primary_10_1080_10095020_2022_2068385 crossref_primary_10_1007_s10661_023_11237_2 crossref_primary_10_3233_IDA_230301 crossref_primary_10_3390_atmos14050899 crossref_primary_10_1016_j_compchemeng_2025_109320 crossref_primary_10_1016_j_engfailanal_2024_108646 crossref_primary_10_1109_JSEN_2023_3275933 crossref_primary_10_1021_acs_energyfuels_5c01311 crossref_primary_10_3390_math9030244 crossref_primary_10_1016_j_petrol_2021_109920 crossref_primary_10_3390_sym14051028 crossref_primary_10_3390_su15010784 |
| Cites_doi | 10.2118/184984-MS 10.1016/j.petrol.2017.01.024 10.2118/180984-MS 10.4043/27577-MS 10.2118/174784-PA 10.1155/2017/7645470 10.2118/185922-MS 10.2118/187938-PA 10.2118/181556-MS 10.2118/187468-MS 10.1007/978-981-10-3650-7_1 10.2118/1017-0087-JPT 10.1109/SAMI.2017.7880337 10.2118/186069-MS 10.1016/j.neucom.2015.10.036 10.1016/S1876-3804(16)30105-7 10.1016/j.petrol.2017.10.028 10.2118/185536-MS 10.1016/j.patrec.2016.11.005 10.1016/j.ijmultiphaseflow.2016.08.004 10.1109/ISCAIE.2017.8074962 10.2118/183921-MS 10.3997/2214-4609.201701586 10.1016/j.fuel.2017.11.110 10.1016/j.chaos.2017.04.032 10.2118/189205-MS 10.1109/MLSP.2017.8168143 10.2118/185960-PA 10.1016/j.petrol.2017.12.046 |
| ContentType | Journal Article |
| Copyright | 2020 Research Institute of Petroleum Exploration & Development, PetroChina |
| Copyright_xml | – notice: 2020 Research Institute of Petroleum Exploration & Development, PetroChina |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/S1876-3804(20)60055-6 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1876-3804 |
| EndPage | 392 |
| ExternalDocumentID | oai_doaj_org_article_7b3bcaea844740fa9315f7af5ff22576 10_1016_S1876_3804_20_60055_6 S1876380420600556 |
| GroupedDBID | --M -02 -0B -SB -S~ .~1 0R~ 123 1~. 457 4G. 5VR 5VS 6I. 7-5 71M 8P~ 92M 9D9 9DB AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABQEM ABXDB ABYKQ ACDAQ ACLVX ACSBN ADEZE ADMUD AEKER AFTJW AFUIB AGHFR AGUBO AGYEJ AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ BLXMC CAJEB CAJUS EBS EFLBG EJD EP2 EP3 FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ HVGLF HZ~ IMUCA J1W M41 MO0 M~E N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q-- Q38 RT2 SDF SES SSZ T5K T8R U1F U1G U5B U5L ~G- 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c488t-11dbc8b172cc4c5cb95df0a9ced96c244839549dd799ffdf180e024a5fcac5893 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528167400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1876-3804 |
| IngestDate | Fri Oct 03 12:52:09 EDT 2025 Sat Nov 29 07:01:24 EST 2025 Tue Nov 18 22:14:47 EST 2025 Fri Feb 23 02:49:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | production forecasting water flooding machine learning attribute extraction Bayesian regularization algorithm neural networks |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-11dbc8b172cc4c5cb95df0a9ced96c244839549dd799ffdf180e024a5fcac5893 |
| OpenAccessLink | https://doaj.org/article/7b3bcaea844740fa9315f7af5ff22576 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b3bcaea844740fa9315f7af5ff22576 crossref_primary_10_1016_S1876_3804_20_60055_6 crossref_citationtrail_10_1016_S1876_3804_20_60055_6 elsevier_sciencedirect_doi_10_1016_S1876_3804_20_60055_6 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Petroleum exploration and development |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | AMIRIAN, DEJAM, CHEN (bib32) 2018; 216 UTAMI E, WIBAWA A, BIYANTO T R, et al. Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method. Langkawi, Malaysia: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2017. SIMM J, ARANY A, ZAKERI P, et al. Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC. Tokyo: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), 2017. XIE, ZHU, ZHOU (bib13) 2018; 160 AZIZI, AHMADLOO (bib21) 2016; 87 SAPUTELLI (bib9) 2017; 69 LU P, LIU H, SERRATELLA C, et al. Assessment of data-driven, machine learning techniques for machinery prognostics of offshore assets. OTC 27577-PT, 2017. NEGASH, VASANT, JUFAR (bib4) 2018; 12 KIM (bib23) 2017 LI Y, HAN Y. Decline curve analysis for production forecasting based on machine learning. SPE 189205-MS, 2017. ZHENG J, LEUNG J Y, SAWATZKY R P, et al. An AI-based workflow for estimating shale barrier configurations from SAGD production histories. SPE 184984-MS, 2017. XIAN, AWOTUNDE (bib27) 2016; 43 MIŠKUF M. Data mining in cloud usage data with Matlab's statistics and machine learning toolbox. Herl'any, Slovakia: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017. SHI, FENG, ZENG (bib26) 2017; 100 NEGASH (bib2) 2017; 12 ZHONG H, WU K, JI D, et al. Using least square support vector machines to approximate single phase flow. SPE 185881-MS, 2017. WANG D, NIU D, LI H A. Predicting waterflooding performance in low-permeability reservoirs with linear dynamical systems. SPE 185960-PA, 2017. TEMIZEL C, NABIZADEH M, KADKHODAEI N, et al. Data-driven optimization of injection/production in waterflood operations. SPE 187468-MS, 2017. TIAN C, HORNE R N. Inferring interwell connectivity using production data. SPE 181556-MS, 2016. HAGAN (bib34) 2002 MA, LEUNG, ZANON (bib22) 2017; 163 LÓPEZ-IÑESTA, GRIMALDO, AREVALILLO-HERRÁEZ (bib25) 2017; 93 CAO Q. Data driven production forecasting using machine learning. Buenos Aires, Argentina: SPE Argentina Exploration and Production of Unconventional Resources Symposium, 2016. MOHAGHEGH (bib10) 2017 WEI Chenji, WANG Yuhe, DING Yutao, et al. Uncertainty assessment in production forecasting and optimization for a giant multi-layered sandstone reservoir using optimized artificial neural network technology. SPE 186069-MS, 2017. ARAS, KOCAKOÇ (bib24) 2016; 174 GUÉRILLOT D R, BRUYELLE J. Uncertainty assessment in production forecast with an optimal artificial neural network. SPE 183921-MS, 2017. NEGASH, TUFA, RAMASAMY (bib33) 2017 RAMIREZ A M. Prediction of PVT properties in crude oil using machine learning techniques (MLT). Buenos Aires, Argentina: SPE Latin America and Caribbean Petroleum Engineering Conference, 2017. ANIFOWOSE, LABADIN, ABDULRAHEEM (bib12) 2017; 151 FULFORD, BOWIE, BERRY (bib14) 2016; 8 NEGASH B M. History matching of the PUNQ-S3 reservoir model using proxy modeling and multi-objective optimizations. Kuala Lumpur, Malaysia: 2016 International Conference on Industrial Engineering and Operations Management, 2016. MOGHADASI L, RANAEE E, INZOLI F, et al. Petrophysical well log analysis through intelligent methods. SPE 185922-MS, 2017. WANTAWIN M, YU W, DACHANUWATTANA S, et al. An iterative response-surface methodology by use of high-degree-polynomial proxy models for integrated history matching and probabilistic forecasting applied to shale-gas reservoirs. SPE 187938-PA, 2017. 10.1016/S1876-3804(20)60055-6_bib29 10.1016/S1876-3804(20)60055-6_bib28 FULFORD (10.1016/S1876-3804(20)60055-6_bib14) 2016; 8 NEGASH (10.1016/S1876-3804(20)60055-6_bib4) 2018; 12 10.1016/S1876-3804(20)60055-6_bib11 10.1016/S1876-3804(20)60055-6_bib31 SHI (10.1016/S1876-3804(20)60055-6_bib26) 2017; 100 10.1016/S1876-3804(20)60055-6_bib30 XIE (10.1016/S1876-3804(20)60055-6_bib13) 2018; 160 10.1016/S1876-3804(20)60055-6_bib7 KIM (10.1016/S1876-3804(20)60055-6_bib23) 2017 10.1016/S1876-3804(20)60055-6_bib8 HAGAN (10.1016/S1876-3804(20)60055-6_bib34) 2002 AZIZI (10.1016/S1876-3804(20)60055-6_bib21) 2016; 87 NEGASH (10.1016/S1876-3804(20)60055-6_bib33) 2017 10.1016/S1876-3804(20)60055-6_bib19 10.1016/S1876-3804(20)60055-6_bib18 10.1016/S1876-3804(20)60055-6_bib1 10.1016/S1876-3804(20)60055-6_bib17 MOHAGHEGH (10.1016/S1876-3804(20)60055-6_bib10) 2017 10.1016/S1876-3804(20)60055-6_bib16 ARAS (10.1016/S1876-3804(20)60055-6_bib24) 2016; 174 10.1016/S1876-3804(20)60055-6_bib3 10.1016/S1876-3804(20)60055-6_bib15 10.1016/S1876-3804(20)60055-6_bib5 10.1016/S1876-3804(20)60055-6_bib6 NEGASH (10.1016/S1876-3804(20)60055-6_bib2) 2017; 12 ANIFOWOSE (10.1016/S1876-3804(20)60055-6_bib12) 2017; 151 10.1016/S1876-3804(20)60055-6_bib20 AMIRIAN (10.1016/S1876-3804(20)60055-6_bib32) 2018; 216 MA (10.1016/S1876-3804(20)60055-6_bib22) 2017; 163 LÓPEZ-IÑESTA (10.1016/S1876-3804(20)60055-6_bib25) 2017; 93 SAPUTELLI (10.1016/S1876-3804(20)60055-6_bib9) 2017; 69 XIAN (10.1016/S1876-3804(20)60055-6_bib27) 2016; 43 |
| References_xml | – reference: TEMIZEL C, NABIZADEH M, KADKHODAEI N, et al. Data-driven optimization of injection/production in waterflood operations. SPE 187468-MS, 2017. – volume: 87 start-page: 35 year: 2016 end-page: 44 ident: bib21 article-title: Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network publication-title: International Journal of Multiphase Flow – volume: 151 start-page: 480 year: 2017 end-page: 487 ident: bib12 article-title: Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization publication-title: Journal of Petroleum Science and Engineering – volume: 174 start-page: 974 year: 2016 end-page: 987 ident: bib24 article-title: A new model selection strategy in time series forecasting with artificial neural networks: IHTS publication-title: Neurocomputing – volume: 12 start-page: 2952 year: 2017 end-page: 2962 ident: bib2 article-title: Artificial neural network and inverse solution method for assisted history matching of a reservoir model publication-title: International Journal of Applied Engineering Research – volume: 163 start-page: 139 year: 2017 end-page: 155 ident: bib22 article-title: Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs publication-title: Journal of Petroleum Science and Engineering – reference: WEI Chenji, WANG Yuhe, DING Yutao, et al. Uncertainty assessment in production forecasting and optimization for a giant multi-layered sandstone reservoir using optimized artificial neural network technology. SPE 186069-MS, 2017. – reference: GUÉRILLOT D R, BRUYELLE J. Uncertainty assessment in production forecast with an optimal artificial neural network. SPE 183921-MS, 2017. – volume: 160 start-page: 182 year: 2018 end-page: 193 ident: bib13 article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances publication-title: Journal of Petroleum Science and Engineering – volume: 8 start-page: 23 year: 2016 end-page: 39 ident: bib14 article-title: Machine learning as a reliable technology for evaluating time/rate performance of unconventional wells publication-title: SPE Economics & Management – year: 2017 ident: bib23 article-title: MATLAB deep learning: With machine learning, neural networks and artificial intelligence – reference: LU P, LIU H, SERRATELLA C, et al. Assessment of data-driven, machine learning techniques for machinery prognostics of offshore assets. OTC 27577-PT, 2017. – start-page: 1 year: 2017 end-page: 10 ident: bib33 article-title: System identification based proxy model of a reservoir under water injection publication-title: Modelling and Simulation in Engineering – volume: 93 start-page: 95 year: 2017 end-page: 103 ident: bib25 article-title: Combining feature extraction and expansion to improve classification based similarity learning publication-title: Pattern Recognition Letters – reference: LI Y, HAN Y. Decline curve analysis for production forecasting based on machine learning. SPE 189205-MS, 2017. – reference: MOGHADASI L, RANAEE E, INZOLI F, et al. Petrophysical well log analysis through intelligent methods. SPE 185922-MS, 2017. – volume: 69 start-page: 87 year: 2017 ident: bib9 article-title: Technology focus: Petroleum data analytics publication-title: Journal of Petroleum Technology – reference: SIMM J, ARANY A, ZAKERI P, et al. Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC. Tokyo: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), 2017. – reference: CAO Q. Data driven production forecasting using machine learning. Buenos Aires, Argentina: SPE Argentina Exploration and Production of Unconventional Resources Symposium, 2016. – reference: MIŠKUF M. Data mining in cloud usage data with Matlab's statistics and machine learning toolbox. Herl'any, Slovakia: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017. – volume: 216 start-page: 83 year: 2018 end-page: 100 ident: bib32 article-title: Performance forecasting for polymer flooding in heavy oil reservoirs publication-title: Fuel – reference: WANG D, NIU D, LI H A. Predicting waterflooding performance in low-permeability reservoirs with linear dynamical systems. SPE 185960-PA, 2017. – year: 2002 ident: bib34 article-title: Neural network design – reference: ZHENG J, LEUNG J Y, SAWATZKY R P, et al. An AI-based workflow for estimating shale barrier configurations from SAGD production histories. SPE 184984-MS, 2017. – reference: WANTAWIN M, YU W, DACHANUWATTANA S, et al. An iterative response-surface methodology by use of high-degree-polynomial proxy models for integrated history matching and probabilistic forecasting applied to shale-gas reservoirs. SPE 187938-PA, 2017. – volume: 43 start-page: 876 year: 2016 end-page: 885 ident: bib27 article-title: Improvement of Levenberg-Marquardt algorithm during history fitting for reservoir simulation publication-title: Petroleum Exploration and Development – reference: UTAMI E, WIBAWA A, BIYANTO T R, et al. Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method. Langkawi, Malaysia: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2017. – year: 2017 ident: bib10 article-title: Shale analytics: Data-driven analytics in unconventional resources – volume: 100 start-page: 57 year: 2017 end-page: 61 ident: bib26 article-title: Chaos time-series prediction based on an improved recursive levenberg-marquardt algorithm publication-title: CHAOS SOLITONS AND FRACTALS – reference: ZHONG H, WU K, JI D, et al. Using least square support vector machines to approximate single phase flow. SPE 185881-MS, 2017. – volume: 12 start-page: 1 year: 2018 end-page: 13 ident: bib4 article-title: Application of artificial neural networks for calibration of a reservoir model publication-title: Intelligent Decision Technologies – reference: TIAN C, HORNE R N. Inferring interwell connectivity using production data. SPE 181556-MS, 2016. – reference: RAMIREZ A M. Prediction of PVT properties in crude oil using machine learning techniques (MLT). Buenos Aires, Argentina: SPE Latin America and Caribbean Petroleum Engineering Conference, 2017. – reference: NEGASH B M. History matching of the PUNQ-S3 reservoir model using proxy modeling and multi-objective optimizations. Kuala Lumpur, Malaysia: 2016 International Conference on Industrial Engineering and Operations Management, 2016. – ident: 10.1016/S1876-3804(20)60055-6_bib20 doi: 10.2118/184984-MS – volume: 151 start-page: 480 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib12 article-title: Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.01.024 – ident: 10.1016/S1876-3804(20)60055-6_bib15 doi: 10.2118/180984-MS – ident: 10.1016/S1876-3804(20)60055-6_bib31 doi: 10.4043/27577-MS – year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib23 – volume: 8 start-page: 23 issue: 1 year: 2016 ident: 10.1016/S1876-3804(20)60055-6_bib14 article-title: Machine learning as a reliable technology for evaluating time/rate performance of unconventional wells publication-title: SPE Economics & Management doi: 10.2118/174784-PA – start-page: 1 issue: 1 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib33 article-title: System identification based proxy model of a reservoir under water injection publication-title: Modelling and Simulation in Engineering doi: 10.1155/2017/7645470 – ident: 10.1016/S1876-3804(20)60055-6_bib19 doi: 10.2118/185922-MS – ident: 10.1016/S1876-3804(20)60055-6_bib6 doi: 10.2118/187938-PA – ident: 10.1016/S1876-3804(20)60055-6_bib8 doi: 10.2118/181556-MS – ident: 10.1016/S1876-3804(20)60055-6_bib17 doi: 10.2118/187468-MS – ident: 10.1016/S1876-3804(20)60055-6_bib5 doi: 10.1007/978-981-10-3650-7_1 – volume: 69 start-page: 87 issue: 10 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib9 article-title: Technology focus: Petroleum data analytics publication-title: Journal of Petroleum Technology doi: 10.2118/1017-0087-JPT – ident: 10.1016/S1876-3804(20)60055-6_bib11 doi: 10.1109/SAMI.2017.7880337 – volume: 12 start-page: 2952 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib2 article-title: Artificial neural network and inverse solution method for assisted history matching of a reservoir model publication-title: International Journal of Applied Engineering Research – ident: 10.1016/S1876-3804(20)60055-6_bib3 doi: 10.2118/186069-MS – year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib10 – volume: 174 start-page: 974 year: 2016 ident: 10.1016/S1876-3804(20)60055-6_bib24 article-title: A new model selection strategy in time series forecasting with artificial neural networks: IHTS publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.036 – volume: 43 start-page: 876 issue: 5 year: 2016 ident: 10.1016/S1876-3804(20)60055-6_bib27 article-title: Improvement of Levenberg-Marquardt algorithm during history fitting for reservoir simulation publication-title: Petroleum Exploration and Development doi: 10.1016/S1876-3804(16)30105-7 – volume: 160 start-page: 182 year: 2018 ident: 10.1016/S1876-3804(20)60055-6_bib13 article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.10.028 – ident: 10.1016/S1876-3804(20)60055-6_bib18 doi: 10.2118/185536-MS – volume: 93 start-page: 95 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib25 article-title: Combining feature extraction and expansion to improve classification based similarity learning publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.11.005 – volume: 87 start-page: 35 year: 2016 ident: 10.1016/S1876-3804(20)60055-6_bib21 article-title: Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.08.004 – ident: 10.1016/S1876-3804(20)60055-6_bib28 doi: 10.1109/ISCAIE.2017.8074962 – ident: 10.1016/S1876-3804(20)60055-6_bib30 doi: 10.2118/183921-MS – ident: 10.1016/S1876-3804(20)60055-6_bib1 doi: 10.3997/2214-4609.201701586 – volume: 216 start-page: 83 year: 2018 ident: 10.1016/S1876-3804(20)60055-6_bib32 article-title: Performance forecasting for polymer flooding in heavy oil reservoirs publication-title: Fuel doi: 10.1016/j.fuel.2017.11.110 – volume: 100 start-page: 57 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib26 article-title: Chaos time-series prediction based on an improved recursive levenberg-marquardt algorithm publication-title: CHAOS SOLITONS AND FRACTALS doi: 10.1016/j.chaos.2017.04.032 – ident: 10.1016/S1876-3804(20)60055-6_bib16 doi: 10.2118/189205-MS – ident: 10.1016/S1876-3804(20)60055-6_bib29 doi: 10.1109/MLSP.2017.8168143 – ident: 10.1016/S1876-3804(20)60055-6_bib7 doi: 10.2118/185960-PA – volume: 163 start-page: 139 year: 2017 ident: 10.1016/S1876-3804(20)60055-6_bib22 article-title: Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.12.046 – volume: 12 start-page: 1 issue: 2 year: 2018 ident: 10.1016/S1876-3804(20)60055-6_bib4 article-title: Application of artificial neural networks for calibration of a reservoir model publication-title: Intelligent Decision Technologies – year: 2002 ident: 10.1016/S1876-3804(20)60055-6_bib34 |
| SSID | ssj0002771078 |
| Score | 2.4668322 |
| Snippet | As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 383 |
| SubjectTerms | attribute extraction Bayesian regularization algorithm machine learning neural networks production forecasting water flooding |
| Title | Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection |
| URI | https://dx.doi.org/10.1016/S1876-3804(20)60055-6 https://doaj.org/article/7b3bcaea844740fa9315f7af5ff22576 |
| Volume | 47 |
| WOSCitedRecordID | wos000528167400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1876-3804 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771078 issn: 1876-3804 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1876-3804 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771078 issn: 1876-3804 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYMHPVTTNn0dVVy8KIIK3kIySXBFqtRV8eJvdybtrvWiFy9tSdqmTB7fN3TyDWN7hdG5lU5EWaoBHRQrIiMLE4nUIH6XBVISG5JNFJeX5d1dddVL9UUxYa08cGu4o8KkBrTTpZSFFF5XaZz5QvvM-4TIMq2-yHp6ztRD-J2GyBmW4Rine5SWQn5v3zm6nhbuJ-IgJx2qKP8BTEG_v4dPPcwZLrHFjizy4_Yjl9mMq1fYQk9CcJXdU2WrAsFJmzKcQmQ3J4Cy_LmVdEXzc-SnDvQLBTrTNdf8_sMigOnGYC3tQ2renkYNp31lDX9HFtrwUf0QgrXqNXY7PLs5PY-67AkR4KQcR3FsDZQGCQqAhAxMlVkvdAXOVjkgqiM1QufQWuwP762PS-EQsHXmQUOGNGadzdZPtdtgPDF5ilTNl1BpaQr0qWRujbMmBZ3aXA-YnJhOQSctThkuHtU0howsrsjiKhEqWFzlA3Y4fey51db464ET6pfpzSSNHQpwwKhuwKi_BsyAlZNeVR3LaNkDvmr0e_ub_9H-FptPyGcP0T_bbHbcvLodNgdv49FLsxuGMR4vPs--AGL29Pg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+production+forecasting+for+a+hydrocarbon+reservoir+under+water+injection&rft.jtitle=Petroleum+exploration+and+development&rft.au=NEGASH%2C+Berihun+Mamo&rft.au=YAW%2C+Atta+Dennis&rft.date=2020-04-01&rft.issn=1876-3804&rft.eissn=1876-3804&rft.volume=47&rft.issue=2&rft.spage=383&rft.epage=392&rft_id=info:doi/10.1016%2FS1876-3804%2820%2960055-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1876_3804_20_60055_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-3804&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-3804&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-3804&client=summon |