Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection

As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Petroleum exploration and development Ročník 47; číslo 2; s. 383 - 392
Hlavní autoři: NEGASH, Berihun Mamo, YAW, Atta Dennis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2020
KeAi Communications Co., Ltd
Témata:
ISSN:1876-3804, 1876-3804
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data.
AbstractList As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data. Key words: neural networks, machine learning, attribute extraction, Bayesian regularization algorithm, production forecasting, water flooding
As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial neural network was proposed, the simulation process by this method was presented, and some examples were illustrated. A workflow that involves a physics-based extraction of features was proposed for fluid production forecasting to improve the prediction effect. The Bayesian regularization algorithm was selected as the training algorithm of the model. This algorithm, although taking longer time, can better generalize oil, gas and water production data sets. The model was evaluated by calculating mean square error and determination coefficient, drawing error distribution histogram and the cross-plot between simulation data and verification data etc. The model structure was trained, validated and tested with 90% of the historical data, and blindly evaluated using the remaining. The predictive model consumes minimal information and computational cost and is capable of predicting fluid production rate with a coefficient of determination of more than 0.9, which has the simulation results consistent with the practical data.
Author NEGASH, Berihun Mamo
YAW, Atta Dennis
Author_xml – sequence: 1
  givenname: Berihun Mamo
  surname: NEGASH
  fullname: NEGASH, Berihun Mamo
  email: bmamo.negash@utp.edu.my
– sequence: 2
  givenname: Atta Dennis
  surname: YAW
  fullname: YAW, Atta Dennis
BookMark eNqFkEFLHTEQx0OxUGv9CIU9toe1yW6ySeihiLQqCD1Uz2F2kmheXzcyyVP89t3dJ1J68TIzzPD_wfzes4MpT4Gxj4KfCC6GL7-E0UPbGy4_dfzzwLlS7fCGHb6sD_6Z37HjUjac805rwbU5ZHenVFNMmGDbTGFHa6uPmX43I5Tgm3vKfoc15amJmQJCqWm6XeYGmrsnTxmBxvlKoQR6yIma3eQDNY9Q55qmTVjTH9jbCNsSjp_7Ebv58f367KK9-nl-eXZ61aI0prZC-BHNKHSHKFHhaJWPHCwGbwfspDS9VdJ6r62N0UdheOCdBBURUBnbH7HLPddn2Lh7Sn-AnlyG5NZFplsH88u4DU6P_YgQwEipJY9ge6Gihqhi7Dqlh5ml9iykXAqF-MIT3C323WrfLWpdx91q3y25r__lMFVYLFSCtH01_W2fDrOmhxTIFUxhmg2k2X-d_0ivEP4C6SijlQ
CitedBy_id crossref_primary_10_1016_j_geoen_2024_213064
crossref_primary_10_1007_s12145_025_01745_9
crossref_primary_10_1186_s13638_020_01790_6
crossref_primary_10_3390_en14040857
crossref_primary_10_3390_en14133965
crossref_primary_10_1016_j_energy_2023_128255
crossref_primary_10_1016_j_fuel_2022_127067
crossref_primary_10_3390_en17010078
crossref_primary_10_1080_15567036_2024_2384214
crossref_primary_10_1016_j_rser_2021_111338
crossref_primary_10_1016_j_geoen_2023_212528
crossref_primary_10_1016_j_petrol_2020_107770
crossref_primary_10_1016_j_compchemeng_2025_109068
crossref_primary_10_2118_226202_PA
crossref_primary_10_1016_j_petrol_2021_109715
crossref_primary_10_1016_j_jksues_2021_07_010
crossref_primary_10_2118_223940_PA
crossref_primary_10_1016_j_jgsce_2023_204972
crossref_primary_10_3390_app10197000
crossref_primary_10_3390_s22145326
crossref_primary_10_2118_218389_PA
crossref_primary_10_3390_en14206524
crossref_primary_10_1080_10916466_2024_2401513
crossref_primary_10_1016_j_apenergy_2024_122691
crossref_primary_10_3390_pr10071327
crossref_primary_10_1016_j_fss_2022_12_005
crossref_primary_10_1007_s41685_022_00247_6
crossref_primary_10_1016_j_marpetgeo_2024_107108
crossref_primary_10_1177_01445987231188161
crossref_primary_10_1016_j_flowmeasinst_2024_102690
crossref_primary_10_3390_en15051725
crossref_primary_10_3390_en15238833
crossref_primary_10_32604_ee_2022_019556
crossref_primary_10_1016_j_geoen_2024_213623
crossref_primary_10_3390_en17215502
crossref_primary_10_1016_j_compchemeng_2022_108107
crossref_primary_10_1016_j_engappai_2022_105472
crossref_primary_10_1038_s41598_024_54893_1
crossref_primary_10_1016_j_jappgeo_2023_105202
crossref_primary_10_1088_1742_6596_2468_1_012084
crossref_primary_10_1016_j_bspc_2021_103160
crossref_primary_10_1007_s00521_023_08716_5
crossref_primary_10_3390_pr12061219
crossref_primary_10_1016_j_aiig_2025_100139
crossref_primary_10_1016_j_fuel_2023_127569
crossref_primary_10_3390_en15186768
crossref_primary_10_1016_j_petrol_2021_109935
crossref_primary_10_3390_en15134768
crossref_primary_10_1093_jge_gxac069
crossref_primary_10_1016_j_egyr_2022_09_140
crossref_primary_10_1007_s12145_024_01236_3
crossref_primary_10_1007_s13202_021_01405_w
crossref_primary_10_1080_10095020_2022_2068385
crossref_primary_10_1007_s10661_023_11237_2
crossref_primary_10_3233_IDA_230301
crossref_primary_10_3390_atmos14050899
crossref_primary_10_1016_j_compchemeng_2025_109320
crossref_primary_10_1016_j_engfailanal_2024_108646
crossref_primary_10_1109_JSEN_2023_3275933
crossref_primary_10_1021_acs_energyfuels_5c01311
crossref_primary_10_3390_math9030244
crossref_primary_10_1016_j_petrol_2021_109920
crossref_primary_10_3390_sym14051028
crossref_primary_10_3390_su15010784
Cites_doi 10.2118/184984-MS
10.1016/j.petrol.2017.01.024
10.2118/180984-MS
10.4043/27577-MS
10.2118/174784-PA
10.1155/2017/7645470
10.2118/185922-MS
10.2118/187938-PA
10.2118/181556-MS
10.2118/187468-MS
10.1007/978-981-10-3650-7_1
10.2118/1017-0087-JPT
10.1109/SAMI.2017.7880337
10.2118/186069-MS
10.1016/j.neucom.2015.10.036
10.1016/S1876-3804(16)30105-7
10.1016/j.petrol.2017.10.028
10.2118/185536-MS
10.1016/j.patrec.2016.11.005
10.1016/j.ijmultiphaseflow.2016.08.004
10.1109/ISCAIE.2017.8074962
10.2118/183921-MS
10.3997/2214-4609.201701586
10.1016/j.fuel.2017.11.110
10.1016/j.chaos.2017.04.032
10.2118/189205-MS
10.1109/MLSP.2017.8168143
10.2118/185960-PA
10.1016/j.petrol.2017.12.046
ContentType Journal Article
Copyright 2020 Research Institute of Petroleum Exploration & Development, PetroChina
Copyright_xml – notice: 2020 Research Institute of Petroleum Exploration & Development, PetroChina
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/S1876-3804(20)60055-6
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-3804
EndPage 392
ExternalDocumentID oai_doaj_org_article_7b3bcaea844740fa9315f7af5ff22576
10_1016_S1876_3804_20_60055_6
S1876380420600556
GroupedDBID --M
-02
-0B
-SB
-S~
.~1
0R~
123
1~.
457
4G.
5VR
5VS
6I.
7-5
71M
8P~
92M
9D9
9DB
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABQEM
ABXDB
ABYKQ
ACDAQ
ACLVX
ACSBN
ADEZE
ADMUD
AEKER
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
BLXMC
CAJEB
CAJUS
EBS
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IMUCA
J1W
M41
MO0
M~E
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q--
Q38
RT2
SDF
SES
SSZ
T5K
T8R
U1F
U1G
U5B
U5L
~G-
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c488t-11dbc8b172cc4c5cb95df0a9ced96c244839549dd799ffdf180e024a5fcac5893
IEDL.DBID DOA
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528167400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1876-3804
IngestDate Fri Oct 03 12:52:09 EDT 2025
Sat Nov 29 07:01:24 EST 2025
Tue Nov 18 22:14:47 EST 2025
Fri Feb 23 02:49:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords production forecasting
water flooding
machine learning
attribute extraction
Bayesian regularization algorithm
neural networks
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-11dbc8b172cc4c5cb95df0a9ced96c244839549dd799ffdf180e024a5fcac5893
OpenAccessLink https://doaj.org/article/7b3bcaea844740fa9315f7af5ff22576
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7b3bcaea844740fa9315f7af5ff22576
crossref_primary_10_1016_S1876_3804_20_60055_6
crossref_citationtrail_10_1016_S1876_3804_20_60055_6
elsevier_sciencedirect_doi_10_1016_S1876_3804_20_60055_6
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Petroleum exploration and development
PublicationYear 2020
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References AMIRIAN, DEJAM, CHEN (bib32) 2018; 216
UTAMI E, WIBAWA A, BIYANTO T R, et al. Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method. Langkawi, Malaysia: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2017.
SIMM J, ARANY A, ZAKERI P, et al. Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC. Tokyo: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), 2017.
XIE, ZHU, ZHOU (bib13) 2018; 160
AZIZI, AHMADLOO (bib21) 2016; 87
SAPUTELLI (bib9) 2017; 69
LU P, LIU H, SERRATELLA C, et al. Assessment of data-driven, machine learning techniques for machinery prognostics of offshore assets. OTC 27577-PT, 2017.
NEGASH, VASANT, JUFAR (bib4) 2018; 12
KIM (bib23) 2017
LI Y, HAN Y. Decline curve analysis for production forecasting based on machine learning. SPE 189205-MS, 2017.
ZHENG J, LEUNG J Y, SAWATZKY R P, et al. An AI-based workflow for estimating shale barrier configurations from SAGD production histories. SPE 184984-MS, 2017.
XIAN, AWOTUNDE (bib27) 2016; 43
MIŠKUF M. Data mining in cloud usage data with Matlab's statistics and machine learning toolbox. Herl'any, Slovakia: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017.
SHI, FENG, ZENG (bib26) 2017; 100
NEGASH (bib2) 2017; 12
ZHONG H, WU K, JI D, et al. Using least square support vector machines to approximate single phase flow. SPE 185881-MS, 2017.
WANG D, NIU D, LI H A. Predicting waterflooding performance in low-permeability reservoirs with linear dynamical systems. SPE 185960-PA, 2017.
TEMIZEL C, NABIZADEH M, KADKHODAEI N, et al. Data-driven optimization of injection/production in waterflood operations. SPE 187468-MS, 2017.
TIAN C, HORNE R N. Inferring interwell connectivity using production data. SPE 181556-MS, 2016.
HAGAN (bib34) 2002
MA, LEUNG, ZANON (bib22) 2017; 163
LÓPEZ-IÑESTA, GRIMALDO, AREVALILLO-HERRÁEZ (bib25) 2017; 93
CAO Q. Data driven production forecasting using machine learning. Buenos Aires, Argentina: SPE Argentina Exploration and Production of Unconventional Resources Symposium, 2016.
MOHAGHEGH (bib10) 2017
WEI Chenji, WANG Yuhe, DING Yutao, et al. Uncertainty assessment in production forecasting and optimization for a giant multi-layered sandstone reservoir using optimized artificial neural network technology. SPE 186069-MS, 2017.
ARAS, KOCAKOÇ (bib24) 2016; 174
GUÉRILLOT D R, BRUYELLE J. Uncertainty assessment in production forecast with an optimal artificial neural network. SPE 183921-MS, 2017.
NEGASH, TUFA, RAMASAMY (bib33) 2017
RAMIREZ A M. Prediction of PVT properties in crude oil using machine learning techniques (MLT). Buenos Aires, Argentina: SPE Latin America and Caribbean Petroleum Engineering Conference, 2017.
ANIFOWOSE, LABADIN, ABDULRAHEEM (bib12) 2017; 151
FULFORD, BOWIE, BERRY (bib14) 2016; 8
NEGASH B M. History matching of the PUNQ-S3 reservoir model using proxy modeling and multi-objective optimizations. Kuala Lumpur, Malaysia: 2016 International Conference on Industrial Engineering and Operations Management, 2016.
MOGHADASI L, RANAEE E, INZOLI F, et al. Petrophysical well log analysis through intelligent methods. SPE 185922-MS, 2017.
WANTAWIN M, YU W, DACHANUWATTANA S, et al. An iterative response-surface methodology by use of high-degree-polynomial proxy models for integrated history matching and probabilistic forecasting applied to shale-gas reservoirs. SPE 187938-PA, 2017.
10.1016/S1876-3804(20)60055-6_bib29
10.1016/S1876-3804(20)60055-6_bib28
FULFORD (10.1016/S1876-3804(20)60055-6_bib14) 2016; 8
NEGASH (10.1016/S1876-3804(20)60055-6_bib4) 2018; 12
10.1016/S1876-3804(20)60055-6_bib11
10.1016/S1876-3804(20)60055-6_bib31
SHI (10.1016/S1876-3804(20)60055-6_bib26) 2017; 100
10.1016/S1876-3804(20)60055-6_bib30
XIE (10.1016/S1876-3804(20)60055-6_bib13) 2018; 160
10.1016/S1876-3804(20)60055-6_bib7
KIM (10.1016/S1876-3804(20)60055-6_bib23) 2017
10.1016/S1876-3804(20)60055-6_bib8
HAGAN (10.1016/S1876-3804(20)60055-6_bib34) 2002
AZIZI (10.1016/S1876-3804(20)60055-6_bib21) 2016; 87
NEGASH (10.1016/S1876-3804(20)60055-6_bib33) 2017
10.1016/S1876-3804(20)60055-6_bib19
10.1016/S1876-3804(20)60055-6_bib18
10.1016/S1876-3804(20)60055-6_bib1
10.1016/S1876-3804(20)60055-6_bib17
MOHAGHEGH (10.1016/S1876-3804(20)60055-6_bib10) 2017
10.1016/S1876-3804(20)60055-6_bib16
ARAS (10.1016/S1876-3804(20)60055-6_bib24) 2016; 174
10.1016/S1876-3804(20)60055-6_bib3
10.1016/S1876-3804(20)60055-6_bib15
10.1016/S1876-3804(20)60055-6_bib5
10.1016/S1876-3804(20)60055-6_bib6
NEGASH (10.1016/S1876-3804(20)60055-6_bib2) 2017; 12
ANIFOWOSE (10.1016/S1876-3804(20)60055-6_bib12) 2017; 151
10.1016/S1876-3804(20)60055-6_bib20
AMIRIAN (10.1016/S1876-3804(20)60055-6_bib32) 2018; 216
MA (10.1016/S1876-3804(20)60055-6_bib22) 2017; 163
LÓPEZ-IÑESTA (10.1016/S1876-3804(20)60055-6_bib25) 2017; 93
SAPUTELLI (10.1016/S1876-3804(20)60055-6_bib9) 2017; 69
XIAN (10.1016/S1876-3804(20)60055-6_bib27) 2016; 43
References_xml – reference: TEMIZEL C, NABIZADEH M, KADKHODAEI N, et al. Data-driven optimization of injection/production in waterflood operations. SPE 187468-MS, 2017.
– volume: 87
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib21
  article-title: Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network
  publication-title: International Journal of Multiphase Flow
– volume: 151
  start-page: 480
  year: 2017
  end-page: 487
  ident: bib12
  article-title: Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization
  publication-title: Journal of Petroleum Science and Engineering
– volume: 174
  start-page: 974
  year: 2016
  end-page: 987
  ident: bib24
  article-title: A new model selection strategy in time series forecasting with artificial neural networks: IHTS
  publication-title: Neurocomputing
– volume: 12
  start-page: 2952
  year: 2017
  end-page: 2962
  ident: bib2
  article-title: Artificial neural network and inverse solution method for assisted history matching of a reservoir model
  publication-title: International Journal of Applied Engineering Research
– volume: 163
  start-page: 139
  year: 2017
  end-page: 155
  ident: bib22
  article-title: Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs
  publication-title: Journal of Petroleum Science and Engineering
– reference: WEI Chenji, WANG Yuhe, DING Yutao, et al. Uncertainty assessment in production forecasting and optimization for a giant multi-layered sandstone reservoir using optimized artificial neural network technology. SPE 186069-MS, 2017.
– reference: GUÉRILLOT D R, BRUYELLE J. Uncertainty assessment in production forecast with an optimal artificial neural network. SPE 183921-MS, 2017.
– volume: 160
  start-page: 182
  year: 2018
  end-page: 193
  ident: bib13
  article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances
  publication-title: Journal of Petroleum Science and Engineering
– volume: 8
  start-page: 23
  year: 2016
  end-page: 39
  ident: bib14
  article-title: Machine learning as a reliable technology for evaluating time/rate performance of unconventional wells
  publication-title: SPE Economics & Management
– year: 2017
  ident: bib23
  article-title: MATLAB deep learning: With machine learning, neural networks and artificial intelligence
– reference: LU P, LIU H, SERRATELLA C, et al. Assessment of data-driven, machine learning techniques for machinery prognostics of offshore assets. OTC 27577-PT, 2017.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib33
  article-title: System identification based proxy model of a reservoir under water injection
  publication-title: Modelling and Simulation in Engineering
– volume: 93
  start-page: 95
  year: 2017
  end-page: 103
  ident: bib25
  article-title: Combining feature extraction and expansion to improve classification based similarity learning
  publication-title: Pattern Recognition Letters
– reference: LI Y, HAN Y. Decline curve analysis for production forecasting based on machine learning. SPE 189205-MS, 2017.
– reference: MOGHADASI L, RANAEE E, INZOLI F, et al. Petrophysical well log analysis through intelligent methods. SPE 185922-MS, 2017.
– volume: 69
  start-page: 87
  year: 2017
  ident: bib9
  article-title: Technology focus: Petroleum data analytics
  publication-title: Journal of Petroleum Technology
– reference: SIMM J, ARANY A, ZAKERI P, et al. Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC. Tokyo: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), 2017.
– reference: CAO Q. Data driven production forecasting using machine learning. Buenos Aires, Argentina: SPE Argentina Exploration and Production of Unconventional Resources Symposium, 2016.
– reference: MIŠKUF M. Data mining in cloud usage data with Matlab's statistics and machine learning toolbox. Herl'any, Slovakia: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017.
– volume: 216
  start-page: 83
  year: 2018
  end-page: 100
  ident: bib32
  article-title: Performance forecasting for polymer flooding in heavy oil reservoirs
  publication-title: Fuel
– reference: WANG D, NIU D, LI H A. Predicting waterflooding performance in low-permeability reservoirs with linear dynamical systems. SPE 185960-PA, 2017.
– year: 2002
  ident: bib34
  article-title: Neural network design
– reference: ZHENG J, LEUNG J Y, SAWATZKY R P, et al. An AI-based workflow for estimating shale barrier configurations from SAGD production histories. SPE 184984-MS, 2017.
– reference: WANTAWIN M, YU W, DACHANUWATTANA S, et al. An iterative response-surface methodology by use of high-degree-polynomial proxy models for integrated history matching and probabilistic forecasting applied to shale-gas reservoirs. SPE 187938-PA, 2017.
– volume: 43
  start-page: 876
  year: 2016
  end-page: 885
  ident: bib27
  article-title: Improvement of Levenberg-Marquardt algorithm during history fitting for reservoir simulation
  publication-title: Petroleum Exploration and Development
– reference: UTAMI E, WIBAWA A, BIYANTO T R, et al. Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method. Langkawi, Malaysia: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2017.
– year: 2017
  ident: bib10
  article-title: Shale analytics: Data-driven analytics in unconventional resources
– volume: 100
  start-page: 57
  year: 2017
  end-page: 61
  ident: bib26
  article-title: Chaos time-series prediction based on an improved recursive levenberg-marquardt algorithm
  publication-title: CHAOS SOLITONS AND FRACTALS
– reference: ZHONG H, WU K, JI D, et al. Using least square support vector machines to approximate single phase flow. SPE 185881-MS, 2017.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib4
  article-title: Application of artificial neural networks for calibration of a reservoir model
  publication-title: Intelligent Decision Technologies
– reference: TIAN C, HORNE R N. Inferring interwell connectivity using production data. SPE 181556-MS, 2016.
– reference: RAMIREZ A M. Prediction of PVT properties in crude oil using machine learning techniques (MLT). Buenos Aires, Argentina: SPE Latin America and Caribbean Petroleum Engineering Conference, 2017.
– reference: NEGASH B M. History matching of the PUNQ-S3 reservoir model using proxy modeling and multi-objective optimizations. Kuala Lumpur, Malaysia: 2016 International Conference on Industrial Engineering and Operations Management, 2016.
– ident: 10.1016/S1876-3804(20)60055-6_bib20
  doi: 10.2118/184984-MS
– volume: 151
  start-page: 480
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib12
  article-title: Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.01.024
– ident: 10.1016/S1876-3804(20)60055-6_bib15
  doi: 10.2118/180984-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib31
  doi: 10.4043/27577-MS
– year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib23
– volume: 8
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/S1876-3804(20)60055-6_bib14
  article-title: Machine learning as a reliable technology for evaluating time/rate performance of unconventional wells
  publication-title: SPE Economics & Management
  doi: 10.2118/174784-PA
– start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib33
  article-title: System identification based proxy model of a reservoir under water injection
  publication-title: Modelling and Simulation in Engineering
  doi: 10.1155/2017/7645470
– ident: 10.1016/S1876-3804(20)60055-6_bib19
  doi: 10.2118/185922-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib6
  doi: 10.2118/187938-PA
– ident: 10.1016/S1876-3804(20)60055-6_bib8
  doi: 10.2118/181556-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib17
  doi: 10.2118/187468-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib5
  doi: 10.1007/978-981-10-3650-7_1
– volume: 69
  start-page: 87
  issue: 10
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib9
  article-title: Technology focus: Petroleum data analytics
  publication-title: Journal of Petroleum Technology
  doi: 10.2118/1017-0087-JPT
– ident: 10.1016/S1876-3804(20)60055-6_bib11
  doi: 10.1109/SAMI.2017.7880337
– volume: 12
  start-page: 2952
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib2
  article-title: Artificial neural network and inverse solution method for assisted history matching of a reservoir model
  publication-title: International Journal of Applied Engineering Research
– ident: 10.1016/S1876-3804(20)60055-6_bib3
  doi: 10.2118/186069-MS
– year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib10
– volume: 174
  start-page: 974
  year: 2016
  ident: 10.1016/S1876-3804(20)60055-6_bib24
  article-title: A new model selection strategy in time series forecasting with artificial neural networks: IHTS
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.036
– volume: 43
  start-page: 876
  issue: 5
  year: 2016
  ident: 10.1016/S1876-3804(20)60055-6_bib27
  article-title: Improvement of Levenberg-Marquardt algorithm during history fitting for reservoir simulation
  publication-title: Petroleum Exploration and Development
  doi: 10.1016/S1876-3804(16)30105-7
– volume: 160
  start-page: 182
  year: 2018
  ident: 10.1016/S1876-3804(20)60055-6_bib13
  article-title: Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.10.028
– ident: 10.1016/S1876-3804(20)60055-6_bib18
  doi: 10.2118/185536-MS
– volume: 93
  start-page: 95
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib25
  article-title: Combining feature extraction and expansion to improve classification based similarity learning
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2016.11.005
– volume: 87
  start-page: 35
  year: 2016
  ident: 10.1016/S1876-3804(20)60055-6_bib21
  article-title: Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.08.004
– ident: 10.1016/S1876-3804(20)60055-6_bib28
  doi: 10.1109/ISCAIE.2017.8074962
– ident: 10.1016/S1876-3804(20)60055-6_bib30
  doi: 10.2118/183921-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib1
  doi: 10.3997/2214-4609.201701586
– volume: 216
  start-page: 83
  year: 2018
  ident: 10.1016/S1876-3804(20)60055-6_bib32
  article-title: Performance forecasting for polymer flooding in heavy oil reservoirs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.11.110
– volume: 100
  start-page: 57
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib26
  article-title: Chaos time-series prediction based on an improved recursive levenberg-marquardt algorithm
  publication-title: CHAOS SOLITONS AND FRACTALS
  doi: 10.1016/j.chaos.2017.04.032
– ident: 10.1016/S1876-3804(20)60055-6_bib16
  doi: 10.2118/189205-MS
– ident: 10.1016/S1876-3804(20)60055-6_bib29
  doi: 10.1109/MLSP.2017.8168143
– ident: 10.1016/S1876-3804(20)60055-6_bib7
  doi: 10.2118/185960-PA
– volume: 163
  start-page: 139
  year: 2017
  ident: 10.1016/S1876-3804(20)60055-6_bib22
  article-title: Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.12.046
– volume: 12
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/S1876-3804(20)60055-6_bib4
  article-title: Application of artificial neural networks for calibration of a reservoir model
  publication-title: Intelligent Decision Technologies
– year: 2002
  ident: 10.1016/S1876-3804(20)60055-6_bib34
SSID ssj0002771078
Score 2.4668322
Snippet As the conventional prediction methods for production of waterflooding reservoirs have some drawbacks, a production forecasting model based on artificial...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms attribute extraction
Bayesian regularization algorithm
machine learning
neural networks
production forecasting
water flooding
Title Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection
URI https://dx.doi.org/10.1016/S1876-3804(20)60055-6
https://doaj.org/article/7b3bcaea844740fa9315f7af5ff22576
Volume 47
WOSCitedRecordID wos000528167400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1876-3804
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002771078
  issn: 1876-3804
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1876-3804
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002771078
  issn: 1876-3804
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYMHPVTTNn0dVVy8KIIK3kIySXBFqtRV8eJvdybtrvWiFy9tSdqmTB7fN3TyDWN7hdG5lU5EWaoBHRQrIiMLE4nUIH6XBVISG5JNFJeX5d1dddVL9UUxYa08cGu4o8KkBrTTpZSFFF5XaZz5QvvM-4TIMq2-yHp6ztRD-J2GyBmW4Rine5SWQn5v3zm6nhbuJ-IgJx2qKP8BTEG_v4dPPcwZLrHFjizy4_Yjl9mMq1fYQk9CcJXdU2WrAsFJmzKcQmQ3J4Cy_LmVdEXzc-SnDvQLBTrTNdf8_sMigOnGYC3tQ2renkYNp31lDX9HFtrwUf0QgrXqNXY7PLs5PY-67AkR4KQcR3FsDZQGCQqAhAxMlVkvdAXOVjkgqiM1QufQWuwP762PS-EQsHXmQUOGNGadzdZPtdtgPDF5ilTNl1BpaQr0qWRujbMmBZ3aXA-YnJhOQSctThkuHtU0howsrsjiKhEqWFzlA3Y4fey51db464ET6pfpzSSNHQpwwKhuwKi_BsyAlZNeVR3LaNkDvmr0e_ub_9H-FptPyGcP0T_bbHbcvLodNgdv49FLsxuGMR4vPs--AGL29Pg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+production+forecasting+for+a+hydrocarbon+reservoir+under+water+injection&rft.jtitle=Petroleum+exploration+and+development&rft.au=NEGASH%2C+Berihun+Mamo&rft.au=YAW%2C+Atta+Dennis&rft.date=2020-04-01&rft.issn=1876-3804&rft.eissn=1876-3804&rft.volume=47&rft.issue=2&rft.spage=383&rft.epage=392&rft_id=info:doi/10.1016%2FS1876-3804%2820%2960055-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1876_3804_20_60055_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-3804&client=summon