Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks

•A fully automatic segment method for clinical ultrasound kidney images.•End-to-end learning of boundary detection and pixelwise classification networks.•Achieved significantly better performance than pixelwise classification networks.•Data-augment improved the segmentation performance. It remains c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 60; S. 101602
Hauptverfasser: Yin, Shi, Peng, Qinmu, Li, Hongming, Zhang, Zhengqiang, You, Xinge, Fischer, Katherine, Furth, Susan L., Tasian, Gregory E., Fan, Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.02.2020
Elsevier BV
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A fully automatic segment method for clinical ultrasound kidney images.•End-to-end learning of boundary detection and pixelwise classification networks.•Achieved significantly better performance than pixelwise classification networks.•Data-augment improved the segmentation performance. It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys’ varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks. [Display omitted]
AbstractList It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys' varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks.
It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys' varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks.It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys' varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks.
It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys’ varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks.
•A fully automatic segment method for clinical ultrasound kidney images.•End-to-end learning of boundary detection and pixelwise classification networks.•Achieved significantly better performance than pixelwise classification networks.•Data-augment improved the segmentation performance. It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys’ varied shapes and image intensity distributions, although semi-automatic methods have achieved promising performance. In this study, we propose subsequent boundary distance regression and pixel classification networks to segment the kidneys automatically. Particularly, we first use deep neural networks pre-trained for classification of natural images to extract high-level image features from US images. These features are used as input to learn kidney boundary distance maps using a boundary distance regression network and the predicted boundary distance maps are classified as kidney pixels or non-kidney pixels using a pixelwise classification network in an end-to-end learning fashion. We also adopted a data-augmentation method based on kidney shape registration to generate enriched training data from a small number of US images with manually segmented kidney labels. Experimental results have demonstrated that our method could automatically segment the kidney with promising performance, significantly better than deep learning-based pixel classification networks. [Display omitted]
ArticleNumber 101602
Author Fischer, Katherine
Zhang, Zhengqiang
Furth, Susan L.
Yin, Shi
Li, Hongming
Tasian, Gregory E.
Peng, Qinmu
You, Xinge
Fan, Yong
AuthorAffiliation Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
Department of Biostatistics, Epidemiology, and Informatics, The University of Pennsylvania, Philadelphia, PA, 19104, USA
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
Department of Pediatrics, Division of Pediatric Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
Department of Surgery, Division of Pediatric Urology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
AuthorAffiliation_xml – name: Department of Biostatistics, Epidemiology, and Informatics, The University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: Department of Pediatrics, Division of Pediatric Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
– name: Department of Surgery, Division of Pediatric Urology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
– name: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: Center for Pediatric Clinical Effectiveness, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
– name: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
Author_xml – sequence: 1
  givenname: Shi
  surname: Yin
  fullname: Yin, Shi
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Qinmu
  surname: Peng
  fullname: Peng, Qinmu
  email: pengqinmu@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Hongming
  surname: Li
  fullname: Li, Hongming
  organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
– sequence: 4
  givenname: Zhengqiang
  surname: Zhang
  fullname: Zhang, Zhengqiang
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Xinge
  surname: You
  fullname: You, Xinge
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Katherine
  surname: Fischer
  fullname: Fischer, Katherine
  organization: Department of Surgery, Division of Pediatric Urology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
– sequence: 7
  givenname: Susan L.
  surname: Furth
  fullname: Furth, Susan L.
  organization: Department of Pediatrics, Division of Pediatric Nephrology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
– sequence: 8
  givenname: Gregory E.
  surname: Tasian
  fullname: Tasian, Gregory E.
  organization: Department of Surgery, Division of Pediatric Urology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
– sequence: 9
  givenname: Yong
  orcidid: 0000-0001-9869-4685
  surname: Fan
  fullname: Fan, Yong
  email: yong.fan@ieee.org
  organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31760193$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_YBfgIQsceGyi-0kdnIAqaqAVqrEBc6WY0-Ct4m92Enb_QP8bmabtoIeerI1897zPL85JgchBiDkLWdrzrj8uFmP4LxZC8abuwoTL8gRLyRf1aUoDh7vvDokxzlvGGOqLNkrclhwJZFVHJE_p_MURzN5S6-8C7CjGfoRwoSlGKgPdB6mZHKcg6N-ND1kOmcfeprnNsPvGaG03XdN2lHn82SCBZqgT5DzXsIgcetvYbjxGagdDJY7bxf9ANNNTFf5NXnZmSHDm_vzhPz8-uXH2fnq8vu3i7PTy5UtazWtOgmlVBVXtlLOilIZ4ZQrWl7LquwMXnnVKcOEbZUxZd1VjRFdBaJzwqD14oR8XnS3c4u_Z3H6ZAa9TWgt7XQ0Xv_fCf6X7uO1lk3NilKiwId7gRTRfJ706LOFYTAB4py1wK9tJMenEPr-CXQT5xTQHqJUhYaYVIh69-9Ej6M8RISAZgHYFHNO0Gnrl3RwQD9ozvQ-fL3Rd-ug9-ugl3VAbvGE-yD_POvTwgJM4tpD0tl6wFidT2An7aJ_lv8X6DHT4w
CitedBy_id crossref_primary_10_1093_bib_bbae364
crossref_primary_10_1016_j_compbiomed_2025_111077
crossref_primary_10_1016_j_ins_2023_119005
crossref_primary_10_1016_j_ultrasmedbio_2022_10_015
crossref_primary_10_1177_20552076241291306
crossref_primary_10_1109_TBME_2020_2969839
crossref_primary_10_1016_j_compbiomed_2021_105140
crossref_primary_10_1038_s41597_025_04467_1
crossref_primary_10_1016_j_eswa_2025_128022
crossref_primary_10_1016_j_compbiomed_2022_106391
crossref_primary_10_1016_j_bspc_2025_108345
crossref_primary_10_1016_j_eswa_2021_115619
crossref_primary_10_3389_frai_2025_1618607
crossref_primary_10_1109_TIM_2020_3010665
crossref_primary_10_1016_j_bspc_2024_106267
crossref_primary_10_1016_j_compbiomed_2021_105117
crossref_primary_10_1016_j_dsp_2022_103742
crossref_primary_10_3390_diagnostics12081788
crossref_primary_10_3390_s21206846
crossref_primary_10_4018_IJBDAH_287605
crossref_primary_10_1002_jbt_70302
crossref_primary_10_1016_j_ucl_2023_08_002
crossref_primary_10_1016_j_ultras_2022_106706
crossref_primary_10_1007_s00521_024_09910_9
crossref_primary_10_1038_s41598_024_55106_5
crossref_primary_10_1186_s42492_023_00144_5
crossref_primary_10_3389_fonc_2022_876967
crossref_primary_10_1146_annurev_control_091523_100042
crossref_primary_10_1016_j_cmpb_2022_106712
crossref_primary_10_1007_s10278_023_00900_2
crossref_primary_10_1002_mp_17663
crossref_primary_10_1016_j_ultras_2020_106304
crossref_primary_10_1007_s11517_024_03026_x
crossref_primary_10_1016_j_bspc_2022_104567
crossref_primary_10_1016_j_cmpb_2022_107086
crossref_primary_10_1016_j_eswa_2022_118847
crossref_primary_10_1109_ACCESS_2025_3596051
crossref_primary_10_1016_j_nic_2020_06_003
crossref_primary_10_1007_s00467_022_05677_0
crossref_primary_10_1016_j_eswa_2023_119939
crossref_primary_10_1109_ACCESS_2023_3335045
crossref_primary_10_1016_j_ultrasmedbio_2024_06_009
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_1016_j_engappai_2022_105601
crossref_primary_10_1109_TETCI_2024_3377676
crossref_primary_10_1007_s12539_024_00620_3
crossref_primary_10_1109_TIM_2023_3322993
crossref_primary_10_3389_fonc_2023_1252630
crossref_primary_10_1109_JBHI_2020_3027318
crossref_primary_10_1007_s00261_021_03201_w
crossref_primary_10_1016_j_cmpb_2020_105771
crossref_primary_10_1007_s10278_024_01358_6
crossref_primary_10_1109_TCYB_2021_3123173
crossref_primary_10_1016_j_compmedimag_2021_101896
crossref_primary_10_1007_s11063_022_11034_x
crossref_primary_10_1016_j_urology_2020_05_019
crossref_primary_10_1007_s11036_020_01672_7
crossref_primary_10_1007_s10278_024_01055_4
crossref_primary_10_1007_s00521_022_07624_4
crossref_primary_10_1007_s11517_023_02849_4
crossref_primary_10_3390_biom13101548
crossref_primary_10_1007_s00261_022_03521_5
crossref_primary_10_1016_j_eswa_2024_124594
crossref_primary_10_1109_JBHI_2024_3433594
Cites_doi 10.2215/CJN.08700813
10.1016/j.media.2016.11.004
10.1109/TMI.2004.837792
10.1016/j.media.2019.01.013
10.1016/j.cmpb.2018.01.014
10.1016/j.acra.2018.01.004
10.1109/TPAMI.2017.2699184
10.3389/fninf.2018.00069
10.1090/S0002-9939-1956-0078686-7
10.1109/TMI.2016.2572641
10.1016/j.media.2017.10.002
10.1002/hbm.22359
10.1109/JBHI.2016.2580040
10.1159/000445469
10.1109/34.24792
10.1109/TMI.2006.877092
10.1016/j.neuroimage.2018.07.005
10.3389/fonc.2018.00215
10.1016/j.media.2004.05.001
10.1109/TPAMI.2016.2644615
10.1038/s41598-017-01779-0
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2019.101602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 101602
ExternalDocumentID PMC6980346
31760193
10_1016_j_media_2019_101602
S1361841519301410
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R21 DK117297
– fundername: NCATS NIH HHS
  grantid: UL1 TR001878
– fundername: NIDDK NIH HHS
  grantid: P50 DK114786
– fundername: NIH HHS
  grantid: S10 OD023495
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-f6e467517c57dc247a2d7d3b18654fa7d315f7a02cb7aa48f59a2f5e2fd2a4403
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527917100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:53:22 EDT 2025
Mon Sep 29 05:38:34 EDT 2025
Tue Oct 07 06:59:06 EDT 2025
Mon Jul 21 05:50:46 EDT 2025
Sat Nov 29 06:59:27 EST 2025
Tue Nov 18 20:55:35 EST 2025
Fri Feb 23 02:48:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Boundary detection
Ultrasound images
Pixelwise classification
Boundary distance regression
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-f6e467517c57dc247a2d7d3b18654fa7d315f7a02cb7aa48f59a2f5e2fd2a4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9869-4685
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6980346
PMID 31760193
PQID 2375487067
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6980346
proquest_miscellaneous_2317961403
proquest_journals_2375487067
pubmed_primary_31760193
crossref_citationtrail_10_1016_j_media_2019_101602
crossref_primary_10_1016_j_media_2019_101602
elsevier_sciencedirect_doi_10_1016_j_media_2019_101602
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hao, Wang, Zhang, Duan, Yu, Jiang, Fan, Alzheimer's Disease Neuroimaging (bib0013) 2014; 35
Long, Shelhamer, Darrell (bib0021) 2015
Zheng, Wu, Fan (bib0047) 2018; 12
Glorot, Bengio (bib0012) 2010
Men, K., Geng, H., Zhong, H., Fan, Y., Lin, A., Xiao, Y., A deep learning model for predicting xerostomia due to radiotherapy for head-and-neck squamous cell carcinoma in the rtog 0522 clinical trial. Int. J. Radiat. Oncol. Biol. Phys.
Ravishankar, Venkataramani, Thiruvenkadam, Sudhakar, Vaidya (bib0030) 2017
Ronneberger, Fischer, Brox (bib0031) 2015
Chen, Zhu, Papandreou, Schroff, Adam (bib0010) 2018
Noble, Boukerroui (bib0027) 2006; 25
Jun, Yifeng, Hung-tat (bib0016) 2005; 24
Li, Jiang, Zhang, Wang, Wang, Zheng, Menze (bib0019) 2018; 183
Bertasius, Shi, Torresani (bib0003) 2015
Sharma, K., Peter, L., Rupprecht, C., Caroli, A., Wang, L., Remuzzi, A., Baust, M., Navab, N., 2015. Semi-automatic segmentation of autosomal dominant polycystic kidneys using random forests. arXiv
Cerrolaza, Safdar, Biggs, Jago, Peters, Linguraru (bib0006) 2016; 35
Cerrolaza, Safdar, Peters, Myers, Jago, Linguraru (bib0007) 2014
Li, Y., Liu, H., Li, H., Fan, Y., 2019b. Feature-Fused context-encoding network for neuroanatomy segmentation. arXiv
Kruskal (bib0017) 1956; 7
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0011) 2018; 40
Pulido, Furth, Zderic, Canning, Tasian (bib0029) 2014; 9
Ozmen, Akin, Bilek, Bayrak, Senturk, Nazaroglu (bib0028) 2010; 74
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv
Zheng, Warner, Tasian, Fan (bib0046) 2018; 25
Zhao, Wu, Song, Li, Zhang, Fan (bib0042) 2018
Woolson (bib0037) 2008
Zhao, Wu, Song, Li, Fan, Zhang (bib0041) 2016
Zheng, Tasian, Fan (bib0045) 2018
Chen, Qi, Yu, Dou, Qin, Heng (bib0008) 2017; 36
Martı́n-Fernández, Alberola-López (bib0023) 2005; 9
Sharma, Rupprecht, Caroli, Aparicio, Remuzzi, Baust, Navab (bib0033) 2017; 7
Zheng, Furth, Tasian, Fan (bib0044) 2019; 75
Ardon, Cuingnet, Bacchuwar, Auvray (bib0001) 2015
Xie, Tu (bib0038) 2015
.
Zhao, Wu, Song, Li, Zhang, Fan (bib0043) 2018; 43
Boyd, Vandenberghe (bib0005) 2004
Mendoza, Kang, Safdar, Myers, Martin, Grisan, Peters, Linguraru (bib0025) 2013
Badrinarayanan, Kendall, Cipolla (bib0002) 2017; 39
Jackson, Hardcastle, Dawe, Kron, Hofman, Hicks (bib0015) 2018; 8
Tang, Moradi, Wong, Wang, El Harouni, Syeda-Mahmood (bib0035) 2018
Yin, Zhang, Li, Peng, You, Furth, Tasian, Fan (bib0039) 2019
Meola, Samoni, Petrucci (bib0026) 2016; 188
Chen, Barron, Papandreou, Murphy, Yuille (bib0009) 2016
He, Zhang, Ren, Sun (bib0014) 2016
Marsousi, Plataniotis, Stergiopoulos (bib0022) 2017; 21
Zhao, Shi, Qi, Wang, Jia (bib0040) 2017
Bookstein (bib0004) 1989; 11
Li, Wang, Liu, Latecki, Wang, Huang (bib0018) 2019; 53
Torres, Queirós, Morais, Oliveira, Fonseca, Vilaça (bib0036) 2018; 157
Cerrolaza (10.1016/j.media.2019.101602_bib0007) 2014
10.1016/j.media.2019.101602_bib0032
Meola (10.1016/j.media.2019.101602_bib0026) 2016; 188
Zhao (10.1016/j.media.2019.101602_bib0043) 2018; 43
Bookstein (10.1016/j.media.2019.101602_bib0004) 1989; 11
Pulido (10.1016/j.media.2019.101602_bib0029) 2014; 9
Chen (10.1016/j.media.2019.101602_bib0010) 2018
Li (10.1016/j.media.2019.101602_bib0018) 2019; 53
Zhao (10.1016/j.media.2019.101602_bib0042) 2018
Bertasius (10.1016/j.media.2019.101602_bib0003) 2015
Chen (10.1016/j.media.2019.101602_bib0008) 2017; 36
Noble (10.1016/j.media.2019.101602_bib0027) 2006; 25
Ozmen (10.1016/j.media.2019.101602_bib0028) 2010; 74
Hao (10.1016/j.media.2019.101602_bib0013) 2014; 35
Yin (10.1016/j.media.2019.101602_bib0039) 2019
Chen (10.1016/j.media.2019.101602_bib0009) 2016
Kruskal (10.1016/j.media.2019.101602_bib0017) 1956; 7
Zheng (10.1016/j.media.2019.101602_bib0044) 2019; 75
Ardon (10.1016/j.media.2019.101602_bib0001) 2015
Badrinarayanan (10.1016/j.media.2019.101602_bib0002) 2017; 39
Mendoza (10.1016/j.media.2019.101602_bib0025) 2013
10.1016/j.media.2019.101602_bib0024
Jun (10.1016/j.media.2019.101602_bib0016) 2005; 24
Chen (10.1016/j.media.2019.101602_bib0011) 2018; 40
Sharma (10.1016/j.media.2019.101602_bib0033) 2017; 7
Zhao (10.1016/j.media.2019.101602_bib0040) 2017
Zheng (10.1016/j.media.2019.101602_bib0045) 2018
Li (10.1016/j.media.2019.101602_bib0019) 2018; 183
Tang (10.1016/j.media.2019.101602_bib0035) 2018
Ravishankar (10.1016/j.media.2019.101602_bib0030) 2017
Woolson (10.1016/j.media.2019.101602_bib0037) 2008
10.1016/j.media.2019.101602_bib0020
Cerrolaza (10.1016/j.media.2019.101602_bib0006) 2016; 35
Zhao (10.1016/j.media.2019.101602_bib0041) 2016
Martı́n-Fernández (10.1016/j.media.2019.101602_bib0023) 2005; 9
He (10.1016/j.media.2019.101602_bib0014) 2016
Torres (10.1016/j.media.2019.101602_bib0036) 2018; 157
Zheng (10.1016/j.media.2019.101602_bib0047) 2018; 12
Jackson (10.1016/j.media.2019.101602_bib0015) 2018; 8
Marsousi (10.1016/j.media.2019.101602_bib0022) 2017; 21
Glorot (10.1016/j.media.2019.101602_bib0012) 2010
Zheng (10.1016/j.media.2019.101602_bib0046) 2018; 25
Boyd (10.1016/j.media.2019.101602_bib0005) 2004
Long (10.1016/j.media.2019.101602_bib0021) 2015
10.1016/j.media.2019.101602_bib0034
Xie (10.1016/j.media.2019.101602_bib0038) 2015
Ronneberger (10.1016/j.media.2019.101602_bib0031) 2015
References_xml – volume: 53
  start-page: 165
  year: 2019
  end-page: 178
  ident: bib0018
  article-title: Weakly supervised mitosis detection in breast histopathology images using concentric loss
  publication-title: Med. Image Anal.
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib0039
  article-title: Fully-automatic segmentation of kidneys in clinical ultrasound images using a boundary distance regression network
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)
– volume: 75
  year: 2019
  ident: bib0044
  article-title: Computer aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features
  publication-title: J. Pediat. Urol. 15
– reference: Li, Y., Liu, H., Li, H., Fan, Y., 2019b. Feature-Fused context-encoding network for neuroanatomy segmentation. arXiv:
– start-page: 191
  year: 2018
  end-page: 203
  ident: bib0042
  article-title: 3D Brain tumor segmentation through integrating multiple 2D fcnns
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0040
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 268
  year: 2015
  end-page: 271
  ident: bib0001
  article-title: Fast kidney detection and segmentation with learned kernel convolution and model deformation in 3D ultrasound images
  publication-title: Proceedings of the IEEE 12th International Symposium on Biomedical Imaging (ISBI)
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0002
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 833
  year: 2018
  end-page: 851
  ident: bib0010
  article-title: Encoder-decoder With Atrous Separable Convolution For Semantic Image Segmentation
– start-page: 504
  year: 2015
  end-page: 512
  ident: bib0003
  article-title: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 75
  year: 2016
  end-page: 87
  ident: bib0041
  article-title: Brain tumor segmentation using a fully convolutional neural network with conditional random fields
  publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
– volume: 11
  start-page: 567
  year: 1989
  end-page: 585
  ident: bib0004
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 259
  year: 2013
  end-page: 266
  ident: bib0025
  article-title: Automatic analysis of pediatric renal ultrasound using shape, anatomical and image acquisition priors
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013
– volume: 188
  start-page: 69
  year: 2016
  end-page: 80
  ident: bib0026
  article-title: Imaging in chronic kidney disease
  publication-title: Contrib. Nephrol.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0011
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0021
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 74
  start-page: 46
  year: 2010
  end-page: 52
  ident: bib0028
  article-title: Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure
  publication-title: Clin Nephrol
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0014
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2008
  end-page: 3
  ident: bib0037
  article-title: Wilcoxon Signed‐Rank Test
– volume: 36
  start-page: 135
  year: 2017
  end-page: 146
  ident: bib0008
  article-title: DCAN: deep contour-aware networks for object instance segmentation from histology images
  publication-title: Med. Image Anal.
– volume: 24
  start-page: 45
  year: 2005
  end-page: 57
  ident: bib0016
  article-title: Segmentation of kidney from ultrasound images based on texture and shape priors
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1395
  year: 2015
  end-page: 1403
  ident: bib0038
  article-title: Holistically-nested edge detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 12
  start-page: 69
  year: 2018
  ident: bib0047
  article-title: Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation
  publication-title: Front Neuroinf.
– volume: 183
  start-page: 650
  year: 2018
  end-page: 665
  ident: bib0019
  article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in mr images
  publication-title: Neuroimage
– volume: 7
  start-page: 48
  year: 1956
  end-page: 50
  ident: bib0017
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– volume: 35
  start-page: 2393
  year: 2016
  end-page: 2402
  ident: bib0006
  article-title: Renal segmentation from 3D ultrasound via fuzzy appearance models and patient-specific alpha shapes
  publication-title: IEEE Trans. Med. Imaging
– volume: 7
  start-page: 2049
  year: 2017
  ident: bib0033
  article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1
  year: 2005
  end-page: 23
  ident: bib0023
  article-title: An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours
  publication-title: Med. Image Anal.
– reference: Sharma, K., Peter, L., Rupprecht, C., Caroli, A., Wang, L., Remuzzi, A., Baust, M., Navab, N., 2015. Semi-automatic segmentation of autosomal dominant polycystic kidneys using random forests. arXiv:
– volume: 21
  start-page: 1079
  year: 2017
  end-page: 1094
  ident: bib0022
  article-title: An automated approach for kidney segmentation in three-dimensional ultrasound images
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2004
  ident: bib0005
  article-title: Convex Optimization
– start-page: 203
  year: 2017
  end-page: 211
  ident: bib0030
  article-title: Learning and incorporating shape models for semantic segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0012
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv:
– start-page: 1487
  year: 2018
  end-page: 1490
  ident: bib0045
  article-title: Transfer learning for diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data
  publication-title: Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– start-page: 633
  year: 2014
  end-page: 636
  ident: bib0007
  article-title: Segmentation of kidney in 3D-ultrasound images using gabor-based appearance models
  publication-title: Proceedings of the IEEE 11th International Symposium on Biomedical Imaging (ISBI)
– reference: .
– start-page: 377
  year: 2018
  end-page: 384
  ident: bib0035
  article-title: Integrating deformable modeling with 3D deep neural network segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning For Clinical Decision Support
– volume: 8
  start-page: 215
  year: 2018
  ident: bib0015
  article-title: Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy
  publication-title: Front. Oncol.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0031
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the IInternational Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 35
  start-page: 2674
  year: 2014
  end-page: 2697
  ident: bib0013
  article-title: Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation
  publication-title: Hum Brain. Mapp.
– volume: 25
  start-page: 987
  year: 2006
  end-page: 1010
  ident: bib0027
  article-title: Ultrasound image segmentation: a survey
  publication-title: IEEE Trans. Med. Imaging
– reference: Men, K., Geng, H., Zhong, H., Fan, Y., Lin, A., Xiao, Y., A deep learning model for predicting xerostomia due to radiotherapy for head-and-neck squamous cell carcinoma in the rtog 0522 clinical trial. Int. J. Radiat. Oncol. Biol. Phys.
– volume: 9
  start-page: 499
  year: 2014
  end-page: 505
  ident: bib0029
  article-title: Renal parenchymal area and risk of esrd in boys with posterior urethral valves
  publication-title: Clinical J. Am. Soc. Nephrol. CJASN
– volume: 157
  start-page: 49
  year: 2018
  end-page: 67
  ident: bib0036
  article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review
  publication-title: Comput. Methods Programs Biomed.
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  ident: bib0043
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
– volume: 25
  start-page: 1136
  year: 2018
  end-page: 1145
  ident: bib0046
  article-title: A dynamic graph cuts method with integrated multiple feature maps for segmenting kidneys in 2D ultrasound images
  publication-title: Acad Radiol.
– start-page: 4545
  year: 2016
  end-page: 4554
  ident: bib0009
  article-title: Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  start-page: 499
  year: 2014
  ident: 10.1016/j.media.2019.101602_bib0029
  article-title: Renal parenchymal area and risk of esrd in boys with posterior urethral valves
  publication-title: Clinical J. Am. Soc. Nephrol. CJASN
  doi: 10.2215/CJN.08700813
– volume: 36
  start-page: 135
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0008
  article-title: DCAN: deep contour-aware networks for object instance segmentation from histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.004
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2019.101602_bib0014
  article-title: Deep residual learning for image recognition
– start-page: 259
  year: 2013
  ident: 10.1016/j.media.2019.101602_bib0025
  article-title: Automatic analysis of pediatric renal ultrasound using shape, anatomical and image acquisition priors
– volume: 24
  start-page: 45
  year: 2005
  ident: 10.1016/j.media.2019.101602_bib0016
  article-title: Segmentation of kidney from ultrasound images based on texture and shape priors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.837792
– start-page: 4545
  year: 2016
  ident: 10.1016/j.media.2019.101602_bib0009
  article-title: Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform
– start-page: 268
  year: 2015
  ident: 10.1016/j.media.2019.101602_bib0001
  article-title: Fast kidney detection and segmentation with learned kernel convolution and model deformation in 3D ultrasound images
– start-page: 249
  year: 2010
  ident: 10.1016/j.media.2019.101602_bib0012
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 53
  start-page: 165
  year: 2019
  ident: 10.1016/j.media.2019.101602_bib0018
  article-title: Weakly supervised mitosis detection in breast histopathology images using concentric loss
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.013
– start-page: 1395
  year: 2015
  ident: 10.1016/j.media.2019.101602_bib0038
  article-title: Holistically-nested edge detection
– start-page: 633
  year: 2014
  ident: 10.1016/j.media.2019.101602_bib0007
  article-title: Segmentation of kidney in 3D-ultrasound images using gabor-based appearance models
– ident: 10.1016/j.media.2019.101602_bib0034
– ident: 10.1016/j.media.2019.101602_bib0032
– volume: 157
  start-page: 49
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0036
  article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.014
– volume: 25
  start-page: 1136
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0046
  article-title: A dynamic graph cuts method with integrated multiple feature maps for segmenting kidneys in 2D ultrasound images
  publication-title: Acad Radiol.
  doi: 10.1016/j.acra.2018.01.004
– volume: 40
  start-page: 834
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0011
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 12
  start-page: 69
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0047
  article-title: Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation
  publication-title: Front Neuroinf.
  doi: 10.3389/fninf.2018.00069
– volume: 7
  start-page: 48
  year: 1956
  ident: 10.1016/j.media.2019.101602_bib0017
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– start-page: 1
  year: 2019
  ident: 10.1016/j.media.2019.101602_bib0039
  article-title: Fully-automatic segmentation of kidneys in clinical ultrasound images using a boundary distance regression network
– volume: 75
  year: 2019
  ident: 10.1016/j.media.2019.101602_bib0044
  article-title: Computer aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features
  publication-title: J. Pediat. Urol. 15
– volume: 35
  start-page: 2393
  year: 2016
  ident: 10.1016/j.media.2019.101602_bib0006
  article-title: Renal segmentation from 3D ultrasound via fuzzy appearance models and patient-specific alpha shapes
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2572641
– volume: 43
  start-page: 98
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0043
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.002
– volume: 35
  start-page: 2674
  year: 2014
  ident: 10.1016/j.media.2019.101602_bib0013
  article-title: Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation
  publication-title: Hum Brain. Mapp.
  doi: 10.1002/hbm.22359
– year: 2004
  ident: 10.1016/j.media.2019.101602_bib0005
– volume: 21
  start-page: 1079
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0022
  article-title: An automated approach for kidney segmentation in three-dimensional ultrasound images
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2580040
– volume: 188
  start-page: 69
  year: 2016
  ident: 10.1016/j.media.2019.101602_bib0026
  article-title: Imaging in chronic kidney disease
  publication-title: Contrib. Nephrol.
  doi: 10.1159/000445469
– start-page: 191
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0042
  article-title: 3D Brain tumor segmentation through integrating multiple 2D fcnns
– volume: 11
  start-page: 567
  year: 1989
  ident: 10.1016/j.media.2019.101602_bib0004
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.24792
– volume: 25
  start-page: 987
  year: 2006
  ident: 10.1016/j.media.2019.101602_bib0027
  article-title: Ultrasound image segmentation: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.877092
– volume: 183
  start-page: 650
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0019
  article-title: Fully convolutional network ensembles for white matter hyperintensities segmentation in mr images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.005
– ident: 10.1016/j.media.2019.101602_bib0020
– volume: 8
  start-page: 215
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0015
  article-title: Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00215
– ident: 10.1016/j.media.2019.101602_bib0024
– volume: 9
  start-page: 1
  year: 2005
  ident: 10.1016/j.media.2019.101602_bib0023
  article-title: An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.05.001
– volume: 74
  start-page: 46
  year: 2010
  ident: 10.1016/j.media.2019.101602_bib0028
  article-title: Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure
  publication-title: Clin Nephrol
– start-page: 1
  year: 2008
  ident: 10.1016/j.media.2019.101602_bib0037
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0002
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 833
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0010
– start-page: 3431
  year: 2015
  ident: 10.1016/j.media.2019.101602_bib0021
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 377
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0035
  article-title: Integrating deformable modeling with 3D deep neural network segmentation
– start-page: 203
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0030
  article-title: Learning and incorporating shape models for semantic segmentation
– start-page: 1487
  year: 2018
  ident: 10.1016/j.media.2019.101602_bib0045
  article-title: Transfer learning for diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data
– start-page: 2881
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0040
  article-title: Pyramid scene parsing network
– volume: 7
  start-page: 2049
  year: 2017
  ident: 10.1016/j.media.2019.101602_bib0033
  article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01779-0
– start-page: 504
  year: 2015
  ident: 10.1016/j.media.2019.101602_bib0003
  article-title: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2019.101602_bib0031
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: 75
  year: 2016
  ident: 10.1016/j.media.2019.101602_bib0041
  article-title: Brain tumor segmentation using a fully convolutional neural network with conditional random fields
SSID ssj0007440
Score 2.5779774
Snippet •A fully automatic segment method for clinical ultrasound kidney images.•End-to-end learning of boundary detection and pixelwise classification...
It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys' varied shapes and image intensity distributions,...
It remains challenging to automatically segment kidneys in clinical ultrasound (US) images due to the kidneys’ varied shapes and image intensity distributions,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101602
SubjectTerms Aged, 80 and over
Artificial neural networks
Boundary detection
Boundary distance regression
Classification
Datasets as Topic
Deep Learning
Feature extraction
Female
Humans
Image classification
Image processing
Image segmentation
Kidney Diseases - diagnostic imaging
Kidneys
Machine learning
Male
Neural networks
Neural Networks, Computer
Pattern Recognition, Automated
Pixels
Pixelwise classification
Regression
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Ultrasound images
Title Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks
URI https://dx.doi.org/10.1016/j.media.2019.101602
https://www.ncbi.nlm.nih.gov/pubmed/31760193
https://www.proquest.com/docview/2375487067
https://www.proquest.com/docview/2317961403
https://pubmed.ncbi.nlm.nih.gov/PMC6980346
Volume 60
WOSCitedRecordID wos000527917100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dk3jAcG4FcZkJN5Gpsa5OH6s0BAgMYEYUsVL5CROm9G6pU1G-QP8AH4xx3acpiub4IGXKIovqXq-HB_bn7-D0AuWBEHST0MnjyLP8QPuOSxlzOGEkSylWT9NTLIJenYWDYfsQ6fzy56FuZxQKaPVis3_q6nhGRhbHZ39B3M3ncIDuAejwxXMDte_MvygKmdGh_VrkUn45JdiNK1PGGlaYzUpF3yp0ikdF1OuNB4qvWCwBB-iidXlcaKTLS1-qP2bUh8qWIiRYcwa8vK8WInJ90Jx3VX4rfhGpn9paOXLdtBrN4P026C5kUFp_I1RMfg0LtZu2jigj4WcVg1jyKTXnsnR1I627fXuL2No9A2wPmqvY8Cktd9wQoTxvV7oOpFvjh9b52ySDdTeVcvhkT86frMGcXGiz9soxh472a4NhppPtdkhaoKZqMnNeEVv2xbtoF1CAxZ10e7g7enwXTO-K0lFq1-lmYJb79xHe7aX68Kd7enMVVZuK8w5v4vu1PMTPDC4uoc6Qh6g2y3VygO0977mY9xHPxuwYQM23AYbLiRegw0bsGENNrwGG7ZgwxZseA02DGDDDdjwJtiwBdsD9Pn16fmrN06d2cNJYYJcOnkoYIAOXJoGNEuJTznJaOYlbhQGfs7h1g1yyvskTSjnfpQHjJM8ECTPCIe_33uIunImxWOEOQSsMGfOuOtRnydplAvhgstJPZaFXIgeItYAcVrL3qvsK5PY8hsvYm3AWBkwNgbsoZdNo7lRfbm5emgtG9eBqwlIY4DnzQ0PLQ7i2oUsY6KyUiv6Ae2h500xeH21lcelmFWqDgykodLa7KFHBjbND7XQ6yG6AaimglKU3yyRxVgry4cs6nt--OTaPp-i_fW3e4i65aISz9Ct9LIslosjtEOH0VH9vfwGParwfw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+kidney+segmentation+in+ultrasound+images+using+subsequent+boundary+distance+regression+and+pixelwise+classification+networks&rft.jtitle=Medical+image+analysis&rft.au=Yin%2C+Shi&rft.au=Peng%2C+Qinmu&rft.au=Li%2C+Hongming&rft.au=Zhang%2C+Zhengqiang&rft.date=2020-02-01&rft.eissn=1361-8423&rft.volume=60&rft.spage=101602&rft_id=info:doi/10.1016%2Fj.media.2019.101602&rft_id=info%3Apmid%2F31760193&rft.externalDocID=31760193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon