Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder

•A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases.•Revealed unique network patterns specific to different brain task states using HCP fMRI data.•Effectively identified abnormal small networks in brain injury patients in co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 42; s. 200 - 211
Hlavní autori: Zhao, Yu, Dong, Qinglin, Chen, Hanbo, Iraji, Armin, Li, Yujie, Makkie, Milad, Kou, Zhifeng, Liu, Tianming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2017
Elsevier BV
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases.•Revealed unique network patterns specific to different brain task states using HCP fMRI data.•Effectively identified abnormal small networks in brain injury patients in comparison with controls. State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks’ spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. The proposed computational framework. (a) Sparse representation of fMRI data for generation of functional network maps in each individual. Then 10 RSNs (resting state networks) were manually labeled for these networks via sparse coding methods for each task/resting state fMRI scan of each subject. (b) Training 3D CAE (convolutional autoencoder) using all the labeled networks, and extracting features using the trained encoder. (c) Network clustering using the extracted features and generation of fine-granularity ICNs (intrinsic connectivity networks). [Display omitted]
AbstractList State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data.
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data.State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data.
•A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases.•Revealed unique network patterns specific to different brain task states using HCP fMRI data.•Effectively identified abnormal small networks in brain injury patients in comparison with controls. State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks’ spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. The proposed computational framework. (a) Sparse representation of fMRI data for generation of functional network maps in each individual. Then 10 RSNs (resting state networks) were manually labeled for these networks via sparse coding methods for each task/resting state fMRI scan of each subject. (b) Training 3D CAE (convolutional autoencoder) using all the labeled networks, and extracting features using the trained encoder. (c) Network clustering using the extracted features and generation of fine-granularity ICNs (intrinsic connectivity networks). [Display omitted]
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks’ spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. The proposed computational framework. (a) Sparse representation of fMRI data for generation of functional network maps in each individual. Then 10 RSNs (resting state networks) were manually labeled for these networks via sparse coding methods for each task/resting state fMRI scan of each subject. (b) Training 3D CAE (convolutional autoencoder) using all the labeled networks, and extracting features using the trained encoder. (c) Network clustering using the extracted features and generation of fine-granularity ICNs (intrinsic connectivity networks).
Author Kou, Zhifeng
Chen, Hanbo
Zhao, Yu
Dong, Qinglin
Makkie, Milad
Iraji, Armin
Liu, Tianming
Li, Yujie
AuthorAffiliation 1 Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA
2 Department of Biomedical Engineering, Wayne State University, Detroit, MI
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Wayne State University, Detroit, MI
– name: 1 Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
– sequence: 2
  givenname: Qinglin
  surname: Dong
  fullname: Dong, Qinglin
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
– sequence: 3
  givenname: Hanbo
  surname: Chen
  fullname: Chen, Hanbo
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
– sequence: 4
  givenname: Armin
  surname: Iraji
  fullname: Iraji, Armin
  organization: Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
– sequence: 5
  givenname: Yujie
  surname: Li
  fullname: Li, Yujie
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
– sequence: 6
  givenname: Milad
  surname: Makkie
  fullname: Makkie, Milad
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
– sequence: 7
  givenname: Zhifeng
  surname: Kou
  fullname: Kou, Zhifeng
  organization: Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
– sequence: 8
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
  email: tliu@uga.edu, tianming.liu@gmail.com
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28843214$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOA_9BYIUuHFT5c2jqpKFwtD4ggE3ug6p1K02bXXSJqmW-fem7Z5BZzGrBO53Dveec0nOfPBIyEsKDQXavd00WxydaRjQvgHZALRPyAXlHa2lYPzs_k_bc3KZ0gYAeiHgGTlnUgrOqLggZhV8ynGx2fl1NTmP9Toav8wmunxbTYsvk-DNXA3ROF95zL9D_FmZPJuEqdo7U42Iu8oGvw_zcoLNkgN6G0aMz8nTycwJX5zeK_L944dvq8_1zddPX1bXN7UVss81IqOc22lQhllQFjjabmwFHWDsu0mBEq2clGWq44OZ1NBOVlHFJO-kEUD5FXl_9N0tQwnGos_RzHoX3dbEWx2M0_9PvPuh12Gv264VneiLwZuTQQy_FkxZb12yOM_GY1iSpoozKbq2VwV9_QDdhCWWww-UpByYBCjUq383ul_lLv0CqCNgY0gp4qSty-YQYVnQzZqCPjStN_pv0_rQtAapS9NFyx9o7-wfV707qrA0sXcYdbKuFFXAiDbrMbhH9X8Aaj_Fiw
CitedBy_id crossref_primary_10_1007_s11042_019_08118_7
crossref_primary_10_1016_j_cmpb_2022_106979
crossref_primary_10_1016_j_neunet_2022_11_004
crossref_primary_10_1016_j_media_2018_04_002
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_primary_10_1109_ACCESS_2020_2967075
crossref_primary_10_1109_ACCESS_2020_2984948
crossref_primary_10_1109_ACCESS_2019_2941419
crossref_primary_10_1162_imag_a_00323
crossref_primary_10_3389_fninf_2022_805117
crossref_primary_10_1109_JBHI_2018_2882885
crossref_primary_10_3389_fninf_2018_00023
crossref_primary_10_1109_TSP_2022_3230329
crossref_primary_10_1016_j_neuroimage_2025_121177
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_1016_j_compbiomed_2020_103797
crossref_primary_10_1016_j_eswa_2021_116076
crossref_primary_10_12677_SEA_2022_116119
crossref_primary_10_1088_1361_6501_ad14e2
crossref_primary_10_1109_TCDS_2019_2949195
crossref_primary_10_1093_psyrad_kkaf007
crossref_primary_10_1097_WCO_0000000000001280
crossref_primary_10_1109_TBME_2019_2945231
crossref_primary_10_1007_s12021_018_9358_0
crossref_primary_10_1109_TCDS_2019_2916916
crossref_primary_10_1007_s12021_020_09481_9
crossref_primary_10_1016_j_ebiom_2018_03_017
crossref_primary_10_1016_j_media_2019_03_011
crossref_primary_10_1016_j_neuroimage_2023_120412
Cites_doi 10.1007/s11222-007-9033-z
10.1016/j.neuroimage.2013.05.039
10.1002/brb3.454
10.1007/s11682-015-9359-7
10.1073/pnas.1315235110
10.1016/j.neuroimage.2013.05.033
10.1002/hbm.460020402
10.1109/ICCV.2015.123
10.1016/0042-6989(82)90112-2
10.1109/TMI.2015.2418734
10.1162/neco.2006.18.7.1527
10.1002/hbm.23013
10.1017/S0140525X11001567
10.1098/rstb.2005.1634
10.1038/sj.npp.1300543
10.1016/j.tics.2010.01.004
10.1109/TMI.2013.2259248
10.1089/neu.2014.3610
10.1044/hhd16.1.3
10.1007/s11682-012-9157-4
10.1109/TAMD.2015.2409835
10.1016/j.pscychresns.2015.07.012
10.1016/j.nicl.2016.06.004
10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2
10.1073/pnas.0905267106
10.1038/nrn2575
10.1001/archinte.158.15.1617
10.1109/TBME.2014.2369495
10.1016/j.neubiorev.2016.08.035
10.31887/DCNS.2013.15.3/osporns
10.1016/j.media.2014.10.011
10.1016/j.neuron.2006.04.031
10.1038/nrn730
10.1073/pnas.0504136102
10.1007/s11682-015-9487-0
10.1044/hhd16.1.18
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Dec 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Dec 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2017.08.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 211
ExternalDocumentID PMC5654647
28843214
10_1016_j_media_2017_08_005
S1361841517301287
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS090153
– fundername: NIDA NIH HHS
  grantid: R01 DA033393
– fundername: NIA NIH HHS
  grantid: R01 AG042599
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c487t-ee2133cfb9a2c09c03ec6d541b0d76f909458f9c2963baf9b5fc91928368a4013
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415778100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:51:44 EDT 2025
Sun Nov 09 10:39:15 EST 2025
Tue Oct 07 06:55:05 EDT 2025
Thu Apr 03 07:08:29 EDT 2025
Tue Nov 18 22:43:08 EST 2025
Sat Nov 29 07:01:13 EST 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
fMRI
Functional brain networks
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-ee2133cfb9a2c09c03ec6d541b0d76f909458f9c2963baf9b5fc91928368a4013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5654647
PMID 28843214
PQID 1981302800
PQPubID 2045428
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5654647
proquest_miscellaneous_1932846579
proquest_journals_1981302800
pubmed_primary_28843214
crossref_citationtrail_10_1016_j_media_2017_08_005
crossref_primary_10_1016_j_media_2017_08_005
elsevier_sciencedirect_doi_10_1016_j_media_2017_08_005
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Iraji, Benson, Welch, O'Neil, Woodard, Ayaz, Kulek, Mika, Medado, Soltanian-Zadeh, Liu, Haacke, Kou (bib0019) 2015; 32
Lecun, Eon Bottou, Bengio, Haaner (bib0024) 1998
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib0012) 1994; 2
Bullmore, Sporns (bib0004) 2009; 10
Pessoa, Amaral, Behniea, Kelly, Averbeck, Seo, Bressler, Menon, Damaraju, Huang, Barrett, Pessoa, Honey, Kotter, Breakspear, Sporns, Modha, Singh, Newman, Padmala, Pessoa, Pessoa, Pessoa, Pessoa, Adolphs, Pessoa, Petrovich, Canteras, Swanson, Swanson, Thompson, Varela (bib0035) 2012; 35
Vander Werff (bib0044) 2012; 16
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
De Valois, William Yund, Hepler (bib0007) 1982; 22
Lv, Jiang, Li, Zhu, Zhang, Zhao, Chen, Zhang, Hu, Han, Ye, Guo, Liu (bib0029) 2015; 62
Zhang, Li, Lv, Jiang, Guo, Liu (bib0049) 2016; 10
Schairer (bib0036) 2012; 16
Li, Makkie, Lin, Sedigh Fazli, Davidson, Ye, Liu, Quinn (bib0025) 2016
Kushner (bib0023) 1998; 158
Bengio, Bengio, Lamblin, Popovici, Larochelle (bib0003) 2007
Calhoun, Pekar, Pearlson (bib0005) 2004; 29
Zhao, Chen, Li, Lv, Jiang, Ge, Zhang, Zhang, Ge, Lyu, Zhao, Han, Guo, Liu (bib0051) 2016; 12
Stevens, Lovejoy, Kim, Oakes, Kureshi, Witt (bib0043) 2012; 6
Jiang, Li, Lv, Zhang, Zhang, Guo, Liu (bib0020) 2015; 36
Hinton, Osindero, Teh (bib0017) 2006; 18
Zhao, Han, Lv, Jiang, Hu, Zhao, Ge, Guo, Liu (bib0050) 2015; 34
He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
Ge, Makkie, Wang, Zhao, Jiang, Li, Lv, Zhang, Zhang, Han, Guo, Liu (bib0013) 2016; 10
Hu, Lv, Cheng, Lv, Guo, Han, Liu (bib0046) 2015; 7
Stevens, Lovejoy, Kim, Oakes, Kureshi, Witt (bib0042) 2012; 6
Gilmore, Camchong, Davenport, Nelson, Kardon, Lim, Sponheim (bib0014) 2016; 6
Luxburg (bib0027) 2007; 17
Worsley (bib0045) 1997; 5
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uğurbil, Van Essen, Glasser (bib0039) 2013; 80
Masci, Meier, Cireşan, Schmidhuber (bib0033) 2011
Sporns (bib0041) 2013; 15
Krizhevsky, Sutskever, Hinton (bib0022) 2012
Lv, Jiang, Li, Zhu, Chen, Zhang, Zhang, Hu, Han, Huang, Zhang, Guo, Liu (bib0028) 2015; 20
Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method.
Lv, Lin, Zhang, Jiang, Hu, Han, Guo, Ye, Liu (bib0031) 2015
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib0040) 2009; 106
Chen, Li, Zhu, Jiang, Yuan, Lv, Zhang, Guo, Shen, Liu (bib0006) 2013; 32
Beckmann, DeLuca, Devlin, Smith (bib0002) 2005; 360
Lowe (bib0026) 1999; 2
Duncan (bib0009) 2010; 14
Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0021) 2014
Mairal, Bach, Ponce, Sapiro (bib0032) 2010; 11
Serre, Wolf, Poggio (bib0037) 2005
Xu, Potenza, Calhoun, Zhang, Yip, Wall, Pearlson, Worhunsky, Garrison, Moran (bib0047) 2016; 71
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen, WU-Minn HCP Consortium (bib0001) 2013; 80
Fedorenko, Duncan, Kanwisher (bib0010) 2013; 110
Lv, Jiang, Li, Zhu, Zhao, Zhang, Hu, Han, Guo, Li, Coles, Hu, Liu (bib0030) 2015; 233
Zhao, Han, Hu, Jiang, Lv, Zhang, Zhang, Guo, Liu (bib0052) 2017
Dosenbach, Visscher, Palmer, Miezin, Wenger, Kang, Burgund, Grimes, Schlaggar, Petersen (bib0008) 2006; 50
Heeger, Ress (bib0016) 2002; 3
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib0011) 2005; 102
Huettel, Song, McCarthy (bib0018) 2004
Liu, Han, Zhang, Shifeng, Liu (bib0034) 2015
Serre (10.1016/j.media.2017.08.005_bib0037) 2005
Ge (10.1016/j.media.2017.08.005_bib0013) 2016; 10
Sporns (10.1016/j.media.2017.08.005_bib0041) 2013; 15
10.1016/j.media.2017.08.005_bib0048
Bullmore (10.1016/j.media.2017.08.005_bib0004) 2009; 10
Zhao (10.1016/j.media.2017.08.005_bib0050) 2015; 34
Vander Werff (10.1016/j.media.2017.08.005_bib0044) 2012; 16
De Valois (10.1016/j.media.2017.08.005_bib0007) 1982; 22
Stevens (10.1016/j.media.2017.08.005_bib0043) 2012; 6
Calhoun (10.1016/j.media.2017.08.005_bib0005) 2004; 29
Xu (10.1016/j.media.2017.08.005_bib0047) 2016; 71
Liu (10.1016/j.media.2017.08.005_bib0034) 2015
Beckmann (10.1016/j.media.2017.08.005_bib0002) 2005; 360
Karpathy (10.1016/j.media.2017.08.005_bib0021) 2014
Lv (10.1016/j.media.2017.08.005_bib0030) 2015; 233
Zhang (10.1016/j.media.2017.08.005_bib0049) 2016; 10
Worsley (10.1016/j.media.2017.08.005_sbref0043) 1997; 5
Lv (10.1016/j.media.2017.08.005_bib0029) 2015; 62
Fedorenko (10.1016/j.media.2017.08.005_bib0010) 2013; 110
Hu (10.1016/j.media.2017.08.005_bib0046) 2015; 7
Lowe (10.1016/j.media.2017.08.005_bib0026) 1999; 2
Mairal (10.1016/j.media.2017.08.005_bib0032) 2010; 11
Kushner (10.1016/j.media.2017.08.005_bib0023) 1998; 158
Zhao (10.1016/j.media.2017.08.005_bib0051) 2016; 12
Zhao (10.1016/j.media.2017.08.005_bib0052) 2017
Iraji (10.1016/j.media.2017.08.005_bib0019) 2015; 32
10.1016/j.media.2017.08.005_bib0038
Lecun (10.1016/j.media.2017.08.005_bib0024) 1998
Barch (10.1016/j.media.2017.08.005_bib0001) 2013; 80
Bengio (10.1016/j.media.2017.08.005_bib0003) 2007
Stevens (10.1016/j.media.2017.08.005_bib0042) 2012; 6
Smith (10.1016/j.media.2017.08.005_bib0040) 2009; 106
Heeger (10.1016/j.media.2017.08.005_bib0016) 2002; 3
Lv (10.1016/j.media.2017.08.005_bib0031) 2015
Pessoa (10.1016/j.media.2017.08.005_bib0035) 2012; 35
Luxburg (10.1016/j.media.2017.08.005_bib0027) 2007; 17
Chen (10.1016/j.media.2017.08.005_bib0006) 2013; 32
Duncan (10.1016/j.media.2017.08.005_bib0009) 2010; 14
Jiang (10.1016/j.media.2017.08.005_bib0020) 2015; 36
Lv (10.1016/j.media.2017.08.005_bib0028) 2015; 20
Schairer (10.1016/j.media.2017.08.005_bib0036) 2012; 16
Friston (10.1016/j.media.2017.08.005_bib0012) 1994; 2
10.1016/j.media.2017.08.005_bib0015
Hinton (10.1016/j.media.2017.08.005_bib0017) 2006; 18
Fox (10.1016/j.media.2017.08.005_bib0011) 2005; 102
Smith (10.1016/j.media.2017.08.005_bib0039) 2013; 80
Dosenbach (10.1016/j.media.2017.08.005_bib0008) 2006; 50
Krizhevsky (10.1016/j.media.2017.08.005_bib0022) 2012
Huettel (10.1016/j.media.2017.08.005_bib0018) 2004
Gilmore (10.1016/j.media.2017.08.005_bib0014) 2016; 6
Li (10.1016/j.media.2017.08.005_bib0025) 2016
Masci (10.1016/j.media.2017.08.005_bib0033) 2011
References_xml – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib0002
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
– volume: 5
  start-page: 254
  year: 1997
  end-page: 258
  ident: bib0045
  article-title: An overview and some new developments in the statistical analysis of PET and fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 112
  year: 2015
  end-page: 134
  ident: bib0028
  article-title: Sparse representation of whole-brain fMRI signals for identification of functional networks
  publication-title: Med. Image Anal.
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  ident: bib0012
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 29
  start-page: 2017
  year: 2004
  end-page: 2097
  ident: bib0005
  article-title: Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI
  publication-title: Neuropsychopharmacology
– volume: 32
  start-page: 1576
  year: 2013
  end-page: 1586
  ident: bib0006
  article-title: Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering
  publication-title: IEEE Trans. Med. Imaging
– year: 2017
  ident: bib0052
  article-title: Extendable Supervised Dictionary Learning for Exploring Diverse and Concurrent Brain Activities in Task-based fMRI,
  publication-title: Brain Imaging and Behavior.
– year: 1998
  ident: bib0024
  article-title: Gradient-based learning applied to document recognition RS-SVM reduced-set support vector method. SDNN space displacement neural network. SVM support vector method
  publication-title: Proceedings of V-SVM Virtual Support Vector Method. Time Delay Neural Network (TDNN)
– volume: 62
  start-page: 1120
  year: 2015
  end-page: 1131
  ident: bib0029
  article-title: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 293
  year: 2012
  end-page: 318
  ident: bib0042
  article-title: Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury
  publication-title: Brain Imaging Behav.
– volume: 16
  start-page: 18
  year: 2012
  ident: bib0036
  article-title: Mild traumatic brain injury and associated effects on the auditory system
  publication-title: Perspect. Hear. Hear. Disord. Res. Diagn.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0022
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
– volume: 110
  start-page: 16616
  year: 2013
  end-page: 16621
  ident: bib0010
  article-title: Broad domain generality in focal regions of frontal and parietal cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0040
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0017
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 15
  start-page: 247
  year: 2013
  end-page: 262
  ident: bib0041
  article-title: Structure and function of complex brain networks
  publication-title: Dialogues Clin. Neurosci.
– volume: 50
  start-page: 799
  year: 2006
  end-page: 812
  ident: bib0008
  article-title: A core system for the implementation of task sets
  publication-title: Neuron
– start-page: 52
  year: 2011
  end-page: 59
  ident: bib0033
  article-title: Stacked Convolutional Auto-Encoders For Hierarchical Feature Extraction
– year: 2004
  ident: bib0018
  article-title: Functional Magnetic Resonance Imaging
– volume: 3
  start-page: 142
  year: 2002
  end-page: 151
  ident: bib0016
  article-title: What does fMRI tell us about neuronal activity?
  publication-title: Nat. Rev. Neurosci.
– volume: 16
  start-page: 3
  year: 2012
  ident: bib0044
  article-title: Auditory dysfunction among long-term consequences of mild traumatic brain injury (mTBI)
  publication-title: Perspect. Hear. Hear. Disord. Res. Diagn.
– volume: 158
  start-page: 1617
  year: 1998
  ident: bib0023
  article-title: Mild traumatic brain injury
  publication-title: Arch. Intern. Med.
– volume: 34
  start-page: 2036
  year: 2015
  end-page: 2045
  ident: bib0050
  article-title: Supervised dictionary learning for inferring concurrent brain networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 21
  year: 2016
  end-page: 32
  ident: bib0049
  article-title: Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations
  publication-title: Brain Imaging Behav.
– start-page: 511
  year: 2016
  end-page: 519
  ident: bib0025
  article-title: Scalable fast rank-1 dictionary learning for fMRI big data analysis
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
– volume: 11
  start-page: 19
  year: 2010
  end-page: 60
  ident: bib0032
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– start-page: 1725
  year: 2014
  end-page: 1732
  ident: bib0021
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 6
  start-page: e00454
  year: 2016
  ident: bib0014
  article-title: Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction
  publication-title: Brain Behav.
– volume: 233
  start-page: 254
  year: 2015
  end-page: 268
  ident: bib0030
  article-title: Assessing effects of prenatal alcohol exposure using group-wise sparse representation of fMRI data
  publication-title: Psychiatry Res.
– volume: 32
  start-page: 1031
  year: 2015
  end-page: 1045
  ident: bib0019
  article-title: Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses
  publication-title: J. Neurotrauma
– volume: 12
  start-page: 23
  year: 2016
  end-page: 33
  ident: bib0051
  article-title: Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder
  publication-title: NeuroImage Clin.
– year: 2007
  ident: bib0003
  article-title: Greedy Layer-Wise Training of Deep Networks
– start-page: 239
  year: 2015
  end-page: 246
  ident: bib0031
  article-title: Modeling Task FMRI Data via Supervised Stochastic Coordinate Coding
– volume: 2
  start-page: 1150
  year: 1999
  end-page: 1157
  ident: bib0026
  article-title: Object recognition from local scale-invariant features
  publication-title: Proceedings of the Seventh IEEE International Conference on Computer Vision
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bib0004
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
– volume: 22
  start-page: 531
  year: 1982
  end-page: 544
  ident: bib0007
  article-title: The orientation and direction selectivity of cells in macaque visual cortex
  publication-title: Vis. Res.
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: bib0027
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 7
  start-page: 65
  year: 2015
  end-page: 75
  ident: bib0046
  article-title: Sparsity-constrained fMRI decoding of visual saliency in naturalistic video streams
  publication-title: IEEE Trans. Auton. Ment. Dev.
– start-page: 994
  year: 2005
  end-page: 1000
  ident: bib0037
  article-title: Object recognition with features inspired by visual cortex
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
– volume: 71
  start-page: 83
  year: 2016
  end-page: 100
  ident: bib0047
  article-title: Large-scale functional network overlap is a general property of brain functional organization: reconciling inconsistent fMRI findings from general-linear-model-based analyses
  publication-title: Neurosci. Biobehav. Rev.
– volume: 14
  start-page: 172
  year: 2010
  end-page: 179
  ident: bib0009
  article-title: The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour
  publication-title: Trends Cogn. Sci.
– reference: Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib0011
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  start-page: 158
  year: 2012
  end-page: 159
  ident: bib0035
  article-title: Beyond brain regions: network perspective of cognition–emotion interactions
  publication-title: Behav. Brain Sci.
– start-page: 362
  year: 2015
  end-page: 370
  ident: bib0034
  article-title: Predicting eye fixations using convolutional neural networks
  publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 36
  start-page: 5301
  year: 2015
  end-page: 5319
  ident: bib0020
  article-title: Sparse representation of HC
  publication-title: Hum. Brain Mapp.
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib0039
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
– reference: Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method.
– volume: 10
  start-page: 1206
  year: 2016
  end-page: 1222
  ident: bib0013
  article-title: Signal sampling for efficient sparse representation of resting state FMRI data
  publication-title: Brain Imaging Behav.
– volume: 6
  start-page: 293
  year: 2012
  end-page: 318
  ident: bib0043
  article-title: Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury
  publication-title: Brain Imaging Behav.
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
– volume: 17
  start-page: 395
  year: 2007
  ident: 10.1016/j.media.2017.08.005_bib0027
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.media.2017.08.005_bib0039
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 6
  start-page: e00454
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0014
  article-title: Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction
  publication-title: Brain Behav.
  doi: 10.1002/brb3.454
– year: 2017
  ident: 10.1016/j.media.2017.08.005_bib0052
  article-title: Extendable Supervised Dictionary Learning for Exploring Diverse and Concurrent Brain Activities in Task-based fMRI,
  publication-title: Brain Imaging and Behavior.
– volume: 10
  start-page: 21
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0049
  article-title: Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9359-7
– volume: 110
  start-page: 16616
  year: 2013
  ident: 10.1016/j.media.2017.08.005_bib0010
  article-title: Broad domain generality in focal regions of frontal and parietal cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315235110
– year: 2004
  ident: 10.1016/j.media.2017.08.005_bib0018
– year: 1998
  ident: 10.1016/j.media.2017.08.005_bib0024
  article-title: Gradient-based learning applied to document recognition RS-SVM reduced-set support vector method. SDNN space displacement neural network. SVM support vector method
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.media.2017.08.005_bib0001
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 2
  start-page: 189
  year: 1994
  ident: 10.1016/j.media.2017.08.005_bib0012
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– start-page: 52
  year: 2011
  ident: 10.1016/j.media.2017.08.005_bib0033
– ident: 10.1016/j.media.2017.08.005_bib0015
  doi: 10.1109/ICCV.2015.123
– volume: 22
  start-page: 531
  year: 1982
  ident: 10.1016/j.media.2017.08.005_bib0007
  article-title: The orientation and direction selectivity of cells in macaque visual cortex
  publication-title: Vis. Res.
  doi: 10.1016/0042-6989(82)90112-2
– year: 2007
  ident: 10.1016/j.media.2017.08.005_bib0003
– volume: 34
  start-page: 2036
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0050
  article-title: Supervised dictionary learning for inferring concurrent brain networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2418734
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.media.2017.08.005_bib0017
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 36
  start-page: 5301
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0020
  article-title: Sparse representation of HC P grayordinate data reveals novel functional architecture of cerebral cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23013
– volume: 35
  start-page: 158
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0035
  article-title: Beyond brain regions: network perspective of cognition–emotion interactions
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X11001567
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.media.2017.08.005_bib0002
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 29
  start-page: 2017
  year: 2004
  ident: 10.1016/j.media.2017.08.005_bib0005
  article-title: Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300543
– start-page: 1725
  year: 2014
  ident: 10.1016/j.media.2017.08.005_bib0021
  article-title: Large-scale video classification with convolutional neural networks
– start-page: 239
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0031
– start-page: 511
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0025
  article-title: Scalable fast rank-1 dictionary learning for fMRI big data analysis
– volume: 14
  start-page: 172
  year: 2010
  ident: 10.1016/j.media.2017.08.005_bib0009
  article-title: The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2010.01.004
– volume: 32
  start-page: 1576
  year: 2013
  ident: 10.1016/j.media.2017.08.005_bib0006
  article-title: Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2259248
– volume: 32
  start-page: 1031
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0019
  article-title: Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2014.3610
– volume: 16
  start-page: 3
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0044
  article-title: Auditory dysfunction among long-term consequences of mild traumatic brain injury (mTBI)
  publication-title: Perspect. Hear. Hear. Disord. Res. Diagn.
  doi: 10.1044/hhd16.1.3
– start-page: 994
  year: 2005
  ident: 10.1016/j.media.2017.08.005_bib0037
  article-title: Object recognition with features inspired by visual cortex
– volume: 6
  start-page: 293
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0042
  article-title: Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-012-9157-4
– start-page: 362
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0034
  article-title: Predicting eye fixations using convolutional neural networks
– volume: 7
  start-page: 65
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0046
  article-title: Sparsity-constrained fMRI decoding of visual saliency in naturalistic video streams
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2409835
– volume: 6
  start-page: 293
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0043
  article-title: Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-012-9157-4
– ident: 10.1016/j.media.2017.08.005_bib0038
– volume: 233
  start-page: 254
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0030
  article-title: Assessing effects of prenatal alcohol exposure using group-wise sparse representation of fMRI data
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2015.07.012
– volume: 12
  start-page: 23
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0051
  article-title: Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.06.004
– volume: 11
  start-page: 19
  year: 2010
  ident: 10.1016/j.media.2017.08.005_bib0032
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 254
  year: 1997
  ident: 10.1016/j.media.2017.08.005_sbref0043
  article-title: An overview and some new developments in the statistical analysis of PET and fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.media.2017.08.005_bib0040
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905267106
– ident: 10.1016/j.media.2017.08.005_bib0048
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.media.2017.08.005_bib0004
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– start-page: 1097
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0022
– volume: 158
  start-page: 1617
  year: 1998
  ident: 10.1016/j.media.2017.08.005_bib0023
  article-title: Mild traumatic brain injury
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.158.15.1617
– volume: 62
  start-page: 1120
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0029
  article-title: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2369495
– volume: 71
  start-page: 83
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0047
  article-title: Large-scale functional network overlap is a general property of brain functional organization: reconciling inconsistent fMRI findings from general-linear-model-based analyses
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.08.035
– volume: 15
  start-page: 247
  year: 2013
  ident: 10.1016/j.media.2017.08.005_bib0041
  article-title: Structure and function of complex brain networks
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2013.15.3/osporns
– volume: 2
  start-page: 1150
  year: 1999
  ident: 10.1016/j.media.2017.08.005_bib0026
  article-title: Object recognition from local scale-invariant features
– volume: 20
  start-page: 112
  year: 2015
  ident: 10.1016/j.media.2017.08.005_bib0028
  article-title: Sparse representation of whole-brain fMRI signals for identification of functional networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.10.011
– volume: 50
  start-page: 799
  year: 2006
  ident: 10.1016/j.media.2017.08.005_bib0008
  article-title: A core system for the implementation of task sets
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.04.031
– volume: 3
  start-page: 142
  year: 2002
  ident: 10.1016/j.media.2017.08.005_bib0016
  article-title: What does fMRI tell us about neuronal activity?
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn730
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.media.2017.08.005_bib0011
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504136102
– volume: 10
  start-page: 1206
  year: 2016
  ident: 10.1016/j.media.2017.08.005_bib0013
  article-title: Signal sampling for efficient sparse representation of resting state FMRI data
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9487-0
– volume: 16
  start-page: 18
  year: 2012
  ident: 10.1016/j.media.2017.08.005_bib0036
  article-title: Mild traumatic brain injury and associated effects on the auditory system
  publication-title: Perspect. Hear. Hear. Disord. Res. Diagn.
  doi: 10.1044/hhd16.1.18
SSID ssj0007440
Score 2.380127
Snippet •A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases.•Revealed unique network...
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 200
SubjectTerms Artificial neural networks
Atlases as Topic
Brain
Brain mapping
Brain Mapping - methods
Clustering
Computational neuroscience
Data analysis
Data management
Data processing
Deep learning
Feature extraction
fMRI
Functional brain networks
Functional magnetic resonance imaging
Head injuries
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Independent component analysis
Machine learning
Magnetic Resonance Imaging - methods
Neural coding
Neural networks
Outliers (statistics)
Reproducibility of Results
Sensitivity and Specificity
Statistical methods
Training
Traumatic brain injury
Title Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder
URI https://dx.doi.org/10.1016/j.media.2017.08.005
https://www.ncbi.nlm.nih.gov/pubmed/28843214
https://www.proquest.com/docview/1981302800
https://www.proquest.com/docview/1932846579
https://pubmed.ncbi.nlm.nih.gov/PMC5654647
Volume 42
WOSCitedRecordID wos000415778100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSF4QDBugTEFibcSlLvtx2kaGkhMIA2pPEWOY49UW1qtabWfzzmOnaarNsEDL1EVOxf1fDk-tr_zHUI-6KTSIZM0QC30II2ECsqEiiCtEpVVVRZTUZpiE_TsjE0m_PtopF0uzOqSNg27ueHz_2pqOAfGxtTZfzB3f1M4Ab_B6HAEs8PxrwyPJTg7UVjkSEIQGVzAeIRsUwy4cRyzy38lVocYNx0PfCxaiKPVYryqxbhSam746PZFUU9g2c5Q87KybF5XBMru89RXyP0RVuFksBptVmJ_Lft42TKAf9SYPtwD89jmiJyKppz1aL0WU8M1QDA2w-UJGPLWVA_VudQkjwKWdlnFzud2ilrOaRqt0m1n3q0rTD-ZHBpk4VGjtmrStNuBJedXxpQxYymWXVqPbD3f0DXtkL2YZhy8397Rl5PJ137MRplEp0ll2H9bz0TVaHuXu0KY7SnKbabtIHQ5f0qe2DmHf9Rh5RkZqWafPB4oUe6Th98sx-I5EUMA-bcB5K8B5BsA-RZAvgWQDwDyEUD-BoD8AYBekJ-fT86PTwNbiCOQMJ9tA6XiKEmkLrmIZchlmCiZV1kalWFFc81DnmZMcxmDNy-F5mWmJYepA0tyJnAC_5LsNrNGvUYmneBS6zKMZJ5WKi0rGcpMMZ1LLkIlPBK7_7aQVqUei6VcFo6OOC2MbQq0TYElVMPMIx_7i-adSMv93XNntMLGmV38WADy7r_wwJm4sF_8oog4w81_mHh55H3fDE4ad95Eo2ZL7JNAGJhnlHvkVYeI_kUdqjxCN7DSd0AB-M2Wpv5thOAzzERM6Zs77_mWPFp_kwdkF8Cj3pEHctXWi-tDskMn7NB-Cn8AF7XRyg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+fine-granularity+functional+brain+network+atlases+via+deep+convolutional+autoencoder&rft.jtitle=Medical+image+analysis&rft.au=Zhao%2C+Yu&rft.au=Dong%2C+Qinglin&rft.au=Chen%2C+Hanbo&rft.au=Iraji%2C+Armin&rft.date=2017-12-01&rft.eissn=1361-8423&rft.volume=42&rft.spage=200&rft_id=info:doi/10.1016%2Fj.media.2017.08.005&rft_id=info%3Apmid%2F28843214&rft.externalDocID=28843214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon