3D cardiac shape analysis with variational point cloud autoencoders for myocardial infarction prediction and virtual heart synthesis

Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point clou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics Jg. 124; S. 102587
Hauptverfasser: Beetz, Marcel, Banerjee, Abhirup, Li, Lei, Camps, Julia, Rodriguez, Blanca, Grau, Vicente
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:0895-6111, 1879-0771, 1879-0771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder–decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE’s reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE’s latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell’s concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability. •Multi-class Point VAE: novel geometric DL for 3D cardiac shape & function analysis.•Point VAE shows sub-pixel reconstruction accuracy on 10,000+ cardiac point clouds.•Point VAE learns realistic, disentangled features of cardiac shape & function.•Latent space outperforms clinical benchmarks in MI prediction and survival.•In silico simulations of electrophysiology show realistic cardiac variability.
AbstractList Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder–decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE’s reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE’s latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell’s concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability. •Multi-class Point VAE: novel geometric DL for 3D cardiac shape & function analysis.•Point VAE shows sub-pixel reconstruction accuracy on 10,000+ cardiac point clouds.•Point VAE learns realistic, disentangled features of cardiac shape & function.•Latent space outperforms clinical benchmarks in MI prediction and survival.•In silico simulations of electrophysiology show realistic cardiac variability.
Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder-decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE's reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE's latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell's concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability.Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder-decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE's reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE's latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell's concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability.
Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder-decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE's reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE's latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell's concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability.
AbstractCardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both accurate clinical decision-making and realistic in silico modeling of cardiac function. In this work, we propose multi-class variational point cloud autoencoders (Point VAE) as a novel geometric deep learning approach for 3D cardiac shape and function analysis. Its encoder–decoder architecture enables efficient multi-scale feature learning directly on high resolution point cloud representations of the multi-class 3D cardiac anatomy and can capture complex non-linear 3D shape variability in a low-dimensional and interpretable latent space. We first evaluate the Point VAE’s reconstruction ability on a dataset of over 10,000 subjects and find mean Chamfer distances between input and reconstructed point clouds below the pixel resolution of the underlying image acquisitions. Furthermore, we analyze the Point VAE’s latent space and observe a realistic and disentangled representation of morphological and functional variability. We test the latent space for pathology prediction and find it to outperform clinical benchmarks by 13% and 16% in area under the receiver operating characteristic (AUROC) curves for the tasks of prevalent myocardial infarction (MI) detection and incident MI prediction, respectively, and by 10% in terms of Harrell’s concordance index for MI survival analysis. Finally, we use the generated populations for in silico simulations of cardiac electrophysiology, demonstrating its ability to introduce realistic natural variability.
ArticleNumber 102587
Author Beetz, Marcel
Camps, Julia
Rodriguez, Blanca
Li, Lei
Grau, Vicente
Banerjee, Abhirup
Author_xml – sequence: 1
  givenname: Marcel
  surname: Beetz
  fullname: Beetz, Marcel
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
– sequence: 2
  givenname: Abhirup
  orcidid: 0000-0001-8198-5128
  surname: Banerjee
  fullname: Banerjee, Abhirup
  email: abhirup.banerjee@eng.ox.ac.uk
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
– sequence: 3
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
– sequence: 4
  givenname: Julia
  surname: Camps
  fullname: Camps, Julia
  organization: Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
– sequence: 5
  givenname: Blanca
  surname: Rodriguez
  fullname: Rodriguez, Blanca
  organization: Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
– sequence: 6
  givenname: Vicente
  surname: Grau
  fullname: Grau, Vicente
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40582300$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuPFCEUhYkZ4_SM_gWDOzfVAtX1YGMy6fGVTOJCXZPbcMumrYISqDa194dLpUZjTExmBYHvHi7n3Cty4bxDQl5wtuWM169OW-2HcUBjB_i6FUxU-VxUbfOIbHjbyII1Db8gG9bKqqg555fkKsYTY0ywhj8hlztWtaJkbEN-lrdUQzAWNI1HGJGCg36ONtIfNh3pGYKFZH0-pKO3LlHd-8lQmJJHp73BEGnnAx1mv-r01LoOgl6K6Bhyk-sWnKFnG9KUiSNCSDTOLh0xP_WUPO6gj_jsfr0mX96--bx_X9x9fPdhf3NX6F3bpMLUpmQH3RmAxhjoWmnKVjCsq06DNgcpsDJVDbuyhQo67JjWRtZGYL6QZVNek5er7hj89wljUoONGvseHPopqlJkE2vJapnR5_fodMhGqzFkr8OsfjuXAbkCOvgYA3Z_EM7UkpI6qb9SUktKak0p1-7XWsyfPVsMKmqb3cxoQJ2U8fZBKq__UdG9dVZD_w1njCc_hZxaVFxFoZj6tEzDMgyiyoMg6yoL3Pxf4IFN_ALeVtA5
Cites_doi 10.1113/expphysiol.2008.044081
10.1016/j.media.2021.102143
10.1109/2945.817351
10.1109/EMBC48229.2022.9871643
10.3389/fcvm.2020.00102
10.1186/s12968-021-00780-x
10.1016/j.media.2021.102222
10.1016/j.media.2023.102975
10.1098/rsif.2013.1023
10.1145/2629697
10.11159/icsta21.127
10.1186/1532-429X-15-46
10.1109/MSP.2017.2693418
10.1136/hrt.40.11.1257
10.1371/journal.pcbi.1008851
10.1098/rsta.2020.0257
10.1016/j.media.2015.08.009
10.1093/bioinformatics/btr360
10.1016/j.neucom.2020.08.030
10.1109/JBHI.2017.2652449
10.1093/eurheartj/ehaa159
10.1038/s41598-018-37916-6
10.3389/fphys.2019.01103
10.1038/s41591-020-1009-y
10.1148/radiol.2017170213
10.1016/j.media.2015.11.004
10.3389/fphys.2022.880260
10.1016/j.media.2021.102276
10.1016/j.ppedcard.2016.07.010
10.1186/s12968-019-0551-6
10.1001/jama.1982.03320430047030
10.1109/ISBI52829.2022.9761590
10.1111/j.2517-6161.1972.tb00899.x
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.compmedimag.2025.102587
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 102587
ExternalDocumentID 40582300
10_1016_j_compmedimag_2025_102587
S0895611125000965
1_s2_0_S0895611125000965
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
~HD
6I.
AAFTH
9DU
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c487t-d6d30bcfdaa7ddaf89d3820e65fcacdb92e5d56a438a5afef0ccd96d2e2e59373
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525914800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-6111
1879-0771
IngestDate Sat Nov 01 15:03:36 EDT 2025
Thu Sep 04 04:51:26 EDT 2025
Sat Nov 29 07:34:34 EST 2025
Sat Sep 27 17:13:54 EDT 2025
Sat Sep 27 20:32:13 EDT 2025
Sat Sep 27 06:15:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Point cloud VAE
Geometric deep learning
3D anatomy modeling
Myocardial infarction prediction
Cardiac electrophysiology simulation
Virtual population generation
Language English
License This is an open access article under the CC BY license.
Copyright © 2025. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-d6d30bcfdaa7ddaf89d3820e65fcacdb92e5d56a438a5afef0ccd96d2e2e59373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8198-5128
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0895611125000965
PMID 40582300
PQID 3225869069
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3225869069
pubmed_primary_40582300
crossref_primary_10_1016_j_compmedimag_2025_102587
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2025_102587
elsevier_clinicalkeyesjournals_1_s2_0_S0895611125000965
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2025_102587
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Suk, Haan, Lippe, Brune, Wolterink (b71) 2021
Harrell, Califf, Pryor, Lee, Rosati (b40) 1982; 247
Engwirda (b34) 2014
Bai, Suzuki, Huang, Francis, Wang, Tarroni, Guitton, Aung, Fung, Petersen (b6) 2020; 26
Beetz, Banerjee, Grau (b11) 2022
Mincholé, Zacur, Ariga, Grau, Rodriguez (b56) 2019
Ye, Huang, Yang, Wu, Yi, Axel, Metaxas (b75) 2020
Cardone-Noott, Bueno-Orovio, Mincholé, Zemzemi, Rodriguez (b25) 2016; 18
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A., 2017. beta-VAE: Learning basic visual concepts with a constrained variational framework. In: 5th International Conference on Learning Representations. ICLR, pp. 1–13.
Caldwell, Trew, Sands, Hooks, LeGrice, Smaill (b23) 2009; 2
Smith, Rodriguez, Sang, Beetz, Choudhury, Grau, Banerjee (b69) 2024
Petersen, Matthews, Francis, Robson, Zemrak, Boubertakh, Young, Hudson, Weale, Garratt, Collins, Piechnik, Neubauer (b59) 2015; 18
Cox (b30) 1972; 34
Gilbert, Mauger, Young, Suinesiaputra (b38) 2020; 7
Delaney, Brophy, Ward (b32) 2019
Beetz, Banerjee, Grau (b10) 2022
Beetz, M., Banerjee, A., Sang, Y., Grau, V., 2022c. Combined generation of electrocardiogram and cardiac anatomy models using multi-modal variational autoencoders. In: 2022 IEEE 19th International Symposium on Biomedical Imaging. ISBI, pp. 1–4.
Petersen, Matthews, Bamberg, Bluemke, Francis, Friedrich, Leeson, Nagel, Plein, Rademakers (b58) 2013; 15
Banerjee, Camps, Zacur, Andrews, Rudy, Choudhury, Rodriguez, Grau (b7) 2021; 379
Beetz, Banerjee, Ossenberg-Engels, Grau (b14) 2023; 90
Cetin, Sanroma, Petersen, Napel, Camara, Ballester, Lekadir (b26) 2018
Baessler (b3) 2018; 286
Young, Frangi (b76) 2009; 94
Mauger, Govil, Chabiniok, Gilbert, Hegde, Hussain, McCulloch, Occleshaw, Omens, Perry (b53) 2021; 23
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. pp. 265–283.
Gretton, Borgwardt, Rasch, Schölkopf, Smola (b39) 2012; 13
Bowman, Vilnis, Vinyals, Dai, Jozefowicz, Bengio (b21) 2015
Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 652–660.
Wolterink (b72) 2018
Romero, Lozano, Martínez-Gil, Serra, Sebastián, Lamata, García-Fernández (b65) 2021
Yu, Zhang, Wang, Zhang, Song, Xiang, Liu, Cai (b77) 2021
Beetz, Banerjee, Grau (b13) 2023
Kong, Wilson, Shadden (b46) 2021; 74
Bai, Sinclair, Tarroni, Oktay, Rajchl, Vaillant, Lee, Aung, Lukaschuk, Sanghvi (b5) 2018; 20
Isensee (b42) 2018
Ardekani, Jain, Sanzi, Corona-Villalobos, Abraham, Abraham, Zimmerman, Wu, Winslow, Miller (b2) 2016; 29
Camps, Lawson, Drovandi, Minchole, Wang, Grau, Burrage, Rodriguez (b24) 2021; 73
Beetz, Corral Acero, Banerjee, Eitel, Zacur, Lange, Stiermaier, Evertz, Backhaus, Thiele (b16) 2022
Li, Camps, Banerjee, Beetz, Rodriguez, Grau (b48) 2023
Meng, Bai, Liu, O’Regan, Rueckert (b55) 2022
Gilbert, Bai, Mauger, Medrano-Gracia, Suinesiaputra, Lee, Sanghvi, Aung, Piechnik, Neubauer (b37) 2019; 9
Beetz, Corral Acero, Banerjee, Eitel, Zacur, Lange, Stiermaier, Evertz, Backhaus, Thiele (b18) 2023
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b22) 2017; 34
Lu, Bai, Rueckert, Noble (b51) 2021
Suinesiaputra, Ablin, Alba, Alessandrini, Allen, Bai, Cimen, Claes, Cowan, D’hooge (b70) 2017; 22
2 (3) 5.
Beetz, Ossenberg-Engels, Banerjee, Grau (b19) 2021
Prakash (b60) 1978; 40
Kingma, Welling (b45) 2013
Dou, Virtanen, Ravikumar, Frangi (b33) 2022
Mauger, Gilbert, Lee, Sanghvi, Aung, Fung, Carapella, Piechnik, Neubauer, Petersen (b52) 2019; 21
Fonseca, Backhaus, Bluemke, Britten, Chung, Cowan, Dinov, Finn, Hunter, Kadish (b36) 2011; 27
Lamata, Sinclair, Kerfoot, Lee, Crozier, Blazevic, Land, Lewandowski, Barber, Niederer (b47) 2014; 11
Corral-Acero, Margara, Marciniak, Rodero, Loncaric, Feng, Gilbert, Fernandes, Bukhari, Wajdan (b28) 2020; 41
Beetz, Banerjee, Grau (b9) 2021
Bernardini, Mittleman, Rushmeier, Silva, Taubin (b20) 1999; 5
Farrar, Suinesiaputra, Gilbert, Perry, Hegde, Marsden, Young, Omens, McCulloch (b35) 2016; 43
Bai, Shi, de Marvao, Dawes, O’Regan, Cook, Rueckert (b4) 2015; 26
Puyol-Antón, Chen, Clough, Ruijsink, Sidhu, Gould, Porter, Elliott, Mehta, Rueckert (b61) 2020
Dalton, D., Lazarus, A., Rabbani, A., Gao, H., Husmeier, D., 2021. Graph Neural Network Emulation of Cardiac Mechanics. In: 3rd International Conference on Statistics: Theory and Applications. ICSTA’21, pp. 1–8.
Lu, Bai, Rueckert, Noble (b50) 2021
Yang, Y., Feng, C., Shen, Y., Tian, D., Foldingnet: Interpretable unsupervised learning on 3D point clouds arXiv preprint
Corral Acero, Schuster, Zacur, Lange, Stiermaier, Backhaus, Thiele, Bueno-Orovio, Lamata, Eitel (b29) 2022; 15
Meister, Passerini, Audigier, Lluch, Mihalef, Ashikaga, Maier, Halperin, Mansi (b54) 2020
Rodero, Strocchi, Marciniak, Longobardi, Whitaker, O’Neill, Gillette, Augustin, Plank, Vigmond (b64) 2021; 17
Beetz, Banerjee, Grau (b8) 2021
Beetz, Corral Acero, Banerjee, Eitel, Zacur, Lange, Stiermaier, Evertz, Backhaus, Thiele (b17) 2023
Beetz, Banerjee, Grau (b12) 2023
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (b57) 2011; 12
Chang, Jung (b27) 2020; 418
Lu, Bai, Rueckert, Noble (b49) 2020
Zakeri, Hokmabadi, Ravikumar, Frangi, Gooya (b79) 2022; 75
Khened, Alex, Krishnamurthi (b43) 2018
Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization. In: International Conference on Learning Representations.
Seale, Beetz, Rodriguez, Grau, Banerjee (b66) 2024
Smith, H.J., Banerjee, A., Choudhury, R.P., Grau, V., 2022. Automated Torso Contour Extraction from Clinical Cardiac MR Slices for 3D Torso Reconstruction. In: 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. EMBC, pp. 3809–3813.
Yuan, Khot, Held, Mertz, Hebert (b78) 2018
Si (b67) 2015; 41
Qi, Yi, Su, Guibas (b63) 2017
Xiong, Stiles, Yao, Shi, Nalar, Hawson, Lee, Zhao (b73) 2022; 13
Beetz (10.1016/j.compmedimag.2025.102587_b13) 2023
Bai (10.1016/j.compmedimag.2025.102587_b5) 2018; 20
10.1016/j.compmedimag.2025.102587_b15
Petersen (10.1016/j.compmedimag.2025.102587_b58) 2013; 15
Kong (10.1016/j.compmedimag.2025.102587_b46) 2021; 74
Corral Acero (10.1016/j.compmedimag.2025.102587_b29) 2022; 15
Engwirda (10.1016/j.compmedimag.2025.102587_b34) 2014
Isensee (10.1016/j.compmedimag.2025.102587_b42) 2018
Ardekani (10.1016/j.compmedimag.2025.102587_b2) 2016; 29
Lu (10.1016/j.compmedimag.2025.102587_b51) 2021
Mauger (10.1016/j.compmedimag.2025.102587_b53) 2021; 23
Beetz (10.1016/j.compmedimag.2025.102587_b10) 2022
Farrar (10.1016/j.compmedimag.2025.102587_b35) 2016; 43
Seale (10.1016/j.compmedimag.2025.102587_b66) 2024
Beetz (10.1016/j.compmedimag.2025.102587_b16) 2022
Bronstein (10.1016/j.compmedimag.2025.102587_b22) 2017; 34
Zakeri (10.1016/j.compmedimag.2025.102587_b79) 2022; 75
Suk (10.1016/j.compmedimag.2025.102587_b71) 2021
Baessler (10.1016/j.compmedimag.2025.102587_b3) 2018; 286
Bowman (10.1016/j.compmedimag.2025.102587_b21) 2015
Beetz (10.1016/j.compmedimag.2025.102587_b19) 2021
10.1016/j.compmedimag.2025.102587_b68
Xiong (10.1016/j.compmedimag.2025.102587_b73) 2022; 13
Chang (10.1016/j.compmedimag.2025.102587_b27) 2020; 418
Lamata (10.1016/j.compmedimag.2025.102587_b47) 2014; 11
Li (10.1016/j.compmedimag.2025.102587_b48) 2023
Corral-Acero (10.1016/j.compmedimag.2025.102587_b28) 2020; 41
10.1016/j.compmedimag.2025.102587_b62
Banerjee (10.1016/j.compmedimag.2025.102587_b7) 2021; 379
Gretton (10.1016/j.compmedimag.2025.102587_b39) 2012; 13
Smith (10.1016/j.compmedimag.2025.102587_b69) 2024
Suinesiaputra (10.1016/j.compmedimag.2025.102587_b70) 2017; 22
Si (10.1016/j.compmedimag.2025.102587_b67) 2015; 41
Beetz (10.1016/j.compmedimag.2025.102587_b12) 2023
Mincholé (10.1016/j.compmedimag.2025.102587_b56) 2019
Ye (10.1016/j.compmedimag.2025.102587_b75) 2020
Young (10.1016/j.compmedimag.2025.102587_b76) 2009; 94
Wolterink (10.1016/j.compmedimag.2025.102587_b72) 2018
10.1016/j.compmedimag.2025.102587_b31
Camps (10.1016/j.compmedimag.2025.102587_b24) 2021; 73
Caldwell (10.1016/j.compmedimag.2025.102587_b23) 2009; 2
Meister (10.1016/j.compmedimag.2025.102587_b54) 2020
Petersen (10.1016/j.compmedimag.2025.102587_b59) 2015; 18
Beetz (10.1016/j.compmedimag.2025.102587_b11) 2022
Khened (10.1016/j.compmedimag.2025.102587_b43) 2018
Kingma (10.1016/j.compmedimag.2025.102587_b45) 2013
Mauger (10.1016/j.compmedimag.2025.102587_b52) 2019; 21
10.1016/j.compmedimag.2025.102587_b74
Bai (10.1016/j.compmedimag.2025.102587_b4) 2015; 26
Cox (10.1016/j.compmedimag.2025.102587_b30) 1972; 34
Beetz (10.1016/j.compmedimag.2025.102587_b8) 2021
Delaney (10.1016/j.compmedimag.2025.102587_b32) 2019
Lu (10.1016/j.compmedimag.2025.102587_b50) 2021
Beetz (10.1016/j.compmedimag.2025.102587_b18) 2023
Qi (10.1016/j.compmedimag.2025.102587_b63) 2017
Cetin (10.1016/j.compmedimag.2025.102587_b26) 2018
Cardone-Noott (10.1016/j.compmedimag.2025.102587_b25) 2016; 18
Fonseca (10.1016/j.compmedimag.2025.102587_b36) 2011; 27
10.1016/j.compmedimag.2025.102587_b44
Pedregosa (10.1016/j.compmedimag.2025.102587_b57) 2011; 12
Lu (10.1016/j.compmedimag.2025.102587_b49) 2020
Beetz (10.1016/j.compmedimag.2025.102587_b14) 2023; 90
Prakash (10.1016/j.compmedimag.2025.102587_b60) 1978; 40
Meng (10.1016/j.compmedimag.2025.102587_b55) 2022
Rodero (10.1016/j.compmedimag.2025.102587_b64) 2021; 17
Puyol-Antón (10.1016/j.compmedimag.2025.102587_b61) 2020
10.1016/j.compmedimag.2025.102587_b1
Gilbert (10.1016/j.compmedimag.2025.102587_b37) 2019; 9
10.1016/j.compmedimag.2025.102587_b41
Bernardini (10.1016/j.compmedimag.2025.102587_b20) 1999; 5
Bai (10.1016/j.compmedimag.2025.102587_b6) 2020; 26
Yuan (10.1016/j.compmedimag.2025.102587_b78) 2018
Harrell (10.1016/j.compmedimag.2025.102587_b40) 1982; 247
Gilbert (10.1016/j.compmedimag.2025.102587_b38) 2020; 7
Dou (10.1016/j.compmedimag.2025.102587_b33) 2022
Romero (10.1016/j.compmedimag.2025.102587_b65) 2021
Yu (10.1016/j.compmedimag.2025.102587_b77) 2021
Beetz (10.1016/j.compmedimag.2025.102587_b9) 2021
Beetz (10.1016/j.compmedimag.2025.102587_b17) 2023
References_xml – volume: 41
  start-page: 4556
  year: 2020
  end-page: 4564
  ident: b28
  article-title: The ‘digital twin’ to enable the vision of precision cardiology
  publication-title: Eur. Heart J.
– volume: 22
  start-page: 503
  year: 2017
  end-page: 515
  ident: b70
  article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge
  publication-title: IEEE J. Biomed. Heal. Informatics
– year: 2013
  ident: b45
  article-title: Auto-encoding variational Bayes
– volume: 21
  start-page: 1
  year: 2019
  end-page: 13
  ident: b52
  article-title: Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank
  publication-title: J. Cardiovasc. Magn. Reson.
– start-page: 1375
  year: 2021
  ident: b65
  article-title: Clinically-driven virtual patient cohorts generation: An application to aorta
  publication-title: Front. Physiol.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b57
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: iv4
  year: 2016
  end-page: iv15
  ident: b25
  article-title: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions
  publication-title: EP Eur.
– year: 2020
  ident: b75
  article-title: PC-U Net: Learning to jointly reconstruct and segment the cardiac walls in 3D from CT data
– volume: 18
  start-page: 1
  year: 2015
  end-page: 7
  ident: b59
  article-title: UK Biobank’s cardiovascular magnetic resonance protocol
  publication-title: J. Cardiovasc. Magn. Reson.
– start-page: 245
  year: 2023
  end-page: 257
  ident: b17
  article-title: Mesh U-Nets for 3D cardiac deformation modeling
  publication-title: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers: 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers
– start-page: 264
  year: 2021
  end-page: 272
  ident: b51
  article-title: Multiscale graph convolutional networks for cardiac motion analysis
  publication-title: International Conference on Functional Imaging and Modeling of the Heart
– volume: 286
  start-page: 103
  year: 2018
  end-page: 112
  ident: b3
  article-title: Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images
  publication-title: Radiol.
– reference: Beetz, M., Banerjee, A., Sang, Y., Grau, V., 2022c. Combined generation of electrocardiogram and cardiac anatomy models using multi-modal variational autoencoders. In: 2022 IEEE 19th International Symposium on Biomedical Imaging. ISBI, pp. 1–4.
– volume: 11
  year: 2014
  ident: b47
  article-title: An automatic service for the personalization of ventricular cardiac meshes
  publication-title: J. R. Soc. Interface
– year: 2014
  ident: b34
  article-title: Locally Optimal Delaunay-Refinement and Optimisation-Based Mesh Generation
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  ident: b40
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
– start-page: 219
  year: 2021
  end-page: 228
  ident: b19
  article-title: Predicting 3D cardiac deformations with point cloud autoencoders
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: b37
  article-title: Independent left ventricular morphometric atlases show consistent relationships with cardiovascular risk factors: a UK biobank study
  publication-title: Sci. Rep.
– volume: 40
  start-page: 1257
  year: 1978
  end-page: 1261
  ident: b60
  article-title: Determination of right ventricular wall thickness in systole and diastole. Echocardiographic and necropsy correlation in 32 patients.
  publication-title: Heart
– start-page: 284
  year: 2020
  end-page: 293
  ident: b61
  article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. pp. 265–283.
– start-page: 101
  year: 2018
  end-page: 110
  ident: b72
  article-title: Automatic segmentation and disease classification using cardiac cine MR images
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers 8
– reference: 2 (3) 5.
– start-page: 291
  year: 2023
  end-page: 301
  ident: b18
  article-title: Post-infarction risk prediction with mesh classification networks
  publication-title: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers: 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers
– volume: 7
  start-page: 102
  year: 2020
  ident: b38
  article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy
  publication-title: Front. Cardiovasc. Med.
– volume: 20
  start-page: 1
  year: 2018
  end-page: 12
  ident: b5
  article-title: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 43
  start-page: 61
  year: 2016
  end-page: 69
  ident: b35
  article-title: Atlas-based ventricular shape analysis for understanding congenital heart disease
  publication-title: Prog. Pediatr. Cardiol.
– volume: 73
  year: 2021
  ident: b24
  article-title: Inference of ventricular activation properties from non-invasive electrocardiography
  publication-title: Med. Image Anal.
– volume: 90
  year: 2023
  ident: b14
  article-title: Multi-class point cloud completion networks for 3D cardiac anatomy reconstruction from cine magnetic resonance images
  publication-title: Med. Image Anal.
– volume: 75
  year: 2022
  ident: b79
  article-title: A probabilistic deep motion model for unsupervised cardiac shape anomaly assessment
  publication-title: Med. Image Anal.
– start-page: 105
  year: 2021
  end-page: 109
  ident: b8
  article-title: Biventricular surface reconstruction from cine MRI contours using point completion networks
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging
– volume: 26
  start-page: 133
  year: 2015
  end-page: 145
  ident: b4
  article-title: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
  publication-title: Med. Image Anal.
– reference: Yang, Y., Feng, C., Shen, Y., Tian, D., Foldingnet: Interpretable unsupervised learning on 3D point clouds arXiv preprint
– start-page: 1103
  year: 2019
  ident: b56
  article-title: MRI-based computational torso/biventricular multiscale models to investigate the impact of anatomical variability on the ECG QRS complex
  publication-title: Front. Physiol.
– start-page: 3258
  year: 2022
  ident: b16
  article-title: Interpretable cardiac anatomy modeling using variational mesh autoencoders
  publication-title: Front. Cardiovasc. Med.
– reference: Smith, H.J., Banerjee, A., Choudhury, R.P., Grau, V., 2022. Automated Torso Contour Extraction from Clinical Cardiac MR Slices for 3D Torso Reconstruction. In: 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. EMBC, pp. 3809–3813.
– volume: 94
  start-page: 578
  year: 2009
  end-page: 596
  ident: b76
  article-title: Computational cardiac atlases: from patient to population and back
  publication-title: Exp. Physiol.
– start-page: 3
  year: 2022
  end-page: 14
  ident: b11
  article-title: Reconstructing 3D cardiac anatomies from misaligned multi-view magnetic resonance images with mesh deformation U-Nets
  publication-title: Geometric Deep Learning in Medical Image Analysis
– start-page: 991
  year: 2022
  ident: b10
  article-title: Multi-domain variational autoencoders for combined modeling of MRI-based biventricular anatomy and ECG-based cardiac electrophysiology
  publication-title: Front. Physiol.
– volume: 74
  year: 2021
  ident: b46
  article-title: A deep-learning approach for direct whole-heart mesh reconstruction
  publication-title: Med. Image Anal.
– reference: Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 652–660.
– start-page: 140
  year: 2018
  end-page: 151
  ident: b43
  article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers 8
– start-page: 23
  year: 2020
  end-page: 34
  ident: b54
  article-title: Graph convolutional regression of cardiac depolarization from sparse endocardial maps
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– year: 2021
  ident: b77
  article-title: 3D medical point transformer: Introducing convolution to attention networks for medical point cloud analysis
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: b39
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 379
  year: 2021
  ident: b7
  article-title: A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– reference: Kingma, D.P., Ba, J., 2015. Adam: A method for stochastic optimization. In: International Conference on Learning Representations.
– start-page: 75
  year: 2021
  end-page: 83
  ident: b9
  article-title: Generating subpopulation-specific biventricular anatomy models using conditional point cloud variational autoencoders
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 29
  start-page: 12
  year: 2016
  end-page: 23
  ident: b2
  article-title: Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry
  publication-title: Med. Image Anal.
– year: 2022
  ident: b33
  article-title: A generative shape compositional framework: Towards representative populations of virtual heart chimaeras
– volume: 23
  start-page: 1
  year: 2021
  end-page: 14
  ident: b53
  article-title: Right-left ventricular shape variations in tetralogy of fallot: associations with pulmonary regurgitation
  publication-title: J. Cardiovasc. Magn. Reson.
– start-page: 56
  year: 2020
  end-page: 65
  ident: b49
  article-title: Modelling cardiac motion via spatio-temporal graph convolutional networks to boost the diagnosis of heart conditions
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– start-page: 369
  year: 2023
  end-page: 380
  ident: b48
  article-title: Deep computational model for the inference of ventricular activation properties
  publication-title: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers: 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers
– year: 2019
  ident: b32
  article-title: Synthesis of realistic ECG using generative adversarial networks
– volume: 5
  start-page: 349
  year: 1999
  end-page: 359
  ident: b20
  article-title: The ball-pivoting algorithm for surface reconstruction
  publication-title: IEEE Trans. Vis. Comput. Graphics
– start-page: 1
  year: 2024
  end-page: 5
  ident: b66
  article-title: Modelling multi-phase cardiac anatomy using point cloud variational autoencoders
  publication-title: 2024 IEEE International Symposium on Biomedical Imaging
– year: 2024
  ident: b69
  article-title: Anatomical basis of human sex differences in ECG identified by automated torso-cardiac three-dimensional reconstruction
– volume: 418
  start-page: 270
  year: 2020
  end-page: 279
  ident: b27
  article-title: Automatic cardiac MRI segmentation and permutation-invariant pathology classification using deep neural networks and point clouds
  publication-title: Neurocomputing
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b22
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 2
  start-page: 433
  year: 2009
  end-page: 440
  ident: b23
  article-title: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes
  publication-title: Circ.: Arrhythmia Electrophysiol.
– volume: 34
  start-page: 187
  year: 1972
  end-page: 202
  ident: b30
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 17
  year: 2021
  ident: b64
  article-title: Linking statistical shape models and simulated function in the healthy adult human heart
  publication-title: PLoS Comput. Biol.
– reference: Dalton, D., Lazarus, A., Rabbani, A., Gao, H., Husmeier, D., 2021. Graph Neural Network Emulation of Cardiac Mechanics. In: 3rd International Conference on Statistics: Theory and Applications. ICSTA’21, pp. 1–8.
– volume: 15
  start-page: 1
  year: 2013
  end-page: 10
  ident: b58
  article-title: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 26
  start-page: 1654
  year: 2020
  end-page: 1662
  ident: b6
  article-title: A population-based phenome-wide association study of cardiac and aortic structure and function
  publication-title: Nature Med.
– year: 2015
  ident: b21
  article-title: Generating sentences from a continuous space
– volume: 41
  start-page: 11:1
  year: 2015
  end-page: 36
  ident: b67
  article-title: TetGen, a delaunay-based quality tetrahedral mesh generator
  publication-title: ACM Trans. Math. Software
– start-page: 93
  year: 2021
  end-page: 102
  ident: b71
  article-title: Mesh convolutional neural networks for wall shear stress estimation in 3D artery models
  publication-title: International Workshop on Statistical Atlases and Computational Models of the Heart
– volume: 13
  year: 2022
  ident: b73
  article-title: Automatic 3D surface reconstruction of the left atrium from clinically mapped point clouds using convolutional neural networks.
  publication-title: Front. Physiol.
– start-page: 248
  year: 2022
  end-page: 258
  ident: b55
  article-title: Mesh-based 3D motion tracking in cardiac MRI using deep learning
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VI
– start-page: 280
  year: 2023
  end-page: 290
  ident: b13
  article-title: Point2Mesh-Net: Combining point cloud and mesh-based deep learning for cardiac shape reconstruction
  publication-title: Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers: 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers
– start-page: 532
  year: 2023
  end-page: 542
  ident: b12
  article-title: Multi-objective point cloud autoencoders for explainable myocardial infarction prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 728
  year: 2018
  end-page: 737
  ident: b78
  article-title: Pcn: Point completion network
  publication-title: 2018 International Conference on 3D Vision (3DV)
– volume: 15
  start-page: 1563
  year: 2022
  end-page: 1574
  ident: b29
  article-title: Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis
  publication-title: JACC: Cardiovasc. Imaging
– start-page: 82
  year: 2018
  end-page: 90
  ident: b26
  article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers 8
– volume: 27
  start-page: 2288
  year: 2011
  end-page: 2295
  ident: b36
  article-title: The cardiac atlas project—an imaging database for computational modeling and statistical atlases of the heart
  publication-title: Bioinform.
– reference: Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A., 2017. beta-VAE: Learning basic visual concepts with a constrained variational framework. In: 5th International Conference on Learning Representations. ICLR, pp. 1–13.
– start-page: 122
  year: 2021
  end-page: 125
  ident: b50
  article-title: Dynamic spatio-temporal graph convolutional networks for cardiac motion analysis
  publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging
– start-page: 5099
  year: 2017
  end-page: 5108
  ident: b63
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Advances in Neural Information Processing Systems
– start-page: 120
  year: 2018
  end-page: 129
  ident: b42
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
  publication-title: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers 8
– start-page: 56
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b49
  article-title: Modelling cardiac motion via spatio-temporal graph convolutional networks to boost the diagnosis of heart conditions
– start-page: 284
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b61
  article-title: Interpretable deep models for cardiac resynchronisation therapy response prediction
– volume: 94
  start-page: 578
  issue: 5
  year: 2009
  ident: 10.1016/j.compmedimag.2025.102587_b76
  article-title: Computational cardiac atlases: from patient to population and back
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2008.044081
– start-page: 82
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b26
  article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI
– volume: 73
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b24
  article-title: Inference of ventricular activation properties from non-invasive electrocardiography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102143
– year: 2015
  ident: 10.1016/j.compmedimag.2025.102587_b21
– volume: 15
  start-page: 1563
  issue: 9
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b29
  article-title: Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis
  publication-title: JACC: Cardiovasc. Imaging
– volume: 5
  start-page: 349
  issue: 4
  year: 1999
  ident: 10.1016/j.compmedimag.2025.102587_b20
  article-title: The ball-pivoting algorithm for surface reconstruction
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/2945.817351
– start-page: 101
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b72
  article-title: Automatic segmentation and disease classification using cardiac cine MR images
– start-page: 219
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b19
  article-title: Predicting 3D cardiac deformations with point cloud autoencoders
– ident: 10.1016/j.compmedimag.2025.102587_b68
  doi: 10.1109/EMBC48229.2022.9871643
– volume: 7
  start-page: 102
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b38
  article-title: Artificial intelligence in cardiac imaging with statistical atlases of cardiac anatomy
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2020.00102
– volume: 23
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b53
  article-title: Right-left ventricular shape variations in tetralogy of fallot: associations with pulmonary regurgitation
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-021-00780-x
– start-page: 105
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b8
  article-title: Biventricular surface reconstruction from cine MRI contours using point completion networks
– start-page: 245
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b17
  article-title: Mesh U-Nets for 3D cardiac deformation modeling
– volume: 74
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b46
  article-title: A deep-learning approach for direct whole-heart mesh reconstruction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102222
– start-page: 120
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b42
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
– year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b77
– start-page: 280
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b13
  article-title: Point2Mesh-Net: Combining point cloud and mesh-based deep learning for cardiac shape reconstruction
– start-page: 248
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b55
  article-title: Mesh-based 3D motion tracking in cardiac MRI using deep learning
– volume: 90
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b14
  article-title: Multi-class point cloud completion networks for 3D cardiac anatomy reconstruction from cine magnetic resonance images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102975
– volume: 11
  issue: 91
  year: 2014
  ident: 10.1016/j.compmedimag.2025.102587_b47
  article-title: An automatic service for the personalization of ventricular cardiac meshes
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.1023
– year: 2014
  ident: 10.1016/j.compmedimag.2025.102587_b34
– ident: 10.1016/j.compmedimag.2025.102587_b41
– ident: 10.1016/j.compmedimag.2025.102587_b1
– start-page: 728
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b78
  article-title: Pcn: Point completion network
– ident: 10.1016/j.compmedimag.2025.102587_b62
– start-page: 369
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b48
  article-title: Deep computational model for the inference of ventricular activation properties
– volume: 41
  start-page: 11:1
  issue: 2
  year: 2015
  ident: 10.1016/j.compmedimag.2025.102587_b67
  article-title: TetGen, a delaunay-based quality tetrahedral mesh generator
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/2629697
– start-page: 1
  year: 2024
  ident: 10.1016/j.compmedimag.2025.102587_b66
  article-title: Modelling multi-phase cardiac anatomy using point cloud variational autoencoders
– ident: 10.1016/j.compmedimag.2025.102587_b31
  doi: 10.11159/icsta21.127
– volume: 15
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compmedimag.2025.102587_b58
  article-title: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-15-46
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102587_b22
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– start-page: 264
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b51
  article-title: Multiscale graph convolutional networks for cardiac motion analysis
– volume: 20
  start-page: 1
  issue: 65
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b5
  article-title: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
  publication-title: J. Cardiovasc. Magn. Reson.
– start-page: 3258
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b16
  article-title: Interpretable cardiac anatomy modeling using variational mesh autoencoders
  publication-title: Front. Cardiovasc. Med.
– year: 2024
  ident: 10.1016/j.compmedimag.2025.102587_b69
– volume: 2
  start-page: 433
  issue: 4
  year: 2009
  ident: 10.1016/j.compmedimag.2025.102587_b23
  article-title: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes
  publication-title: Circ.: Arrhythmia Electrophysiol.
– start-page: 122
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b50
  article-title: Dynamic spatio-temporal graph convolutional networks for cardiac motion analysis
– ident: 10.1016/j.compmedimag.2025.102587_b44
– volume: 40
  start-page: 1257
  issue: 11
  year: 1978
  ident: 10.1016/j.compmedimag.2025.102587_b60
  article-title: Determination of right ventricular wall thickness in systole and diastole. Echocardiographic and necropsy correlation in 32 patients.
  publication-title: Heart
  doi: 10.1136/hrt.40.11.1257
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compmedimag.2025.102587_b57
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 17
  issue: 4
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b64
  article-title: Linking statistical shape models and simulated function in the healthy adult human heart
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008851
– start-page: 1375
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b65
  article-title: Clinically-driven virtual patient cohorts generation: An application to aorta
  publication-title: Front. Physiol.
– start-page: 93
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b71
  article-title: Mesh convolutional neural networks for wall shear stress estimation in 3D artery models
– volume: 379
  issue: 2212
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b7
  article-title: A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2020.0257
– volume: 26
  start-page: 133
  issue: 1
  year: 2015
  ident: 10.1016/j.compmedimag.2025.102587_b4
  article-title: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.009
– start-page: 3
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b11
  article-title: Reconstructing 3D cardiac anatomies from misaligned multi-view magnetic resonance images with mesh deformation U-Nets
– volume: 27
  start-page: 2288
  issue: 16
  year: 2011
  ident: 10.1016/j.compmedimag.2025.102587_b36
  article-title: The cardiac atlas project—an imaging database for computational modeling and statistical atlases of the heart
  publication-title: Bioinform.
  doi: 10.1093/bioinformatics/btr360
– volume: 418
  start-page: 270
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b27
  article-title: Automatic cardiac MRI segmentation and permutation-invariant pathology classification using deep neural networks and point clouds
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.030
– volume: 22
  start-page: 503
  issue: 2
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102587_b70
  article-title: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge
  publication-title: IEEE J. Biomed. Heal. Informatics
  doi: 10.1109/JBHI.2017.2652449
– volume: 41
  start-page: 4556
  issue: 48
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b28
  article-title: The ‘digital twin’ to enable the vision of precision cardiology
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa159
– year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b33
– volume: 18
  start-page: 1
  issue: 8
  year: 2015
  ident: 10.1016/j.compmedimag.2025.102587_b59
  article-title: UK Biobank’s cardiovascular magnetic resonance protocol
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compmedimag.2025.102587_b37
  article-title: Independent left ventricular morphometric atlases show consistent relationships with cardiovascular risk factors: a UK biobank study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37916-6
– start-page: 1103
  year: 2019
  ident: 10.1016/j.compmedimag.2025.102587_b56
  article-title: MRI-based computational torso/biventricular multiscale models to investigate the impact of anatomical variability on the ECG QRS complex
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.01103
– volume: 26
  start-page: 1654
  issue: 10
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b6
  article-title: A population-based phenome-wide association study of cardiac and aortic structure and function
  publication-title: Nature Med.
  doi: 10.1038/s41591-020-1009-y
– volume: 286
  start-page: 103
  issue: 1
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b3
  article-title: Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images
  publication-title: Radiol.
  doi: 10.1148/radiol.2017170213
– start-page: 75
  year: 2021
  ident: 10.1016/j.compmedimag.2025.102587_b9
  article-title: Generating subpopulation-specific biventricular anatomy models using conditional point cloud variational autoencoders
– start-page: 991
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b10
  article-title: Multi-domain variational autoencoders for combined modeling of MRI-based biventricular anatomy and ECG-based cardiac electrophysiology
  publication-title: Front. Physiol.
– volume: 29
  start-page: 12
  year: 2016
  ident: 10.1016/j.compmedimag.2025.102587_b2
  article-title: Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.11.004
– volume: 13
  start-page: 723
  issue: 1
  year: 2012
  ident: 10.1016/j.compmedimag.2025.102587_b39
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– volume: 13
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b73
  article-title: Automatic 3D surface reconstruction of the left atrium from clinically mapped point clouds using convolutional neural networks.
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.880260
– volume: 75
  year: 2022
  ident: 10.1016/j.compmedimag.2025.102587_b79
  article-title: A probabilistic deep motion model for unsupervised cardiac shape anomaly assessment
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102276
– start-page: 291
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b18
  article-title: Post-infarction risk prediction with mesh classification networks
– volume: 43
  start-page: 61
  year: 2016
  ident: 10.1016/j.compmedimag.2025.102587_b35
  article-title: Atlas-based ventricular shape analysis for understanding congenital heart disease
  publication-title: Prog. Pediatr. Cardiol.
  doi: 10.1016/j.ppedcard.2016.07.010
– start-page: 532
  year: 2023
  ident: 10.1016/j.compmedimag.2025.102587_b12
  article-title: Multi-objective point cloud autoencoders for explainable myocardial infarction prediction
– volume: 18
  start-page: iv4
  issue: suppl_4
  year: 2016
  ident: 10.1016/j.compmedimag.2025.102587_b25
  article-title: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions
  publication-title: EP Eur.
– volume: 21
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compmedimag.2025.102587_b52
  article-title: Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-019-0551-6
– year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b75
– volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 10.1016/j.compmedimag.2025.102587_b40
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
– ident: 10.1016/j.compmedimag.2025.102587_b15
  doi: 10.1109/ISBI52829.2022.9761590
– year: 2019
  ident: 10.1016/j.compmedimag.2025.102587_b32
– start-page: 140
  year: 2018
  ident: 10.1016/j.compmedimag.2025.102587_b43
  article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest
– start-page: 23
  year: 2020
  ident: 10.1016/j.compmedimag.2025.102587_b54
  article-title: Graph convolutional regression of cardiac depolarization from sparse endocardial maps
– start-page: 5099
  year: 2017
  ident: 10.1016/j.compmedimag.2025.102587_b63
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
– ident: 10.1016/j.compmedimag.2025.102587_b74
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.compmedimag.2025.102587_b30
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– year: 2013
  ident: 10.1016/j.compmedimag.2025.102587_b45
SSID ssj0002071
Score 2.412169
Snippet Cardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for both...
AbstractCardiac anatomy and physiology vary considerably across the human population. Understanding and taking into account this variability is crucial for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 102587
SubjectTerms 3D anatomy modeling
Autoencoder
Cardiac electrophysiology simulation
Deep Learning
Geometric deep learning
Heart - anatomy & histology
Heart - diagnostic imaging
Humans
Imaging, Three-Dimensional - methods
Internal Medicine
Myocardial Infarction - diagnostic imaging
Myocardial infarction prediction
Other
Point cloud VAE
Virtual population generation
Title 3D cardiac shape analysis with variational point cloud autoencoders for myocardial infarction prediction and virtual heart synthesis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611125000965
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611125000965
https://dx.doi.org/10.1016/j.compmedimag.2025.102587
https://www.ncbi.nlm.nih.gov/pubmed/40582300
https://www.proquest.com/docview/3225869069
Volume 124
WOSCitedRecordID wos001525914800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2QRMviOsol8mTEC9VqjRpmgTx0rFNgEZBopP6Zjm2o2Xa0tCk1eCZ38Tv4xw7ToNYpfLAS1S5spP4fLHP8bl8hLySfcFlIF0kd_GcgegPnCRJIgedbAKptxMv1WQT4XgcTafxl62tXzYXZnkV5nl0cxMX_1XU0AbCxtTZfxB3Myg0wG8QOlxB7HDdSPD-MZabBrGLbnnBC3QP1HVH9JnrEoxjewBYzLK86oqr2UJ2-aKaYVFLDGzWsYfX32dmHKzKkcIkaaQUc_TsVDaIeZnNdQIK8mJXWP4A9MkyK9sqr-WNyH6Abntd-4Wya8OOhGPomtmtoPsjpTTJLOYRCdVEgBzxXM0vTdzQKLnI5vWZGUYTmRRvlbU9KqVN_-btkw0vaEK37GIchZhgZShaeuqWNruCe4PWGgwqU2A28b-2B3NScYnSLfCF4V17eOfeqs-fJbnHn9np-dkZm5xMJ6-Lbw6ylaFXv6Zu2Sa7XhjEsJrujj6cTD82OoDnGlPfPu0eOVxFFq65-zrNaJ3lozWgyX1yrzZd6MhA7gHZUvlDsvepDs54RH76x7RGHtXIoxZ5FJFHW8ijGnlUI4-2kUcBeXSFPLpCHl0hD8aVtEYe1cijDfIek_PTk8m7905N8uEIsJUrRw6l7yYilZyHUvI0iqUPWqkaBqngQiaxpwIZDPnAj3jAU5W6Qsh4KD0Ff4Bu7T8hO_ksV08J9UXguXzQ74cqGAjQ_PtoQERplCbQkPgd4tkJZoWp5cJskOMla0mFoVSYkUqHvLGiYDZZGbZXBpDapHN4W2dV1utFyfqs9JjLvroRZpiD8aMJSoZBh7xteta6sNFxN73xoUUNg_0CnYDwkc4WJcMNHFnohnGH7Bs4NZMBxhv63d1nG_R-Tu6uvtkXZKeaL9RLckcsq6ycH5DtcBod1F_Fb9de9c8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+cardiac+shape+analysis+with+variational+point+cloud+autoencoders+for+myocardial+infarction+prediction+and+virtual+heart+synthesis&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Beetz%2C+Marcel&rft.au=Banerjee%2C+Abhirup&rft.au=Li%2C+Lei&rft.au=Camps%2C+Julia&rft.date=2025-09-01&rft.issn=1879-0771&rft.eissn=1879-0771&rft.volume=124&rft.spage=102587&rft_id=info:doi/10.1016%2Fj.compmedimag.2025.102587&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611125X00057%2Fcov150h.gif