The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma

Here, we propose a new model for understanding the Warburg effect in tumor metabolism.  Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Jg. 8; H. 23; S. 3984 - 4001
Hauptverfasser: Pavlides, Stephanos, Whitaker-Menezes, Diana, Castello-Cros, Remedios, Flomenberg, Neal, Witkiewicz, Agnieszka K., Frank, Philippe G., Casimiro, Mathew C., Wang, Chenguang, Fortina, Paolo, Addya, Sankar, Pestell, Richard G., Martinez-Outschoorn, Ubaldo E., Sotgia, Federica, Lisanti, Michael P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Taylor & Francis 01.12.2009
Schlagworte:
ISSN:1538-4101, 1551-4005, 1551-4005
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Here, we propose a new model for understanding the Warburg effect in tumor metabolism.  Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis).  Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis.  In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the up-regulation of both i) myo-fibroblast markers and ii) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect", explaining its powerful predictive value.
AbstractList Here, we propose a new model for understanding the Warburg effect in tumor metabolism.  Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis).  Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis.  In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the up-regulation of both i) myo-fibroblast markers and ii) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect", explaining its powerful predictive value.
Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.
Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.
Author Pavlides, Stephanos
Castello-Cros, Remedios
Martinez-Outschoorn, Ubaldo E.
Casimiro, Mathew C.
Wang, Chenguang
Frank, Philippe G.
Lisanti, Michael P.
Fortina, Paolo
Whitaker-Menezes, Diana
Addya, Sankar
Witkiewicz, Agnieszka K.
Sotgia, Federica
Pestell, Richard G.
Flomenberg, Neal
Author_xml – sequence: 1
  givenname: Stephanos
  surname: Pavlides
  fullname: Pavlides, Stephanos
– sequence: 2
  givenname: Diana
  surname: Whitaker-Menezes
  fullname: Whitaker-Menezes, Diana
– sequence: 3
  givenname: Remedios
  surname: Castello-Cros
  fullname: Castello-Cros, Remedios
– sequence: 4
  givenname: Neal
  surname: Flomenberg
  fullname: Flomenberg, Neal
– sequence: 5
  givenname: Agnieszka K.
  surname: Witkiewicz
  fullname: Witkiewicz, Agnieszka K.
– sequence: 6
  givenname: Philippe G.
  surname: Frank
  fullname: Frank, Philippe G.
– sequence: 7
  givenname: Mathew C.
  surname: Casimiro
  fullname: Casimiro, Mathew C.
– sequence: 8
  givenname: Chenguang
  surname: Wang
  fullname: Wang, Chenguang
– sequence: 9
  givenname: Paolo
  surname: Fortina
  fullname: Fortina, Paolo
– sequence: 10
  givenname: Sankar
  surname: Addya
  fullname: Addya, Sankar
– sequence: 11
  givenname: Richard G.
  surname: Pestell
  fullname: Pestell, Richard G.
– sequence: 12
  givenname: Ubaldo E.
  surname: Martinez-Outschoorn
  fullname: Martinez-Outschoorn, Ubaldo E.
– sequence: 13
  givenname: Federica
  surname: Sotgia
  fullname: Sotgia, Federica
  email: federica.sotgia@jefferson.edu
– sequence: 14
  givenname: Michael P.
  surname: Lisanti
  fullname: Lisanti, Michael P.
  email: mlisanti@KimmelCancerCenter.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19923890$$D View this record in MEDLINE/PubMed
BookMark eNp1kctrFTEUh4NU7EOXbiU7V3PNa17uSvEFBTcVlyFzcqZGMpN6krHc_97UW-9ClASSxff9TvjlnJ2saUXGXkqxM7KTbwB2w07pnRRKD0_YmWxb2Rgh2pOHux4aI4U8Zec5fxdCDf0on7FTOY6VHsUZ8zffkBP-RMrIvzqaNrrlOM8I5S2_REpTAH4b95DiPofMw8rBrYDEXc4Jgivo-RymCkaXS-Zu9bzUzLItiXgulBb3nD2dXcz44vG8YF_ev7u5-thcf_7w6eryugEz9KXxum-N7sD41oFXatBqEgZGZRTU3XW9msfWmRnrAiE73fl59NjJXnulJ33BXh9y7yj92DAXu4QMGKNbMW3Z9trIVtYZlXz1SG7Tgt7eUVgc7e2fYiqgDwBQyplwthCKKyGthVyIVgr7UL8FsINV2v6uv1rNX9Yx-D-8OPD1hR7zFFKGgLXeo1d5RyVAxKMyHJSwzokWd58oelvcPiaaqX5NyFb_e9ovUwOrxQ
CitedBy_id crossref_primary_10_1007_s10585_021_10102_1
crossref_primary_10_3389_fcell_2023_1254313
crossref_primary_10_3390_ijms25063142
crossref_primary_10_1155_2022_2192654
crossref_primary_10_1016_j_drudis_2025_104478
crossref_primary_10_1002_ijc_29501
crossref_primary_10_1016_j_bbcan_2025_189380
crossref_primary_10_3390_biom12101412
crossref_primary_10_3390_cancers14061519
crossref_primary_10_1186_1479_5876_12_2
crossref_primary_10_31083_j_fbl2903099
crossref_primary_10_3389_fonc_2022_1015402
crossref_primary_10_3389_fimmu_2019_01720
crossref_primary_10_3934_mbe_2025091
crossref_primary_10_1016_j_ajpath_2011_03_002
crossref_primary_10_1038_s41598_018_37664_7
crossref_primary_10_1186_s13578_024_01308_3
crossref_primary_10_1586_14737159_2015_1069711
crossref_primary_10_1002_btpr_3090
crossref_primary_10_1002_cam4_70975
crossref_primary_10_1177_0194599817746934
crossref_primary_10_1146_annurev_pathol_011811_120856
crossref_primary_10_3390_cancers11101574
crossref_primary_10_1016_j_semcdb_2019_05_019
crossref_primary_10_1038_s41598_017_03342_3
crossref_primary_10_1016_j_canlet_2015_01_032
crossref_primary_10_1016_j_ajpath_2022_11_009
crossref_primary_10_3390_cells9010024
crossref_primary_10_4161_auto_26550
crossref_primary_10_4161_auto_24132
crossref_primary_10_1177_1010428318756203
crossref_primary_10_1016_j_canlet_2020_04_016
crossref_primary_10_3390_ijms19102907
crossref_primary_10_1186_bcr3368
crossref_primary_10_3389_fonc_2021_719922
crossref_primary_10_1134_S0006297919100018
crossref_primary_10_1158_0008_5472_CAN_16_2074
crossref_primary_10_4161_cc_22777
crossref_primary_10_1002_stem_1361
crossref_primary_10_1038_nrendo_2014_94
crossref_primary_10_1371_journal_pcbi_1006733
crossref_primary_10_1016_j_canlet_2020_03_004
crossref_primary_10_1186_s12967_024_05770_y
crossref_primary_10_3390_cancers13236135
crossref_primary_10_3389_fmolb_2025_1492282
crossref_primary_10_3390_clinbioenerg1010005
crossref_primary_10_1038_s41392_024_01808_1
crossref_primary_10_1186_s40169_016_0082_9
crossref_primary_10_1016_j_canlet_2019_07_010
crossref_primary_10_3389_fimmu_2023_1208870
crossref_primary_10_15252_msb_20167386
crossref_primary_10_1371_journal_pone_0107046
crossref_primary_10_1038_s41401_025_01517_7
crossref_primary_10_3389_fcell_2021_715200
crossref_primary_10_3390_cancers13215447
crossref_primary_10_3390_cells14120931
crossref_primary_10_1016_j_critrevonc_2024_104389
crossref_primary_10_1016_j_tibs_2018_10_011
crossref_primary_10_1038_s41420_024_01910_x
crossref_primary_10_1242_jcs_252957
crossref_primary_10_3389_fonc_2017_00313
crossref_primary_10_3390_cancers13081749
crossref_primary_10_1016_j_ejca_2019_09_002
crossref_primary_10_1016_j_phrs_2022_106194
crossref_primary_10_1016_j_actbio_2016_10_007
crossref_primary_10_3390_cells8040293
crossref_primary_10_3390_cells9010205
crossref_primary_10_1186_s12967_025_06151_9
crossref_primary_10_1016_j_biopha_2023_114502
crossref_primary_10_4161_cc_9_19_13139
crossref_primary_10_3390_cancers10120485
crossref_primary_10_3389_fmolb_2023_1302016
crossref_primary_10_1186_s12943_022_01670_1
crossref_primary_10_1186_s40170_017_0166_z
crossref_primary_10_3390_cancers13030399
crossref_primary_10_3389_fonc_2023_1304106
crossref_primary_10_3390_cancers14133086
crossref_primary_10_1016_j_mce_2021_111491
crossref_primary_10_1373_clinchem_2014_237172
crossref_primary_10_4161_cc_10_8_15330
crossref_primary_10_2147_CMAR_S273718
crossref_primary_10_3389_fcell_2022_881297
crossref_primary_10_1186_1741_7015_9_62
crossref_primary_10_1111_cas_14275
crossref_primary_10_3389_fonc_2025_1638060
crossref_primary_10_1038_s41416_019_0509_3
crossref_primary_10_1007_s40291_023_00645_2
crossref_primary_10_1186_1475_2867_13_35
crossref_primary_10_1016_j_actbio_2016_11_072
crossref_primary_10_1371_journal_pone_0075154
crossref_primary_10_1016_j_trsl_2023_10_003
crossref_primary_10_3390_cancers8020019
crossref_primary_10_4161_cc_21884
crossref_primary_10_1242_jcs_213579
crossref_primary_10_1007_s00018_023_04902_9
crossref_primary_10_1038_s12276_023_01013_0
crossref_primary_10_1016_j_mad_2011_11_001
crossref_primary_10_3390_cells8030275
crossref_primary_10_3390_molecules30081763
crossref_primary_10_1371_journal_pone_0055790
crossref_primary_10_3389_fonc_2019_00219
crossref_primary_10_1007_s10555_018_9772_7
crossref_primary_10_1186_s40478_021_01151_4
crossref_primary_10_1007_s11060_021_03903_7
crossref_primary_10_1186_s12943_024_02113_9
crossref_primary_10_1016_j_molmet_2024_101966
crossref_primary_10_1152_japplphysiol_00283_2015
crossref_primary_10_1111_jcmm_12794
crossref_primary_10_1007_s40495_016_0067_9
crossref_primary_10_1016_j_jare_2025_06_034
crossref_primary_10_31083_j_fbl2912402
crossref_primary_10_1002_hed_23745
crossref_primary_10_3389_fendo_2017_00031
crossref_primary_10_1186_s13048_020_00718_4
crossref_primary_10_1038_s41419_022_05351_1
crossref_primary_10_1111_pcmr_12661
crossref_primary_10_1007_s13277_016_5049_3
crossref_primary_10_1371_journal_pone_0081859
crossref_primary_10_3389_fimmu_2023_1152312
crossref_primary_10_4161_cc_26280
crossref_primary_10_3389_fphar_2023_1237456
crossref_primary_10_2147_OTT_S280797
crossref_primary_10_1016_j_pharmthera_2023_108458
crossref_primary_10_1002_ijc_32990
crossref_primary_10_20960_nh_05171
crossref_primary_10_1016_j_canlet_2015_02_018
crossref_primary_10_1186_s12935_023_02852_7
crossref_primary_10_1038_s41416_020_01125_8
crossref_primary_10_1038_s42255_020_00317_z
crossref_primary_10_1016_j_semcancer_2013_12_007
crossref_primary_10_1158_0008_5472_CAN_24_3173
crossref_primary_10_1002_adhm_201901713
crossref_primary_10_1007_s11538_011_9711_z
crossref_primary_10_1158_0008_5472_CAN_16_0266
crossref_primary_10_3389_fonc_2022_1037831
crossref_primary_10_2147_OTT_S304298
crossref_primary_10_3390_ijms26115398
crossref_primary_10_3389_fonc_2020_599915
crossref_primary_10_3390_cancers14143528
crossref_primary_10_3390_pathophysiology30030031
crossref_primary_10_3389_fonc_2023_1152553
crossref_primary_10_1038_s41368_021_00115_7
crossref_primary_10_1016_j_oraloncology_2020_104972
crossref_primary_10_4161_cc_9_16_12553
crossref_primary_10_3389_fimmu_2016_00052
crossref_primary_10_1038_emm_2016_119
crossref_primary_10_1016_j_addr_2014_03_001
crossref_primary_10_1016_j_gene_2016_10_005
crossref_primary_10_3389_fonc_2022_897703
crossref_primary_10_1002_jcp_29096
crossref_primary_10_1016_j_apsb_2025_04_002
crossref_primary_10_1016_j_bbamcr_2019_118604
crossref_primary_10_1093_neuonc_nou035
crossref_primary_10_3390_cells10020304
crossref_primary_10_1038_s41598_019_45850_4
crossref_primary_10_2174_0929867326666190712150638
crossref_primary_10_1186_s12964_023_01129_w
crossref_primary_10_1038_s41392_021_00641_0
crossref_primary_10_3390_ijms21207710
crossref_primary_10_1038_s41598_019_50531_3
crossref_primary_10_3390_cancers13010127
crossref_primary_10_1007_s00441_016_2471_1
crossref_primary_10_1002_cac2_70054
crossref_primary_10_1007_s12268_020_1470_7
crossref_primary_10_1016_j_ebiom_2019_02_058
crossref_primary_10_1016_j_bbamcr_2021_119076
crossref_primary_10_1186_s13046_019_1214_z
crossref_primary_10_1007_s10911_020_09475_y
crossref_primary_10_3389_fonc_2022_783908
crossref_primary_10_1038_onc_2012_181
crossref_primary_10_1038_nchembio_2422
crossref_primary_10_1038_nrc_2016_73
crossref_primary_10_1186_s13046_022_02524_w
crossref_primary_10_1155_2016_8549635
crossref_primary_10_1155_2013_195028
crossref_primary_10_1016_j_semcancer_2021_03_032
crossref_primary_10_3390_molecules27175514
crossref_primary_10_1016_j_plipres_2017_11_002
crossref_primary_10_3389_fonc_2022_942064
crossref_primary_10_1016_j_freeradbiomed_2018_10_450
crossref_primary_10_1053_j_seminoncol_2014_03_003
crossref_primary_10_1038_s41540_025_00494_1
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_1158_0008_5472_CAN_17_0764
crossref_primary_10_1371_journal_pone_0150232
crossref_primary_10_1155_2019_2084195
crossref_primary_10_1053_j_seminoncol_2014_03_004
crossref_primary_10_3390_v14010103
crossref_primary_10_3389_fonc_2020_00317
crossref_primary_10_1007_s13277_014_2345_7
crossref_primary_10_1038_s41556_018_0083_6
crossref_primary_10_1186_s13046_015_0221_y
crossref_primary_10_1016_j_bmcl_2016_05_054
crossref_primary_10_7717_peerj_10648
crossref_primary_10_1002_cbin_12004
crossref_primary_10_1016_j_canlet_2024_216680
crossref_primary_10_3389_fcell_2020_00651
crossref_primary_10_1016_j_biocel_2014_03_009
crossref_primary_10_1016_j_critrevonc_2013_04_001
crossref_primary_10_1016_j_cell_2017_09_019
crossref_primary_10_3390_cancers12010042
crossref_primary_10_3390_biom15071010
crossref_primary_10_1016_j_suronc_2015_05_002
crossref_primary_10_1016_j_cellsig_2024_111584
crossref_primary_10_1016_j_ebiom_2019_02_025
crossref_primary_10_1093_neuonc_now258
crossref_primary_10_4161_cc_20718
crossref_primary_10_1007_s10549_011_1751_4
crossref_primary_10_4161_cc_20717
crossref_primary_10_1007_s12551_020_00758_6
crossref_primary_10_3389_fonc_2022_908156
crossref_primary_10_1098_rsfs_2014_0014
crossref_primary_10_1155_2015_972193
crossref_primary_10_1007_s00018_015_2071_3
crossref_primary_10_1038_s42003_019_0553_9
crossref_primary_10_1007_s11914_021_00695_7
crossref_primary_10_1080_15384101_2016_1160974
crossref_primary_10_4161_cc_10_15_16870
crossref_primary_10_1016_j_ijpara_2012_07_011
crossref_primary_10_2147_CMAR_S421771
crossref_primary_10_3390_ijms21155416
crossref_primary_10_4161_cc_24092
crossref_primary_10_1016_j_lungcan_2019_08_003
crossref_primary_10_3390_cells10051056
crossref_primary_10_1186_s13046_020_01765_x
crossref_primary_10_1002_jcp_25932
crossref_primary_10_3389_fmolb_2024_1354076
crossref_primary_10_1007_s13237_017_0194_7
crossref_primary_10_1136_gutjnl_2021_326070
crossref_primary_10_1038_nchembio_2172
crossref_primary_10_3390_cancers13040601
crossref_primary_10_1016_j_humgen_2023_201243
crossref_primary_10_1097_GOX_0000000000004492
crossref_primary_10_3390_ph8040675
crossref_primary_10_3390_cells14100732
crossref_primary_10_3390_cells11233790
crossref_primary_10_1002_adtp_202000248
crossref_primary_10_1167_iovs_61_13_4
crossref_primary_10_1002_jcp_25349
crossref_primary_10_1186_s40170_015_0140_6
crossref_primary_10_1007_s00335_025_10137_9
crossref_primary_10_3390_ijms231710172
crossref_primary_10_1007_s10555_020_09890_x
crossref_primary_10_3390_cancers16173082
crossref_primary_10_3390_cells13020197
crossref_primary_10_1186_s13148_020_00862_0
crossref_primary_10_1038_s41598_018_22480_w
crossref_primary_10_1016_j_bbadis_2020_166016
crossref_primary_10_1002_pmic_201700167
crossref_primary_10_1016_j_bbcan_2017_08_004
crossref_primary_10_1016_j_tranon_2016_05_004
crossref_primary_10_1002_mco2_218
crossref_primary_10_1007_s12035_019_1591_5
crossref_primary_10_1038_bjc_2017_69
crossref_primary_10_1016_j_cytogfr_2019_12_002
crossref_primary_10_1007_s10549_015_3304_8
crossref_primary_10_3389_fonc_2019_01185
crossref_primary_10_4049_jimmunol_2001203
crossref_primary_10_3390_antiox10020169
crossref_primary_10_4161_cc_11_6_19746
crossref_primary_10_1093_abbs_gmw097
crossref_primary_10_1177_10732748241299072
crossref_primary_10_1158_0008_5472_CAN_13_1117
crossref_primary_10_1002_cbf_3652
crossref_primary_10_1038_s41388_019_1014_0
crossref_primary_10_1016_j_prp_2023_154518
crossref_primary_10_1039_c3ib40166a
crossref_primary_10_1186_s12943_023_01801_2
crossref_primary_10_1016_j_semcdb_2016_11_003
crossref_primary_10_1016_j_jconrel_2023_05_024
crossref_primary_10_1186_s12943_019_0980_8
crossref_primary_10_1002_lary_28336
crossref_primary_10_3390_ijms24087136
crossref_primary_10_1016_j_mito_2022_02_006
crossref_primary_10_3389_fnut_2021_588466
crossref_primary_10_1038_s41420_024_02226_6
crossref_primary_10_1194_jlr_R083725
crossref_primary_10_1177_03915603221111125
crossref_primary_10_1007_s43440_023_00504_1
crossref_primary_10_1016_j_bbcan_2021_188646
crossref_primary_10_1186_s13045_017_0436_9
crossref_primary_10_1007_s00109_014_1124_7
crossref_primary_10_3389_fonc_2022_960720
crossref_primary_10_1002_med_21511
crossref_primary_10_1016_j_cellsig_2020_109718
crossref_primary_10_1016_j_addr_2022_114504
crossref_primary_10_1016_j_addr_2017_09_002
crossref_primary_10_3390_ijms21155486
crossref_primary_10_1016_j_mam_2015_12_001
crossref_primary_10_1016_j_canlet_2015_11_018
crossref_primary_10_1177_1010428317695922
crossref_primary_10_1186_s13045_024_01527_8
crossref_primary_10_1159_000518208
crossref_primary_10_3389_fimmu_2023_1323115
crossref_primary_10_3109_15368378_2015_1036076
crossref_primary_10_1155_2017_2545031
crossref_primary_10_1007_s10555_021_10013_3
crossref_primary_10_3390_ijms24065141
crossref_primary_10_1007_s12274_020_3113_1
crossref_primary_10_1016_j_foohum_2025_100748
crossref_primary_10_3892_ol_2022_13356
crossref_primary_10_1002_ctm2_654
crossref_primary_10_1007_s13167_020_00224_z
crossref_primary_10_1158_0008_5472_CAN_14_2258
crossref_primary_10_1038_s41416_022_01818_2
crossref_primary_10_1038_s41388_019_0688_7
crossref_primary_10_1097_CCO_0000000000000420
crossref_primary_10_1016_j_biomaterials_2016_11_044
crossref_primary_10_4161_cc_11_6_19530
crossref_primary_10_1016_j_semcancer_2024_06_003
crossref_primary_10_1016_j_canlet_2015_12_033
crossref_primary_10_1038_onc_2016_370
crossref_primary_10_3389_fcell_2017_00027
crossref_primary_10_1007_s10522_014_9534_z
crossref_primary_10_1016_j_bbamcr_2024_119752
crossref_primary_10_7554_eLife_75908
crossref_primary_10_3389_fcell_2021_676319
crossref_primary_10_3390_ijms18030540
crossref_primary_10_3390_ijms25115691
crossref_primary_10_1016_j_tice_2025_102893
crossref_primary_10_1016_j_pharmthera_2019_04_004
crossref_primary_10_4161_cc_25695
crossref_primary_10_1016_j_ccell_2024_08_011
crossref_primary_10_3389_fimmu_2023_1053920
crossref_primary_10_3389_fonc_2021_628359
crossref_primary_10_1158_0008_5472_CAN_22_3481
crossref_primary_10_1007_s12032_025_03028_1
crossref_primary_10_1007_s10911_019_09435_1
crossref_primary_10_1016_j_csbj_2023_08_015
crossref_primary_10_1007_s00432_020_03489_z
crossref_primary_10_1155_2016_6456018
crossref_primary_10_3389_fendo_2022_988295
crossref_primary_10_1080_14737159_2019_1604223
crossref_primary_10_4155_fmc_13_206
crossref_primary_10_1038_s41467_024_54963_y
crossref_primary_10_1038_s41598_021_84019_w
crossref_primary_10_1158_1078_0432_CCR_16_3102
crossref_primary_10_1002_jha2_176
crossref_primary_10_1007_s10555_012_9415_3
crossref_primary_10_3389_fonc_2024_1401113
crossref_primary_10_3390_metabo10100418
crossref_primary_10_1155_2016_4502846
crossref_primary_10_1186_s40170_016_0149_5
crossref_primary_10_1038_s41585_019_0263_6
crossref_primary_10_1016_j_semcancer_2021_09_003
crossref_primary_10_1155_2013_109285
crossref_primary_10_1007_s13277_015_3762_y
crossref_primary_10_1080_14737159_2019_1607729
crossref_primary_10_1002_gcc_22194
crossref_primary_10_1159_000358365
crossref_primary_10_1038_s41392_025_02311_x
crossref_primary_10_1016_j_trsl_2017_07_004
crossref_primary_10_1002_prca_202200102
crossref_primary_10_4161_cc_22136
crossref_primary_10_4331_wjbc_v6_i3_148
crossref_primary_10_1016_j_ajpath_2012_03_017
crossref_primary_10_1080_15384101_2015_1078032
crossref_primary_10_1080_15384101_2017_1387697
crossref_primary_10_3892_ol_2016_5451
crossref_primary_10_3389_fimmu_2023_1284344
crossref_primary_10_3389_fonc_2017_00036
crossref_primary_10_3390_ijms26052275
crossref_primary_10_4161_cc_10_24_18487
crossref_primary_10_1038_s41420_023_01428_8
crossref_primary_10_1016_j_canlet_2024_217156
crossref_primary_10_3390_ijms22126587
crossref_primary_10_1007_s13402_018_0383_7
crossref_primary_10_3390_cancers14102552
crossref_primary_10_1371_journal_pone_0240849
crossref_primary_10_3389_fendo_2022_863027
crossref_primary_10_1016_j_pan_2012_11_311
crossref_primary_10_1186_s13018_023_03623_w
crossref_primary_10_1007_s13277_013_0707_1
crossref_primary_10_1016_j_devcel_2020_06_018
crossref_primary_10_1016_j_drup_2020_100715
crossref_primary_10_3390_ijms242115834
crossref_primary_10_1002_adhm_202100799
crossref_primary_10_1002_bies_202100207
crossref_primary_10_1016_j_canlet_2014_07_028
crossref_primary_10_1063_1_5089772
crossref_primary_10_1007_s11010_023_04861_6
crossref_primary_10_3389_fonc_2021_631703
crossref_primary_10_1016_j_bcp_2014_08_011
crossref_primary_10_3390_cancers13215575
crossref_primary_10_1007_s13402_023_00775_z
crossref_primary_10_3389_fnins_2017_00043
crossref_primary_10_1038_ncb3094
crossref_primary_10_1038_s41419_020_2667_x
crossref_primary_10_1002_wsbm_1397
crossref_primary_10_1007_s13167_019_00170_5
crossref_primary_10_3389_fimmu_2022_1038650
crossref_primary_10_3389_fonc_2022_1011191
crossref_primary_10_3390_antiox12101818
crossref_primary_10_1016_j_biocel_2015_01_003
crossref_primary_10_1038_nmat4549
crossref_primary_10_3390_app10051826
crossref_primary_10_1016_j_semcancer_2020_12_002
crossref_primary_10_3389_fimmu_2017_00939
crossref_primary_10_15252_embj_2021109288
crossref_primary_10_1111_obr_13833
crossref_primary_10_1007_s13148_011_0030_x
crossref_primary_10_1016_j_canlet_2018_11_023
crossref_primary_10_1038_s41419_019_2114_z
crossref_primary_10_1016_j_neo_2020_12_009
crossref_primary_10_1016_j_ydbio_2021_02_011
crossref_primary_10_1002_ijc_27664
crossref_primary_10_1016_j_intimp_2022_109052
crossref_primary_10_3390_cells9020510
crossref_primary_10_3390_cancers12020404
crossref_primary_10_1016_j_biosystems_2025_105527
crossref_primary_10_3389_fonc_2017_00068
crossref_primary_10_4161_cc_23421
crossref_primary_10_1667_RR2903_1
crossref_primary_10_3390_cancers16061113
crossref_primary_10_1038_s41419_020_2434_z
crossref_primary_10_1038_s41418_024_01402_6
crossref_primary_10_3892_or_2017_5479
crossref_primary_10_1016_j_bbcan_2022_188797
crossref_primary_10_1038_s41421_021_00271_4
crossref_primary_10_1007_s12032_025_02945_5
crossref_primary_10_1038_s41419_020_02881_4
crossref_primary_10_4252_wjsc_v12_i6_448
crossref_primary_10_1016_j_ymthe_2024_12_044
crossref_primary_10_3390_cancers13061399
crossref_primary_10_1158_0008_5472_CAN_16_2942
crossref_primary_10_3390_cancers15072014
crossref_primary_10_1186_s12943_019_0960_z
crossref_primary_10_2217_fon_2020_0362
crossref_primary_10_1111_his_12002
crossref_primary_10_1002_mrm_27501
crossref_primary_10_3390_cells12172160
crossref_primary_10_1016_j_lfs_2022_121033
crossref_primary_10_1016_j_bbamcr_2015_09_013
crossref_primary_10_1139_bcb_2018_0076
crossref_primary_10_1002_ijc_26116
crossref_primary_10_1016_j_bbalip_2013_02_010
crossref_primary_10_1186_s13059_024_03385_6
crossref_primary_10_1158_1078_0432_CCR_14_2198
crossref_primary_10_1016_j_cmet_2018_08_007
crossref_primary_10_1371_journal_pone_0213419
crossref_primary_10_1038_ncb3330
crossref_primary_10_4161_cc_9_17_12908
crossref_primary_10_1371_journal_pone_0097239
crossref_primary_10_1155_2022_3846010
crossref_primary_10_3389_fonc_2020_00641
crossref_primary_10_1186_1471_2407_14_154
crossref_primary_10_1053_j_seminoncol_2013_04_016
crossref_primary_10_1186_s12943_020_01294_3
crossref_primary_10_1007_s00018_019_03209_y
crossref_primary_10_1111_imr_12846
crossref_primary_10_1186_s13046_020_01611_0
crossref_primary_10_1007_s00018_015_2100_2
crossref_primary_10_3390_cells14060403
crossref_primary_10_1111_j_1349_7006_2011_02183_x
crossref_primary_10_1016_j_canlet_2016_02_006
crossref_primary_10_3389_fonc_2022_1004850
crossref_primary_10_1016_j_bioorg_2024_107836
crossref_primary_10_3390_cells14171353
crossref_primary_10_1038_s41598_017_14226_x
crossref_primary_10_1177_2515690X18789628
crossref_primary_10_3389_fcell_2023_1089068
crossref_primary_10_1038_aps_2016_47
crossref_primary_10_1155_2014_310372
crossref_primary_10_1146_annurev_nutr_013120_041149
crossref_primary_10_3389_fonc_2018_00082
crossref_primary_10_1155_2018_6075403
crossref_primary_10_1155_2017_1320241
crossref_primary_10_1186_bcr3472
crossref_primary_10_4161_cc_9_17_12928
crossref_primary_10_3390_ijms15058893
crossref_primary_10_3390_ijms21186837
crossref_primary_10_3390_jpm12081329
crossref_primary_10_1016_j_semcancer_2014_04_003
crossref_primary_10_1097_MOH_0000000000000390
crossref_primary_10_3390_cancers15204936
crossref_primary_10_1016_j_matbio_2022_07_003
crossref_primary_10_3390_cancers3033002
crossref_primary_10_1038_srep11880
crossref_primary_10_1155_2015_242437
crossref_primary_10_1186_s13046_019_1172_5
crossref_primary_10_1096_fj_13_244640
crossref_primary_10_3390_cells12172123
crossref_primary_10_3892_ol_2019_10485
crossref_primary_10_1186_bcr3467
crossref_primary_10_3390_cancers12103017
crossref_primary_10_1186_s12575_024_00245_2
crossref_primary_10_1177_1758834014521111
crossref_primary_10_3390_cancers13194798
crossref_primary_10_1186_s12931_019_1058_2
crossref_primary_10_3892_ijo_2022_5309
crossref_primary_10_1038_s41416_018_0042_9
crossref_primary_10_1002_mrd_23260
crossref_primary_10_3390_biomedicines9060607
crossref_primary_10_3389_fimmu_2022_1049043
crossref_primary_10_3892_mmr_2015_4610
crossref_primary_10_1016_j_semcancer_2022_12_001
crossref_primary_10_1093_carcin_bgz001
crossref_primary_10_1080_15384101_2019_1598727
crossref_primary_10_1016_j_trecan_2024_10_005
crossref_primary_10_3390_cancers14184394
crossref_primary_10_3892_or_2015_4326
crossref_primary_10_4161_cc_10_13_16233
crossref_primary_10_1016_j_prp_2021_153641
crossref_primary_10_7717_peerj_14299
crossref_primary_10_1016_j_devcel_2024_06_022
crossref_primary_10_1016_j_semcancer_2019_06_006
crossref_primary_10_1016_j_bbcan_2012_04_005
crossref_primary_10_3390_ijms232012578
crossref_primary_10_1002_1873_3468_12121
crossref_primary_10_1016_j_ajpath_2021_02_010
crossref_primary_10_4161_cc_9_21_13817
crossref_primary_10_3892_ijo_2018_4340
crossref_primary_10_3389_fphys_2019_01606
crossref_primary_10_1016_j_bbamcr_2016_03_013
crossref_primary_10_3389_fonc_2024_1428802
crossref_primary_10_1134_S0022093022030127
crossref_primary_10_1016_j_bbrc_2016_11_100
crossref_primary_10_1042_BCJ20170164
crossref_primary_10_3389_fimmu_2021_725641
crossref_primary_10_1093_function_zqae008
crossref_primary_10_1007_s10555_011_9340_x
crossref_primary_10_3390_cancers12040898
crossref_primary_10_3390_cancers16162817
crossref_primary_10_3892_ijmm_2017_3267
crossref_primary_10_1016_j_semcancer_2019_07_015
crossref_primary_10_1016_j_bbabio_2019_06_012
crossref_primary_10_1016_j_bbcan_2024_189166
crossref_primary_10_1038_s41467_022_28069_2
crossref_primary_10_3390_cells11091433
crossref_primary_10_3389_fimmu_2023_1084887
crossref_primary_10_1161_CIRCRESAHA_116_302855
crossref_primary_10_1002_1873_3468_14794
crossref_primary_10_1146_annurev_cancerbio_030419_033333
crossref_primary_10_1016_j_smim_2018_01_002
crossref_primary_10_1038_s41420_021_00804_6
crossref_primary_10_4161_cc_9_17_12721
crossref_primary_10_1016_j_coisb_2021_100377
crossref_primary_10_3389_fonc_2023_1281650
crossref_primary_10_1134_S0022093022030115
crossref_primary_10_1016_j_smim_2020_101417
crossref_primary_10_1186_s13048_023_01196_0
crossref_primary_10_3390_biomedicines9121942
crossref_primary_10_1016_j_semcancer_2017_03_004
crossref_primary_10_3390_jcm8122184
crossref_primary_10_3389_fonc_2022_906494
crossref_primary_10_1007_s00436_015_4895_z
crossref_primary_10_1016_j_biochi_2020_05_005
crossref_primary_10_1016_j_bbabio_2017_02_005
crossref_primary_10_3389_fonc_2019_00322
crossref_primary_10_1016_j_bbabio_2017_02_001
crossref_primary_10_1016_j_ecoenv_2021_113098
crossref_primary_10_1089_cell_2023_0010
crossref_primary_10_4161_cc_9_17_12731
crossref_primary_10_1097_MD_0000000000000380
crossref_primary_10_4161_cc_21701
crossref_primary_10_1016_j_ctrc_2016_02_008
crossref_primary_10_1182_bloodadvances_2020001816
crossref_primary_10_1371_journal_pone_0115153
crossref_primary_10_17656_jzs_10638
crossref_primary_10_3389_fendo_2019_00690
crossref_primary_10_1038_s41568_018_0006_7
crossref_primary_10_4161_cc_10_15_16584
crossref_primary_10_4161_cc_10_15_16585
crossref_primary_10_1016_j_jnutbio_2014_11_001
crossref_primary_10_1016_j_bbcan_2025_189428
crossref_primary_10_1053_j_gastro_2020_02_059
crossref_primary_10_1002_cam4_70216
crossref_primary_10_3390_ijms20153694
crossref_primary_10_3390_metabo10050173
crossref_primary_10_3389_fimmu_2022_839362
crossref_primary_10_3389_fonc_2020_00005
crossref_primary_10_1088_1742_6596_329_1_012007
crossref_primary_10_1186_s12943_021_01463_y
crossref_primary_10_1177_0194599817709224
crossref_primary_10_1016_j_jbc_2024_107333
crossref_primary_10_3390_metabo14020103
crossref_primary_10_1016_j_ccell_2023_12_021
crossref_primary_10_3390_ijms232213732
crossref_primary_10_3389_fmolb_2022_889719
crossref_primary_10_1038_nm_2492
crossref_primary_10_1007_s13577_021_00622_z
crossref_primary_10_1515_oncologie_2023_0298
crossref_primary_10_17816_ACEN_2017_1_6155
crossref_primary_10_3389_fonc_2020_00231
crossref_primary_10_1016_j_mehy_2020_110216
crossref_primary_10_1186_s41181_019_0069_0
crossref_primary_10_3389_froh_2021_686337
crossref_primary_10_1016_j_csbj_2023_04_003
crossref_primary_10_1038_s41389_025_00549_2
crossref_primary_10_1080_15384101_2015_1121329
crossref_primary_10_1186_s40170_018_0190_7
crossref_primary_10_1038_s41568_018_0083_7
crossref_primary_10_1063_1_3699057
crossref_primary_10_1016_j_drup_2025_101273
crossref_primary_10_1053_j_seminoncol_2017_09_001
crossref_primary_10_1016_j_biomaterials_2018_01_038
crossref_primary_10_1016_j_lfs_2021_119773
crossref_primary_10_1016_j_taap_2013_04_020
crossref_primary_10_3389_fimmu_2014_00358
crossref_primary_10_1155_2014_926729
crossref_primary_10_3748_wjg_v21_i4_1140
crossref_primary_10_1210_endrev_bnad015
crossref_primary_10_1016_j_humpath_2019_04_009
crossref_primary_10_3390_cancers15092614
crossref_primary_10_3390_cancers12010154
crossref_primary_10_1016_j_cell_2015_12_034
crossref_primary_10_1016_j_semcancer_2019_08_025
crossref_primary_10_1016_j_semcancer_2017_04_004
crossref_primary_10_1038_nrclinonc_2016_60
crossref_primary_10_1111_odi_12107
crossref_primary_10_3389_fonc_2022_1046630
crossref_primary_10_1016_j_cell_2020_11_043
crossref_primary_10_1016_j_molmet_2021_101389
crossref_primary_10_3390_cancers15010061
crossref_primary_10_1111_jcmm_14890
crossref_primary_10_3892_ol_2014_2385
crossref_primary_10_3109_03009734_2012_654859
crossref_primary_10_3390_endocrines3040049
crossref_primary_10_1002_mc_21863
crossref_primary_10_4161_cc_10_11_15674
crossref_primary_10_1155_2021_1341604
crossref_primary_10_4161_cc_10_11_15675
crossref_primary_10_1371_journal_pone_0185980
crossref_primary_10_1007_s13139_019_00613_x
crossref_primary_10_1186_s12943_025_02309_7
crossref_primary_10_3390_biomedicines12030591
crossref_primary_10_3390_cancers12010181
crossref_primary_10_1016_j_semcancer_2014_01_005
crossref_primary_10_3390_endocrines2040038
crossref_primary_10_1016_j_jfma_2016_08_007
crossref_primary_10_1186_s13287_020_02010_0
crossref_primary_10_1080_2162402X_2016_1229725
crossref_primary_10_3389_fonc_2020_602416
crossref_primary_10_1002_jcp_26917
crossref_primary_10_1002_jcb_25038
crossref_primary_10_3389_fonc_2019_00718
crossref_primary_10_1186_s43556_024_00233_8
crossref_primary_10_1016_j_bbabio_2011_03_010
crossref_primary_10_3390_cancers12071731
crossref_primary_10_3390_ijms24020910
crossref_primary_10_1016_j_ejmech_2020_112393
crossref_primary_10_1016_j_cca_2021_07_011
crossref_primary_10_1038_s41388_019_0805_7
crossref_primary_10_3390_cancers12010171
crossref_primary_10_3390_ijms222111881
crossref_primary_10_1002_mas_21618
crossref_primary_10_3892_mco_2015_526
crossref_primary_10_1016_j_ecoenv_2024_115994
crossref_primary_10_3390_molecules25204831
crossref_primary_10_1002_art_40504
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_3892_ijo_2022_5383
crossref_primary_10_3390_cancers14092321
crossref_primary_10_3390_cancers12061703
crossref_primary_10_1007_s00005_017_0459_5
crossref_primary_10_1155_2018_1346958
crossref_primary_10_1016_j_neubiorev_2025_106035
crossref_primary_10_3390_ijms222111636
crossref_primary_10_4161_cc_19841
crossref_primary_10_3389_fonc_2022_1000888
crossref_primary_10_1146_annurev_biochem_060815_014343
crossref_primary_10_1016_j_canlet_2025_217917
crossref_primary_10_1186_s12943_016_0577_4
crossref_primary_10_1186_s13045_020_00988_x
crossref_primary_10_1016_j_semcancer_2017_05_002
crossref_primary_10_1186_s13045_019_0778_6
crossref_primary_10_1016_j_jcm_2022_02_011
crossref_primary_10_1007_s11912_017_0637_y
crossref_primary_10_1007_s00109_015_1307_x
crossref_primary_10_1002_cac2_12291
crossref_primary_10_20517_2394_5079_2025_15
crossref_primary_10_1016_j_cellsig_2024_111468
crossref_primary_10_3390_cancers12092687
crossref_primary_10_3390_cancers12103067
crossref_primary_10_1038_s41598_017_02251_9
crossref_primary_10_3390_pharmaceutics15112610
crossref_primary_10_3892_ol_2012_928
crossref_primary_10_1007_s00421_017_3795_6
crossref_primary_10_1080_01480545_2021_2016043
crossref_primary_10_1186_s12943_020_01169_7
crossref_primary_10_1186_s40170_016_0153_9
crossref_primary_10_1016_j_jconrel_2022_12_003
crossref_primary_10_1016_j_compbiomed_2021_105177
crossref_primary_10_1007_s10555_019_09796_3
crossref_primary_10_3390_cancers11050619
crossref_primary_10_3390_cells8091102
crossref_primary_10_1038_bjc_2017_113
crossref_primary_10_1007_s13402_023_00801_0
crossref_primary_10_3390_ijms24076128
crossref_primary_10_1016_j_phrs_2019_104511
crossref_primary_10_3389_fcell_2021_665321
crossref_primary_10_3390_biology12081131
crossref_primary_10_1007_s11033_018_4309_2
crossref_primary_10_1080_15384101_2020_1864128
crossref_primary_10_3390_cells8020089
crossref_primary_10_1186_s12876_015_0371_6
crossref_primary_10_1371_journal_ppat_1006524
crossref_primary_10_1007_s00109_020_01965_0
crossref_primary_10_1210_jc_2014_1026
crossref_primary_10_3389_fcell_2023_1056964
crossref_primary_10_3390_cancers16030504
crossref_primary_10_3390_ijms232112993
crossref_primary_10_1016_j_semcancer_2023_03_001
crossref_primary_10_3390_ijms20092256
crossref_primary_10_3390_cancers16132415
crossref_primary_10_3389_fphys_2020_580171
crossref_primary_10_1042_BST20160094
crossref_primary_10_1016_j_cmet_2021_04_002
crossref_primary_10_4251_wjgo_v17_i4_99188
crossref_primary_10_1016_j_bbcan_2023_189012
crossref_primary_10_1002_ijc_34660
crossref_primary_10_1016_j_prp_2025_156151
crossref_primary_10_1371_journal_pone_0313962
crossref_primary_10_1111_jop_12297
crossref_primary_10_1016_j_semcancer_2015_10_002
crossref_primary_10_1242_dmm_033464
crossref_primary_10_1186_s12967_016_0915_8
crossref_primary_10_1016_j_ygyno_2018_06_013
crossref_primary_10_3390_cancers12092652
crossref_primary_10_3390_genes12071015
crossref_primary_10_1159_000366021
crossref_primary_10_3390_ijms231710035
crossref_primary_10_1038_s41575_018_0089_3
crossref_primary_10_1038_s41598_021_82405_y
crossref_primary_10_1097_GOX_0000000000005202
crossref_primary_10_1038_s41598_022_13472_y
crossref_primary_10_1186_s12943_019_1126_8
crossref_primary_10_1002_cbin_12097
crossref_primary_10_3389_fimmu_2024_1431112
crossref_primary_10_1016_j_cytogfr_2021_02_001
crossref_primary_10_1016_j_tcb_2017_06_003
crossref_primary_10_4161_cc_10_12_16002
crossref_primary_10_3390_metabo15040221
crossref_primary_10_1016_j_freeradbiomed_2021_09_024
crossref_primary_10_3390_cells7030021
crossref_primary_10_1371_journal_pone_0105666
crossref_primary_10_1158_0008_5472_CAN_12_1949
crossref_primary_10_4161_cc_24289
crossref_primary_10_1016_j_urolonc_2015_05_013
crossref_primary_10_1080_14728222_2022_2083957
crossref_primary_10_1371_journal_ppat_1005648
crossref_primary_10_1002_prca_201900054
crossref_primary_10_1016_j_bbcan_2020_188443
crossref_primary_10_1113_JP278810
crossref_primary_10_3389_fphys_2016_00412
crossref_primary_10_3390_ijms26178693
crossref_primary_10_1111_apm_13447
crossref_primary_10_1016_j_phymed_2023_155214
crossref_primary_10_1002_mco2_70095
crossref_primary_10_1158_0008_5472_CAN_12_0448
crossref_primary_10_1016_j_bbcan_2022_188808
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_31083_j_fbl2704139
crossref_primary_10_1016_j_bbamem_2014_10_015
crossref_primary_10_1038_s12276_024_01191_5
crossref_primary_10_3389_fonc_2018_00341
crossref_primary_10_4161_cc_10_23_18151
crossref_primary_10_1016_j_cytogfr_2023_06_006
crossref_primary_10_3389_fonc_2020_00281
crossref_primary_10_1016_j_bbcan_2021_188534
crossref_primary_10_3390_cancers14020322
crossref_primary_10_1038_nrc3915
crossref_primary_10_3390_cells11192952
crossref_primary_10_1016_j_biocel_2016_01_002
crossref_primary_10_3390_cancers7040902
crossref_primary_10_1007_s10549_015_3291_9
crossref_primary_10_1007_s13277_013_1588_z
crossref_primary_10_3389_fnut_2014_00027
crossref_primary_10_3390_jcm10061156
crossref_primary_10_1002_jcp_23021
crossref_primary_10_1016_j_psychres_2024_116220
crossref_primary_10_1186_s12943_022_01500_4
crossref_primary_10_3390_ijms24087076
crossref_primary_10_4161_cc_10_11_15659
crossref_primary_10_1371_journal_pone_0101004
crossref_primary_10_1016_j_yexcr_2011_11_014
crossref_primary_10_1158_1078_0432_CCR_12_2123
crossref_primary_10_4161_15384101_2014_964107
crossref_primary_10_1016_j_molmet_2019_07_006
crossref_primary_10_1016_j_csbj_2023_01_044
crossref_primary_10_1080_15368378_2017_1326933
crossref_primary_10_1186_s12943_016_0558_7
crossref_primary_10_1186_s13058_023_01683_8
crossref_primary_10_1177_1178223417731565
crossref_primary_10_1002_path_4217
crossref_primary_10_1155_2021_6645220
crossref_primary_10_1002_lary_26489
crossref_primary_10_1016_j_febslet_2015_05_002
crossref_primary_10_1016_j_jgo_2018_07_010
crossref_primary_10_3390_ijms251910486
crossref_primary_10_1016_j_imlet_2018_11_007
crossref_primary_10_1007_s11010_012_1428_2
crossref_primary_10_1172_JCI69741
crossref_primary_10_3390_cancers13071488
crossref_primary_10_3390_biom10121666
crossref_primary_10_1016_j_yexcr_2010_04_032
crossref_primary_10_1016_j_biocel_2011_01_023
crossref_primary_10_1016_j_bbcan_2021_188553
crossref_primary_10_1002_advs_202301939
crossref_primary_10_18632_oncotarget_6129
crossref_primary_10_3748_wjg_v23_i24_4330
crossref_primary_10_4161_cc_11_2_19006
crossref_primary_10_1111_pcmr_12495
crossref_primary_10_1002_cam4_2659
crossref_primary_10_1016_j_biocel_2014_12_008
crossref_primary_10_1007_s11033_023_08422_4
crossref_primary_10_1111_cas_13873
crossref_primary_10_1186_s13058_020_01355_x
crossref_primary_10_1002_stem_3050
crossref_primary_10_3390_cells14151177
crossref_primary_10_1016_j_bbabio_2010_10_012
crossref_primary_10_3389_fimmu_2023_1236301
crossref_primary_10_3390_cells12060939
crossref_primary_10_1038_s41556_023_01330_6
crossref_primary_10_1155_2012_762825
crossref_primary_10_1134_S002689332306016X
crossref_primary_10_1038_s41523_022_00481_3
crossref_primary_10_1089_thy_2018_0435
crossref_primary_10_1038_s42255_023_00912_w
crossref_primary_10_1177_15353702221087962
crossref_primary_10_2174_1381612828666220922111342
crossref_primary_10_1016_j_semcdb_2014_05_007
crossref_primary_10_1016_j_trsl_2016_02_002
crossref_primary_10_4161_cc_21384
crossref_primary_10_3389_fimmu_2021_688910
crossref_primary_10_1016_j_semcancer_2022_07_004
crossref_primary_10_1016_j_semcancer_2022_07_005
crossref_primary_10_1016_j_bbagen_2013_10_016
crossref_primary_10_1016_j_coisb_2019_10_018
crossref_primary_10_3389_fmolb_2020_00079
crossref_primary_10_1186_s12967_014_0354_3
crossref_primary_10_3390_cancers15133390
crossref_primary_10_1053_j_seminoncol_2017_10_004
crossref_primary_10_1002_path_4248
crossref_primary_10_1089_ars_2011_4243
crossref_primary_10_3892_ijo_2025_5774
crossref_primary_10_1016_j_semcancer_2022_07_003
crossref_primary_10_1016_j_tibs_2015_01_004
crossref_primary_10_1179_1351000214Y_0000000106
crossref_primary_10_1007_s10555_021_09960_8
crossref_primary_10_4161_cc_25510
crossref_primary_10_1016_j_cmet_2017_08_014
crossref_primary_10_1016_j_oraloncology_2016_10_008
crossref_primary_10_1053_j_seminoncol_2017_10_002
crossref_primary_10_1007_s11306_016_1024_7
crossref_primary_10_1053_j_seminoncol_2017_10_001
crossref_primary_10_1016_j_lfs_2021_120168
crossref_primary_10_1016_j_adcanc_2022_100065
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_1002_path_4256
crossref_primary_10_1038_s41598_024_71140_9
crossref_primary_10_1080_14728222_2020_1751819
crossref_primary_10_1371_journal_pcbi_1006584
crossref_primary_10_3390_cells10071653
crossref_primary_10_3390_ijms241511914
crossref_primary_10_1016_j_apsb_2023_12_003
crossref_primary_10_3389_fimmu_2019_01906
crossref_primary_10_1111_jog_13867
crossref_primary_10_1002_pmic_201800148
crossref_primary_10_3390_cancers15030724
crossref_primary_10_3390_cells9020427
crossref_primary_10_1186_1475_2867_12_6
crossref_primary_10_1080_15384101_2015_1071746
crossref_primary_10_1016_j_semcancer_2018_10_002
crossref_primary_10_1089_ars_2016_6750
crossref_primary_10_1016_j_csbj_2022_08_067
crossref_primary_10_1016_j_ijpharm_2017_08_095
crossref_primary_10_3390_jpm12121964
crossref_primary_10_1186_bcr2892
crossref_primary_10_1016_j_molonc_2010_09_001
crossref_primary_10_3389_fonc_2019_01215
crossref_primary_10_1155_2017_9634172
crossref_primary_10_1038_cddis_2017_225
crossref_primary_10_1016_j_fct_2017_05_065
crossref_primary_10_3390_cancers15051417
crossref_primary_10_1038_s41598_017_08835_9
crossref_primary_10_1016_j_heliyon_2023_e14148
crossref_primary_10_1038_nature20170
crossref_primary_10_1084_jem_20140692
crossref_primary_10_1002_stem_2596
crossref_primary_10_1016_j_lfs_2019_03_016
crossref_primary_10_1016_j_mito_2014_05_010
crossref_primary_10_1016_j_bbcan_2013_10_004
crossref_primary_10_3390_cancers14051231
crossref_primary_10_1002_path_4034
crossref_primary_10_1016_j_ijso_2016_10_001
crossref_primary_10_1093_bib_bbad471
crossref_primary_10_3390_cancers13215461
crossref_primary_10_1096_fj_201802226R
crossref_primary_10_1016_j_critrevonc_2017_06_004
crossref_primary_10_3389_fonc_2022_1008902
crossref_primary_10_3390_cancers12030581
crossref_primary_10_3389_fcell_2021_728759
crossref_primary_10_3390_cancers12123798
crossref_primary_10_1016_j_neo_2024_101076
crossref_primary_10_3390_biom10060868
crossref_primary_10_1038_s41598_019_54709_7
crossref_primary_10_1016_j_semcdb_2012_02_003
crossref_primary_10_1080_10715762_2018_1489133
crossref_primary_10_1016_j_trsl_2018_07_013
crossref_primary_10_1007_s13277_014_2482_z
crossref_primary_10_1038_s41598_021_88414_1
crossref_primary_10_1016_j_pharmthera_2013_01_008
crossref_primary_10_1038_s43018_023_00636_6
crossref_primary_10_3389_fonc_2021_700629
crossref_primary_10_3390_cells14171398
crossref_primary_10_1016_j_jtbi_2014_09_018
crossref_primary_10_1016_j_semcancer_2023_01_007
crossref_primary_10_1038_s41467_020_16070_6
crossref_primary_10_3389_fonc_2020_604143
crossref_primary_10_1111_brv_12140
crossref_primary_10_1038_s41568_024_00786_4
crossref_primary_10_3390_ijms131113764
crossref_primary_10_1111_vco_12551
crossref_primary_10_1007_s00432_011_0995_z
crossref_primary_10_3389_fcell_2022_904728
crossref_primary_10_1002_jmv_29807
crossref_primary_10_1016_j_heliyon_2022_e11866
crossref_primary_10_1016_j_ejrad_2018_02_028
crossref_primary_10_1111_acer_12279
crossref_primary_10_1016_j_semcdb_2019_05_021
crossref_primary_10_3390_ijms241813996
crossref_primary_10_1111_php_13723
crossref_primary_10_4161_cc_22226
crossref_primary_10_1136_gutjnl_2025_335014
crossref_primary_10_1039_D3SC01874A
crossref_primary_10_1080_15592294_2016_1140295
crossref_primary_10_1016_j_ctarc_2022_100600
crossref_primary_10_1111_febs_14125
crossref_primary_10_1016_j_tranon_2019_10_001
crossref_primary_10_1002_biof_1768
crossref_primary_10_1111_febs_15693
ContentType Journal Article
Copyright Copyright © 2009 Landes Bioscience 2009
Copyright_xml – notice: Copyright © 2009 Landes Bioscience 2009
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.4161/cc.8.23.10238
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-4005
EndPage 4001
ExternalDocumentID 19923890
10_4161_cc_8_23_10238
10910238
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01-CA-120876
– fundername: NIAMS NIH HHS
  grantid: R01-AR-055660
– fundername: NCI NIH HHS
  grantid: R01-CA-75503
– fundername: NCI NIH HHS
  grantid: R01-CA-80250
– fundername: NCI NIH HHS
  grantid: R01-CA-86072
– fundername: NCI NIH HHS
  grantid: R01-CA-098779
– fundername: NCI NIH HHS
  grantid: R01-CA-107382
– fundername: NCI NIH HHS
  grantid: P30-CA-56036
– fundername: NCI NIH HHS
  grantid: R01-CA-70896
GroupedDBID ---
0BK
0R~
0YH
29B
30N
53G
5GY
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABFMO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACFTK
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
C1A
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
F5P
GTTXZ
H13
HYE
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
V1K
ZA5
4.4
AAGME
AAYXX
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
CITATION
CWRZV
EMOBN
IPNFZ
LJTGL
PCLFJ
RIG
ADYSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c487t-d375436c4d5acd22832b04c9242c42c6672f95a4fefefc01636df9de6173d23b3
IEDL.DBID TFW
ISICitedReferencesCount 1129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272219200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-4101
1551-4005
IngestDate Fri Sep 05 12:05:57 EDT 2025
Wed Feb 19 01:47:48 EST 2025
Tue Nov 18 22:06:57 EST 2025
Sat Nov 29 03:33:11 EST 2025
Fri Jan 15 03:57:17 EST 2021
Mon Oct 20 23:46:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-d375436c4d5acd22832b04c9242c42c6672f95a4fefefc01636df9de6173d23b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.4161/cc.8.23.10238
PMID 19923890
PQID 734151543
PQPubID 23479
PageCount 18
ParticipantIDs pubmed_primary_19923890
crossref_citationtrail_10_4161_cc_8_23_10238
informaworld_taylorfrancis_310_4161_cc_8_23_10238
proquest_miscellaneous_734151543
landesbioscience_primary_cc_article_10238
crossref_primary_10_4161_cc_8_23_10238
PublicationCentury 2000
PublicationDate 12/1/2009
2009/12/01
2009-12-00
2009-Dec
20091201
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 12/1/2009
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2009
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
SSID ssj0028791
Score 2.5407002
Snippet Here, we propose a new model for understanding the Warburg effect in tumor metabolism.  Our hypothesis is that epithelial cancer cells induce the Warburg...
Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect...
SourceID proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3984
SubjectTerms Animals
Annexins - metabolism
Binding
Biology
Bioscience
Breast Neoplasms - metabolism
Calcium
Cancer
Caveolin 1 - deficiency
Caveolin 1 - genetics
Caveolin 1 - metabolism
Cell
Cycle
Female
Fibroblasts - metabolism
Glycolysis
Humans
L-Lactate Dehydrogenase - metabolism
Landes
Mice
Mice, Knockout
Organogenesis
Proteins
Proteomics
Pyruvate Kinase - metabolism
Stromal Cells - metabolism
Tenascin - metabolism
Up-Regulation
Title The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
URI https://www.tandfonline.com/doi/abs/10.4161/cc.8.23.10238
http://www.landesbioscience.com/journals/cc/article/10238/
https://www.ncbi.nlm.nih.gov/pubmed/19923890
https://www.proquest.com/docview/734151543
Volume 8
WOSCitedRecordID wos000272219200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1551-4005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028791
  issn: 1538-4101
  databaseCode: TFW
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BBRI9UL5ZPiofEBISKdnYSWxuFWLVU8WhqMvJcsZ2ValNUJKt1H_PTJJdWtBeQIlyGiuO_Ry_iZ33AN7pWFbRFXmCRhaJwkwnVRowqTzO5yEvnDJxMJsoj4_1cmm-3bD64m2VnEPHUShieFfz4HbV4EDCdPwT4oE-yOSgOsC_-dKUz94FJ4vTTaqlSzMppepEEepGdc2_S9-ajW5ple7CHm8t5FWaSVUybCehw2S02PuPx3gEDycGKg5HyDyGO6F-AvdHT8rrp-AJOIJ1ndouiFPHjX4mxl0fn8VhYNkmFGcX1wQgFjMR57VARk4r3NTTwYtISXhTETHvO0H1E8QyRb-6bFrR9W1z6Z7B98XXky9HyWTFkCBlNH3i2SlXFqh87tCzZE5WpQopecuQzqIos2hyp2KgA4lGysJH4wPxI-kzWcnnsFM3dXgJIubex1T7PMVUBYXEm4ky5AQlo0xRlTP4uO4Si5NOOdtlXFjKV7jhLKLVNpN2aLgZvN-E_xwFOrYFzm_2r-2HLyJxtC-xckuZD3-CYHMTCpwG9zpWrNFhaYjyuourQ7PqbElMgWijkjN4MaLmd00NEWxt0lf_ULnX8CCbzCzS-RvY6dtVeAv38Ko_79p9uJv-OKJrudT7w9j4BdZ0ELo
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAQEHypstLx8QElJTsrHzcG8VolpEWXEoopysZGxXldoEJVmk_ntmEu-WUu0FlJyiseLY38Tf2KNvAN4UPq98maURaplFCpMiqmKHUWVxOnVpVirth2IT-XxeHB3pryGrsgtplRxD-1EoYvhXs3PzZjR7OPPx94g7xU4iB9mB4jrcSLliNmE5_jFbBVv0KGilFpEi3I36mlebX1qPLqmV3oVNTi7kc5qgK-nW09BhOdrf_J8PuQ_3AgkVeyNqHsA1Vz-EW2NZyvNHYAk7gqWd2s6J7yWP-7EYEz92xZ5j5SYUx6fnhCHWMxEntUAGTyvKMNnOCk9xeFMRN-87QR0URDRFvzhrWtH1bXNWPoZv-x8PP8yiUI0hQgpq-shysVyZobJpiZZVc5IqVkjxW4J0Z1meeJ2Wyju6kJikzKzX1hFFkjaRlXwCG3VTu2cgfGqtjwubxhgrp5CoM7GGlNCklc6qfALbyzkxGKTKuWLGqaGQhQfOIJrCJNIMAzeBtyvzn6NGxzrD6Z8TbPphU8SPFUyMXNPm3d8oWL2EDIN_L23FEh6GvJSPXsraNYvO5EQWiDkqOYGnI2wueqqJYxc63vqHzr2G27PDLwfm4NP883O4k4TaFvH0BWz07cK9hJv4qz_p2leDc_wGwyQSzw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B-RAcKN9s-fIBISGRko2dxO6tAlYg0KqHovZmJWO7qtQmVZJF6r9nJsluW6q9gJKjrTieN_Gb2HoP4J0OeRmKLI3QyCxSmOiojD1GpcPp1KdZoUzozSby-VwfHpq9S1ZffKySa-gwCEX032pO7jMXOMGZjn9C3NbbiexVB_RNuEWUOeO6a392sKq1dG5GqVQdKYLdIK95vfuV5eiKWOl92OSzhbxNM8pK-vUstF-NZpv_8R4P4cFIQcXugJlHcMNXj-HOYEp5_gQcIUewsFPTenFQ8KwfieHYx47Y9azbhOLo5JwQxGom4rgSyNBpRDGG2jsRqAqvS2LmXStofIJopugWp3Uj2q6pT4un8Gv2df_zt2j0YoiQSpoucmyVKzNULi3QsWZOUsYKqXpLkG4KQBJMWqjg6ULikTJzwThPBEm6RJbyGWxUdeVfgAipcyHWLo0xVl4hEWfiDClhySiTlfkEPi5DYnEUKme_jBNLBQtPnEW02ibS9hM3gfer5meDQse6htPL8bVd_0skDP4lVq7p8-FvEKweQg3H7F62FUt0WMpR3ngpKl8vWpsTVSDeqOQEng-ouRipIYatTbz1D4N7C3f3vszsz-_zHy_hXjIaW8TTV7DRNQv_Gm7j7-64bd70qfEH4lkRvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reverse+Warburg+effect%3A+aerobic+glycolysis+in+cancer+associated+fibroblasts+and+the+tumor+stroma&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Pavlides%2C+Stephanos&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Castello-Cros%2C+Remedios&rft.au=Flomenberg%2C+Neal&rft.date=2009-12-01&rft.issn=1551-4005&rft.eissn=1551-4005&rft.volume=8&rft.issue=23&rft.spage=3984&rft_id=info:doi/10.4161%2Fcc.8.23.10238&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon